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Abstract. With the prominence of assessments in education, there is an increasing need to create 

new forms of assessment that more accurately reflect the needs of the entire student population, 

particularly neurodivergent learners. To address this challenge, this paper explores the potential for 

using eye tracking data in a game-based learning environment to assess student’s implicit 

knowledge. Data was collected from a sample of 66 neurodivergent college students playing the 

physics game Impulse while their eye movements and game play behaviors were recorded. The 

results indicate that gaze allocation patterns were predictive of students’ physics knowledge and 

aligned with previously identified behavior indicators of learning. These findings provide evidence 

for further development of eye movement-based assessments in computer-based instruction and 

demonstrate how these data can be collected, organized, and analyzed. 
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1 Introduction 

 

For better or worse, assessment has played a prominent role in many conversations related to computer-based 

learning. Whether one believes that there is too much or not enough assessment in education, most can agree that 

assessments need to accurately reflect learner knowledge and apply fairly to all students. This sentiment is reflected 

by the latest edition of The Standards for Educational and Psychological Testing put out jointly by the American 

Educational Research Association (AERA), the American Psychological Association (APA), and the National Council 

on Measurement in Education (NCME) (2014). The latest edition of the standards highlights the need for fairness in 

testing and the importance of developing and using assessments that are equally applicable and interpretable across 

all student populations. Unfortunately, evidence shows that many commonly used assessments may not be fairly 

assessing some student populations including students with disabilities (Dahlstrom-Hakki & Alstad, 2019; Sideridis, 

2016), English Language Learners (ELL) (Abedi, 2006), and students of color (Ford & Helms, 2012). 

To address this challenge, researchers have been exploring alternate and potentially more objective means of 

assessing student knowledge including Educational Data Mining (EDM) & Learning Analytics (Berland et al., 2014), 

Game-Based Learning Assessment (GBLA) (Ke & Shute, 2015), and Project-Based Learning Assessment (PBLA) 

(Larmer et al., 2015; Van den Bergh et al., 2006). These approaches primarily focus on assessing knowledge by 

looking at a student’s ability to make use of relevant information to perform a task rather than to explicitly express 

knowledge using text or symbolic notation. While many of these approaches show real promise in supporting different 

student populations, they are limited in their ability to reveal the cognitive processes underlying learning. 

This paper explores the potential for using eye tracking as a means of more fairly assessing diverse populations 

of students. Eye tracking offers a robust means of assessing student’s visual attention allocation and their cognitive 

effort thereby providing the potential to not only assess evidence of learning outcomes but to also provide data that 

can better reveal sources of struggle for students who are not achieving learning goals (Alemdag & Cagiltay, 2018; 

Dahlstrom-Hakki et al., 2019; Lai et al., 2013). Eye movements have long been used in the cognitive sciences as a 

means of inferring a variety of cognitive processes related to learning and memory (see Rayner, 2009 for a review). 

Eye tracking provides information on what an individual is attending to and for how long, thereby helping researchers 

ascertain the approach players are using to solve a task. 

Cognitive researchers use eye movements to infer several elements of cognitive processing including visual 

attention allocation, cognitive processing difficulty, and short- or long-term memory use (Carter & Luke, 2020; 



Dahlstrom-Hakki et al., 2019). Eye movements are generally analyzed by looking at both their temporal and spatial 

characteristics. These movements generally occur as a series of relatively stable periods where a location in the visual 

field is foveated, this is known as a fixation, interspersed with fast movements between fixation locations, these are 

known as saccades. Visual attention allocation is strongly associated with fixation allocation, and often (but not 

always) co-occur (Corbetta et al., 1998). Cognitive processing difficulty has been analyzed by looking at differences 

in patterns of fixation durations (Inhoff & Rayner, 1986; Meghanathan et al., 2015) and more recently by looking at 

changes in pupil dilation (Klingner, 2010).  

Eye tracking measures of attention may be particularly important when considering the difference between 

implicit and explicit knowledge of neurodiverse students. For the purposes of this study, implicit knowledge is defined 

as knowledge that is evident through performance or actions but which the student may not be aware of or may not be 

able to express explicitly. Some research has found that students with disabilities may have implicit knowledge even 

when they are unable to demonstrate it on explicit assessments (McNamara & Wagner, 2001). Polanyi (1966) argued 

that implicit knowledge (also called tacit knowledge) is foundational and a required element of explicit learning. 

Implicit understandings are embodied and enacted through our interactions with the world around us but may not yet 

be formalized or expressed verbally or textually. Vygotsky (1978) used the term preparedness for learning to describe 

similar abilities and understandings a learner brings to a learning situation that can be scaffolded by a teacher, 

environment, and tools. More recently, the idea of implicit learning has been expanded to explain the science of 

successful learning (Brown et al., 2014) and fast and slow thinking (Kahneman, 2011).  

Evidence indicates that many assessments of explicit knowledge do not accurately reflect the learning of 

neurodivergent learners (Nieminen, J. H., 2023). Given this simple fact, measures of implicit knowledge may offer a 

more accessible and overall valid measure for both neurodivergent learners and students at large. This work explores 

the viability of using implicit measures of knowledge as a more objective means of assessing the knowledge of 

neurodivergent learners. 

Prior research by this project’s team in game-based learning shows that games have unique promise for revealing 

implicit learning because they can a) encourage players to dwell in the phenomena and b) they leave a digital trail that 

reveals the patterns the players used in their learning process. Careful alignment of game mechanics with learning and 

assessment mechanics (Plass et al., 2015) may reveal implicit learning and empower teachers and learners to help 

bridge game-based knowledge to other forms of learning. The digital nature of these games also allows for the 

integration of eye tracking data, which can be synchronized with game data logs to allow for a better sense of the 

cognitive processes underlying students’ game behaviors. 

 This prior work explored the use of automated detectors based on players’ gameplay behavior as a means of 

measuring their implicit knowledge. These detectors were developed for STEM learning games using a six-step 

process (see Figure 1) aimed at remotely assessing learners’ understanding of relevant STEM concepts based on 

gameplay behavior. These six steps were used to build Game Based Learning Assessments (GBLAs) for several 

educational games including the physics game Impulse (for more detailed explanations, see Rowe et al., 2014, 2015, 

2019). This process starts by identifying gameplay consistent with the game’s educational learning goals, in the case 

of Impulse these were Newton’s First and Second Laws. Then, videos are coded in terms of specific strategic moves, 

noting which moves are consistent with successful achievement of the learning goals. Next, the hand coded video data 

are merged with the gameplay log data. Following that, educational data mining techniques are used to automate the 

coding based on the gameplay log data and guided by the hand coded data. Finally, the relationship between play 

patterns and learner performance is tested using a pre-post assessment of the target concepts (Rowe et al., 2017). This 

process resulted in the development of several implicit measures of Newton’s first and second laws based on players’ 

game behaviors. One measure in particular (termed n-clicks, see Methods for additional details) exhibited strong 

internal and external validity and was used to explore the viability of using eye tracking to measure implicit knowledge 

in this paper. 

 

 
 

Figure 1. Graphical representation of the six-step emergent approach to GBLA (Source: Rowe et al., 2019) 



 

This paper builds upon these prior efforts by adding an eye tracking component to the data collected during student 

gameplay. This additional stream of data provides potential insight into the cognitive processes underlying the learning 

behaviors. Previous reviews by the authors and others in the field (Alemdag & Cagiltay, 2018; Dahlstrom-Hakki et 

al., 2019; Lai et al., 2013) describe a variety of eye tracking measures for the characterization of learning. These 

include measures of attention allocation, working memory or cognitive load, and long-term memory formation. 

Eye tracking has long been used as a close proxy for visual attention allocation given that eye movements closely 

follow shifts in both covert and overt attention (Peterson, Kramer, & Irwin, 2004). More recent work pertinent to 

learning focuses not only on the objects attended to but the temporal allocation of eye movements using scan path 

analysis techniques (Eraslan et al., 2016; Räihä et al., 2005). Scan path analysis allows for the temporal 

characterization of information acquisition thereby helping to reveal the cognitive aspects of the learning process in a 

given setting. 

Eye tracking techniques have also been used to better understand the role of working and long-term memory in 

learning. Impacts on working memory or cognitive load can be inferred from subtle differences in fixation durations 

(Meghanathan, van Leeuwen, & Nikolaev, 2015) as well as from changes in pupil dilation (Miller & Unsworth, 2020). 

Measures of long-term memory by contrast tend to be more context dependent. Eye movements can infer the presence 

of knowledge by looking for anticipatory eye movements or fixations durations that are differently impacted by the 

presence of relevant knowledge in long-term memory (Gegenfurtner, Lehtinen, & Säljö, 2011). These inferences 

provide specific insight into implicit learning based on the learner’s largely involuntary eye movements as opposed to 

explicit learning that they would need to consciously articulate. 

Eye movements provide both an explicit measure of visual attention allocation using gaze location and an 

indication of processing difficulty based on fixation durations (Dahlstrom-Hakki et al., 2019; D’Mello, 2016). Eye 

tracking has been used for over a decade in GBL research to study engagement, user interface design, and general 

visual attention allocation (Knoepfle et al., 2009; Streicher et al., 2018; Zain et al., 2011). However, that work has 

generally used temporal accuracy exceeding the 100ms level which is unable to reveal the level of cognitive processing 

described in this study.  The goal of this study therefore was to determine the viability of using a cognitive level 

analysis of the eye movement record as a means of remotely assessing player’s understanding of Newtonian physics 

in the game Impulse as a first step to building GBLA informed by eye movements for this game. 

 

1.1 Neurodiversity. Eye tracking has demonstrated its value in supporting non-invasive measures of cognitive 

processing and learning. However, the cost of eye tracking equipment and the difficulty of analyzing eye tracking data 

have largely relegated that work to laboratory settings. Recent advances in eye tracking technology, however, are 

providing the possibility of affordable and widely available eye tracking that can be widely deployed. Both the 

temporal and spatial accuracy of early versions of webcam-based eye tracking have been low (Papoutsaki et al., 2016), 

but more recent work with deep learning models (Rakhmatulin & Duchowski, 2020) and mobile eye tracking 

(Valliappan et al., 2020) shows a lot more promise. Recent work has shown promise in deploying webcam-based eye 

tracking to study cognitive processing in neurodivergent learners at scale (Wong et al., 2023). While these technologies 

are not ready for broad deployment yet, the work described here paves the way to developing assessments using these 

tools once they are broadly available. 

 The use of GBLA more generally and the incorporation of multi-modal data streams such as eye tracking to 

support these assessments more specifically is especially relevant to computer-based assessments. These assessment 

modalities rely on fully digital data collection with the potential to provide outputs to the learning system in real-time. 

With emerging eye tracking technology that does not require specialized hardware or setup, the collection and use of 

this type of data for assessment shows far more promise in a fully digital environment where it can be included 

unobtrusively than in a traditional classroom setting. Furthermore, output from such assessments in real-time can 

provide immediate input for adaptive games and intelligent tutoring systems to adapt the educational content in real-

time to improve student performance. 

 

1.2 Eye tracking at Scale. Eye tracking has demonstrated its value in supporting non-invasive measures of cognitive 

processing and learning. However, the cost of eye tracking equipment and the difficulty of analyzing eye tracking data 

have largely relegated that work to laboratory settings. Recent advances in eye tracking technology, however, are 

providing the possibility of affordable and widely available eye tracking that can be widely deployed. Both the 

temporal and spatial accuracy of early versions of webcam-based eye tracking have been low (Papoutsaki et al., 2016), 

but more recent work with deep learning models (Rakhmatulin & Duchowski, 2020) and mobile eye tracking 

(Valliappan et al., 2020) shows a lot more promise. Recent work has shown promise in deploying webcam-based eye 

tracking to study cognitive processing in neurodivergent learners at scale (Wong et al., 2023). While these technologies 



are not ready for broad deployment yet, the work described here paves the way to developing assessments using these 

tools once they are broadly available. 

 The use of GBLA more generally and the incorporation of multi-modal data streams such as eye tracking to 

support these assessments more specifically is especially relevant to computer-based assessments. These assessment 

modalities rely on fully digital data collection with the potential to provide outputs to the learning system in real-time. 

With emerging eye tracking technology that does not require specialized hardware or setup, the collection and use of 

this type of data for assessment shows far more promise in a fully digital environment where it can be included 

unobtrusively than in a traditional classroom setting. Furthermore, output from such assessments in real-time can 

provide immediate input for adaptive games and intelligent tutoring systems to adapt the educational content in real-

time to improve student performance. 

 

1.3 Research Question and Analysis. The current paper explores the viability of developing eye tracking based 

assessments in the context of the Impulse game and similar GBL solutions. To that end, this study asks the questions: 

Can common eye tracking metrics be used to reliably detect implicit learning of Newtonian physics as measured by 

existing behavioral and paper-based measures. Given the difference in measure scales, the study accomplishes this 

through the following analysis. Participants are separated into clusters based on their average fixation durations. 

Clusters are then compared for significant differences on a pre-test of conceptual understanding of Newtonian physics. 

This analysis is guided by the hypothesis that students with different levels of conceptual understanding of Newtonian 

physics will exhibit a different overall pattern of gaze allocations. The second analysis focuses on an existing 

behavioral measure of Newton’s second law. Average gaze durations will be used to predict performance on this 

measure. 

 

 

2 Methods 

 

This paper reports on a study of game-based learning measured through game detectors along with eye tracking 

measures of visual attention. The goal of this research was to explore the viability of using eye movements as a 

measure of implicit physics learning that is more accessible to neurodivergent learners. 

 

2.1 Sample. Data was collected from a sample of neurodivergent young adults recruited from a campus that 

exclusively serves this population. A total of 66 neurodivergent young adults participated in this study. Two technical 

issues caused some of the data from this study to be lost. For 8 of the participants, the eye tracking data stream was 

missing from the data record. In addition, the pretest survey in the initial deployment of the software was corrupted 

causing demographic and pretest information to be missing for another 17 participants. Therefore, full data were 

available for 41 of the participants, whereas behavioral and eye movement data were available for 58 participants, and 

demographic and pretest data were available for 49 participants. Based on the demographics of the 49 participants 

who completed the pretest, the average participant age was 21 years with a range of 18 to 28. In terms of gender, 17 

identified as female, 29 as male, and 3 chose not to respond. In terms of diagnosis, 37 participants self-reported having 

two or more diagnoses, 11 self-reported only one diagnosis, and one participant chose not to respond. Of the 48 

participants who shared their diagnosis, 40 self-reported having a diagnosed learning disability, 34 self-reported a 

diagnosis of ADHD, and 19 reported a diagnosis of autism. Additionally, 36 participants reported playing video games 

regularly and 23 participants reported never having previously taken a physics course. 

 

2.2 Materials 

 

2.2.1 Brief description of Impulse. Data in this study was collected in the physics video game Impulse. Impulse was 

designed to foster and measure implicit learning about Newton’s First and Second Laws of Motion. The game has a 

simple mechanic (get your particle to the goal without crashing into other particles) embedded in a simulation of 

gravitationally interacting particles (see Figure 2). Players apply a force (triggered by clicks or touch) that radiates 

from a single point and that impacts particles based on their proximity and position relative to this point. If the player’s 

particle collides with any ambient particle, the level is over and they must start back at the last plateau. A plateau is 

reached every 5 levels. Each level gets more complex, requiring players to grapple with the increasing gravitational 

forces of an increasing number of particles (within plateaus) and particles of different mass and thus inertia (across 

plateaus). 

 



 
 

Figure 2. A screenshot from Impulse. The player is the green particle.  

Red, blue, and white particles have different masses 

 

 

 In prior studies involving Impulse, researchers identified several strategies that were evident and intentional in 

players’ behaviors (Rowe et al., 2014). These patterns were identified and coded, then distillers were used to filter, 

organize, and export the gameplay data in a format that could be used by a data mined detector to predict the game 

behaviors that are consistent with implicit understanding. One such detector relevant to this study involves implicit 

understanding of Newton’s Second Law and was based on patterns in players’ click activity related to the color (thus 

the mass) of the closest ball. Players who consistently used more force to accelerate heavier particles than lighter ones 

were considered to have demonstrated an implicit understanding of Newton’s Second Law. 

 

2.2.2 Physics Pretest. This assessment included six animated items, three dealing with Newton’s First Law and three 

dealing with Newton’s Second Law. For each topic, there was one question that resembled an animated version of a 

question from the Force Concept Inventory (Dancy & Beichner, 2006; Hestenes et al., 1992; Savinainen & Scott, 

2002; Thornton & Sokoloff, 1998), one question using an example from Impulse, and one using an excerpt from a 

NASA astronaut video. Figure 3 is a sample item for Newton’s First Law and Figure 4 is a sample item for Newton’s 

Second Law (Source: Asbell-Clarke et al., 2019). 

 



 
 

Figure 3. Sample Newton’s First Law assessment item from the physics pretest,  

note actual items were animated. This item was adapted from the Force Concept Inventory. 
 

 The physics pretests each had a maximum of 10 points possible, 4 items focused on Newton’s First Law (NFL) 

and 6 items on Newton’s Second Law (NSL). One of the Newton’s Second Law items was ambiguously worded with 

more than one potentially correct response and was therefore excluded from analysis. The assessment items had a 

Cronbach’s alpha of 0.44 which was in line with a previously reported Cronbach’s alpha of 0.48. This value indicates 

a fairly low level of internal consistency which is likely driven by the fact that good performance on NFL items was 

not predictive of good performance on NSL items and vice versa. Analysis therefore looks at performance on 

individual items rather than a combined score. 

 

 
 

Figure 4. Sample Newton’s Second Law assessment item from the physics pretest.  

This item was adapted from the Force Concept Inventory. 



2.2.3 Demographic Survey. This instrument included items asking participants to self-report their age, gender, 

disability status, familiarity with video games, and prior instruction in physics. 

 

2.2 Materials. The Eyelink 1000 eye tracker was used in remote tracking mode to collect data from participants while 

they played the Impulse game on a monitor with 120 Hertz refresh rate. In remote tracking mode, the Eyelink sits on 

the desktop and collects images of the eyes using a wide-angle lens on a high-speed infrared camera sampling at the 

rate of 500 Hertz. No head restraint was used since the Eyelink 1000 system can compensate for head movements. 

Eye movement data were collected from the right eye. The eye tracker parser automatically classified fixations based 

on foveated areas of the visual field between saccades. Saccades were detected when an eye movement had a velocity 

over 30°/s, an acceleration over 8000°/s², and moved at least 0.1°. 

 

2.3 Measures.  

 

2.3.1 Gameplay Data. All student assessment and game log data were collected through the game data collection 

architecture, Data Arcade. Data Arcade was designed and built to collect, organize, and visualize data collected from 

game activity. As part of this architecture, an API is built into the game allowing each player’s game activity and 

every corresponding game event to be logged and associated with a timestamp and a unique (and anonymous) player 

ID. Over multiple GBLA studies, the authors have designed a suite of tools with the data architecture to enable: 

 

• Registration of players by classes or individuals. 

• Synchronization of game data with other sources (e.g., surveys, external pre/post assessments, and 

multimodal sensory data streams); and 

• Visualization tools that allow the “playback” and hand-labeling of gameplay generated from the data logs. 

 

The Playback Tool is a unique innovation in which a “replay” visualization of the gameplay is generated from log 

activity and is displayed in a window with a series of menus below that researchers use for hand-labeling of the data. 

Researchers can easily scrub through the video timelines to find events and the Playback Tool can snap to an event to 

avoid time-consuming and tedious event synchronization tasks. Researchers can customize the labeling tool for 

different puzzles and different games. The Playback Tool was used for visualization of eye tracking overlaid on game 

play. 

 

2.3.2 Eye Data. Because of the dynamic nature of the stimuli in this study which elicited frequent instances of smooth 

pursuit, the eye movement data were based on an analysis of gaze durations and locations rather than fixations. Gaze 

locations were used as a close proxy for the allocation of visual attention to an object. Given the time sensitive nature 

of the gameplay, gaze durations were used as an indicator of the processing resources allocated to deal with a foveated 

object. For the purposes of this study, a gaze was defined as the total time in which a game object’s center was closest 

to the location of the foveated region and within 3 degrees of visual angle. A gaze begins at the start of the first fixation 

on an object that meets these conditions and lasts until the end of the last fixation that meets these conditions. 

Therefore, a gaze ends when another object’s center was closer to the foveated region or if the object becomes more 

than 3 degrees of visual angle away from the foveated region. This means that gaze location was based on object 

location and not absolute spatial location, and gaze duration was based on total time on an object rather than the 

duration of individual stationary fixations. 

 

2.4 Procedure. Data was collected in a lab setting setup on the college campus. Data collection began with the pretest 

instrument that participants were asked to complete. The eye tracker was then set up and calibrated for the participant, 

a procedure which typically takes 5-10 minutes. The Impulse game was then started, and the eye tracker, game, and 

mouse data streams were connected to Data Arcade, the data collection architecture. Participants then independently 

played Impulse for the remainder of the session with each session lasting a total of 1 hour. Participants received a $25 

gift card for their participation in this study. 

 

2.4.1 Analysis. To assess whether the eye movement data collected provided a useful means of assessing students’ 

physics knowledge, two analyses were conducted, one comparing overall gaze patterns to students’ knowledge on a 

physics pretest and one comparing it to previously created detectors based on player behavior. The first analysis 

involved building a linear mixed-effects model to test the association between participant scores on the physics pretest 

and their gaze allocation patterns. Players were separated into clusters using a Gaussian Mixture Model (GMM) 

algorithm based on each individual’s average gaze durations on particles of each of the four colors: Blue particles with 



the lowest mass, Red particles of equal size but double mass, and White and Grey particles with double the mass of 

Red. In addition, White particles were larger than Red ones, and Grey particles were smaller than Red ones. Resultant 

clusters were used in a Generalized Linear Mixed Effects Model (GLMEM) to predict individual pretest item scores, 

with random slopes for each player and pretest item. 

 The second analysis examined the association between students’ eye movement patterns and the sequence length 

of clicks (termed N-Clicks) on particles of a given color. Sequence length is the number of consecutive times a player 

clicked to move the same particle in under 4 seconds. Prior work by the authors has supported the hypothesis that 

learners who have an implicit understanding of Newton’s laws exert greater force (and therefore more clicks) to move 

particles of higher mass (Rowe et al., 2015). Gaze duration data was normalized and centered. This was done because 

we are interested in how relative rather than absolute gaze durations are predictive of N-Clicks and to facilitate model 

convergence. A GLMEM Poisson regression modeled sequence lengths on particles of each of the four colors, with 

random slopes for each player and level. Both sets of analyses were conducted in R Studio 1.1463. 

 The N-Click measure is intended to provide an implicit measure of understanding of Newton’s Second Law. 

This was done by coding the target of the current click (i.e. force allocation) and whether the target was the same as 

the previous click (indicating additional force exerted to the same target). The N-Click measure used two detectors 

(see Table 1) to determine the number of clicks (N-Clicks) on a particle of a given color thereby indicating the amount 

of force exerted on that particle. 

 

Table 1. Accuracy of detectors used for N-Click measure based on hand coded videos of gameplay. 

 

Code Definition Kappa 

Target Type of particle (player, other, both) the 

learner intended to move 

0.920 

Same as Last Target The learner intended to move the same target 

as the last action 

0.869 

 
Note. Rowe, Baker, Asbell-Clarke, Kasman, & Hawkins (2014). 

 

 The N-clicks on particles of different masses were selected for this analysis because they were found to be the 

strongest evidence of Newton’s Second Law in prior research with Impulse (Rowe et al., 2017). Sequence length was 

based on clicks on the same blue, red, white, or gray particle within a round. For instance, if a student had sequences 

of clicks for the following particles in round 1: Red 1, Red 1, Blue 1, Blue 1, Blue 1, Blue 2, Blue 2. The maximum 

N-Click for red would be 2 and the maximum N-Click for blue would be 3 for that round. These maximum N-Clicks 

for each of the colored particles were used in predicting gaze duration below. 

 

3 Results 

 

GMM clustering using mahalanobis distances as the distance measure was used to create discrete groupings of gaze 

duration patterns. Participant clusters were created by examining each participant’s average gaze durations on particles 

of each type. Correlations between average gaze durations can be seen in Table 2.  To identify an optimal cluster size 

for use in this analysis based on the GMM clustering of gaze durations on particles of different color, the Akaike 

Information Criterion (AIC) was used. The AIC is often used to assess the quality of a model by looking at the quality 

of a model’s predictions balanced against the number of predictors. As shown in Figure 5, the first elbow in the graph 

occurs at cluster 3, indicating a reasonable balance between the number of clusters and the cohesion of gaze duration 

patterns in each cluster. 

 

Table 2. Correlation between participant average gaze durations across participle types. 

 

 Blue Red White Gray 

Blue 1.00    

Red 0.90 1.00   

White 0.89 0.97 1.00  

Gray 0.90 0.94 0.99 1.00 



 
 

Figure 5. AIC values by number of clusters. 
 

 Table 3 provides an overview of descriptive statistics for the three resultant gaze clusters including each cluster’s 

pretest score, percentage of ADHD/autism/learning disability, and maximum N-Clicks for each particle (note that 

average pretest scores and percentage of ADHD/autism/learning disability are based on the 41 participants for whom 

full data was available). Figure 6 shows average gaze durations on particles of different color (and therefore mass) for 

each participant in this study and illustrates how patterns differ across the three clusters. Gaze cluster 1 was the largest 

and had the lowest pretest performance, gaze cluster 2 had the least number of students and had the highest pretest 

performance, and gaze cluster 3 was slightly larger than cluster 2 and had performance midway between the two other 

clusters. Chi-squared analyses indicated no difference across clusters in terms of ADHD, autism, or learning disability. 

Diagnosis was explored as a potential factor in the below models but did not lead to significant improvements in model 

fit. 

 

Table 3. Correlation between participant average gaze durations across participle types. 

 

 

Cluster  N Avg Pretest 

Score (SD) 

ADHD Autism Learning 

Disability 

Mean Maximum N-Click (SD) 

Blue Red White Gray 

1 32 6.59 (1.47) 68% 64% 14% 2.35 

(0.80) 

2.54 

(0.77) 

3.18 

(0.95) 

2.19 

(0.60) 

2 11 8.00 (1.69) 75% 50% 25% 2.76 

(1.03) 

2.72 

(1.33) 

2.96 

(1.60) 

2.09 

(0.30) 

3 15 7.46 (1.44) 73% 73% 9% 2.50 

(0.56) 

2.78 

(0.89) 

3.06 

(0.90) 

2.18 

(0.68) 

 



 
 

Figure 6. Eye movement patterns across gaze clusters (Cluster 1, n=32; Cluster 2, n=11; Cluster 3, n=15) 
 

 To test whether eye movement patterns are predictive of students’ physics knowledge, a logit regression was 

performed using a Generalized Linear Mixed Effects Model (GLMEM). This model predicts each individual 

participant's likelihood of having answered correctly to each of the physics pre-assessment items while controlling for 

individual specific and item specific variability. Gaze cluster 1 was used as the baseline cluster and the data was 

modeled using the following equation: 

 

𝑙𝑜𝑔𝑖𝑡(𝑌𝑖𝑗) = 𝛽0 + 𝜇0𝑖 + 𝜈0𝑗 + 𝛽1(𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2) + 𝛽2(𝐶𝑙𝑢𝑠𝑡𝑒𝑟 3) + 𝜖𝑖𝑗  

 

𝑌𝑖𝑗= Probability of participant i responding correctly to item j 

𝛽= Fixed component 

𝜇= Participant random component 

𝜈= Item random component 

𝜖= Residual error 

 

 As can be seen in Table 4, the data indicates that participants in gaze cluster 2 were significantly more likely to 

perform better on the physics pre-assessment items than participants in gaze cluster 1. This is notable given the fact 

that the clustering was performed purely based on the gaze durations of participants on different color particles and 

was completely blind to their prior physics knowledge. Gaze cluster 3 had a higher coefficient than gaze cluster 1 but 



this difference was not statistically significant, however with a p value of 0.11 it is possible that this failed to reach 

the level of significance due to a lack of power. 

 

Table 4. Results of GLMEM regression analysis of how predictive  

gaze cluster is of pre-assessed physics performance 

 

Fixed Effect Estimate SE z-value p-value 

Intercept (𝛽0) 1.08 0.58 1.86 0.06 † 

Cluster 2 (𝛽1) 1.07 0.45 2.38 0.02 * 

Cluster 3 (𝛽2) 0.62 0.39 1.61 0.11 

Random Effects Variance SD   

Participant (𝜇0) 0.37 0.61   

Item (𝜈0) 2.84 1.69   

 

 The analysis of the clustering data provides for a fairly coarse-grained test of the association between global gaze 

patterns in the Impulse game and Newtonian physics knowledge. Despite this, the data indicate that some players with 

greater Newtonian physics knowledge exhibit distinct gaze allocation patterns during gameplay indicating the gaze 

durations may be a useful means of implicitly assessing students’ physics knowledge. To further corroborate this 

finding, a more fine-grained analysis was performed looking at the association between gaze allocation patterns and 

the maximum N-Clicks on particles of different mass, a measure previously found to be strongly associated with 

strong performance on assessments of Newtonian physics. 

 

 
 

Figure 7. Histogram of average round sequence lengths per particle type. 
 

This measure counts the number of clicks on a specific particle within a short period of time (see Figure 7 for a 

distribution of average sequence lengths per round). Therefore, to model this count data, a GLMEM Poisson regression 

was used. The model predicts the maximum number of consecutive clicks on particles of each color on every game 

round while accounting for participant specific and level specific variability. To facilitate model convergence, the 

gaze duration data was centered and normalized. The data was modeled as follows: 

 

log(𝑌𝑖𝑗) = 𝛽0 + 𝜇0𝑖 + 𝜈0𝑗 + 𝛽1(𝑅𝑒𝑑) + 𝛽2(𝑊ℎ𝑖𝑡𝑒) + 𝛽3(𝐺𝑟𝑎𝑦) + 𝛽4(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑧𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 𝜖𝑖𝑗  



𝑌𝑖𝑗= Expected N-Clicks on particles of a given color  

        for participant i on game round j 

𝛽=   Fixed component 

𝜇=   Participant random component 

𝜈=   Game level random component 

𝜖=   Residual error 

 

Prior work indicates a strong association between particle color and the N-Click measure with a longer click sequence 

on higher mass particles being associated with better subsequent performance on assessments of Newtonian physics 

(Rowe et al., 2017). The regression coefficients for particle color show that participants exhibited this previously 

identified pattern. The blue particle had the lowest mass and was used as the baseline particle in the regression model. 

As can be seen in Table 5, red particles with twice the mass of blue particles received significantly higher N-Clicks, 

and gray and white particles, both twice the mass of red particles (but different sizes), had even higher coefficients. In 

addition, the normalized average gaze duration had a statistically significant association with N-Clicks indicating that 

particles that received longer gazes also tended to receive more N-Clicks. 

 

Table 5. Results of GLMEM regression analysis of how predictive  

normalized average gaze durations are of the N-Click measure. 

 

Fixed Effect Estimate SE z-value p-value 

Intercept (𝛽0) 0.44 0.08 5.31         0.000 *** 

Particle: Red (𝛽1) 0.28 0.05 6.23         0.000 *** 

Particle: White (𝛽2) 0.58 0.06 10.18         0.000 *** 

Particle: Grey (𝛽3) 0.70 0.07 10.15         0.000 *** 

Normalized Average 

Gaze Duration (𝛽4) 
0.04 0.01 2.94         0.003 ** 

Random Effects Variance SD   

Participant (𝜇0) 0.03 0.17   

Game Level (𝜈0) 0.24 0.49   

 

 

 

5 Discussion 

 

The goal of this work was to explore whether the eye movement record of participants playing a fast action physics 

video game could provide evidence of implicit knowledge of Newtonian physics. The results are consistent with this 

assertion. This paper begins by looking for a broad association between overall eye movement patterns and an explicit 

measure of physics knowledge. This was accomplished by using a clustering algorithm to segment participants into 

groups based on their overall gaze patterns on particles of different color and mass. The results indicated a significant 

difference in performance on the Newtonian physics assessment between these clusters. This provides evidence that 

there is a strong association between students’ knowledge of Newtonian physics and their gaze allocation patterns in 

the Impulse game. It was unclear a priori whether there were global gaze allocation patterns associated with physics 

knowledge, but the results of the gaze cluster regression model show that statistically significant differences are 

present even at this global level. 

 The first analysis looked at a broad association between overall gaze patterns and assessment scores, whereas 

the second analysis took a finer grain look at the data using an existing measure of implicit Newtonian physics 

knowledge. The finer grained analysis provides evidence indicating that the association between gaze patterns and 

Newtonian physics is not merely a global pattern common to each cluster but is based on gaze differences specific to 

individual game rounds. This analysis looked for an association between gaze allocation patterns and the N-Click 

measure, a detector developed in prior work found to be a strong predictor of performance on assessments of 

Newtonian physics. The analysis showed that longer gazes on particles of a given color (and therefore mass) were 

associated with more N-Clicks on those particles which in turn was previously found to be associated with implicit 

knowledge of Newtonian physics (Rowe et al., 2017). Furthermore, while the association with the external assessment 



scores is an association with an explicit measure, the finer grain analysis provides evidence of an association with the 

behaviors and cognitive processing consistent with an implicit understanding of Newtonian physics. 

 It is likely that average gaze durations are driven at least in part by the need for more clicks on particles of higher 

mass. However, if we take the results of both analyses together, that is unlikely to be the sole driver of differences in 

gaze duration across participants and rounds. A look at average gaze durations in Figure 6 reveals that participants in 

cluster 1 have shorter average gaze durations across the board regardless of particle mass, an indication that they may 

not be exerting a great deal of cognitive processing resources into optimizing their force allocations during the game. 

Furthermore, while average gaze durations tended to increase for particles of higher mass (therefore requiring more 

clicks), this was not the case for all participants across all particles in the highest performing cluster (cluster 2). The 

authors hope to pursue follow-up work in the future aimed at characterizing the dynamics of gaze durations across 

rounds for individual players. 

 Critical to this work is that these patterns are evident in a population of neurodiverse learners. As described in 

the introduction, eye tracking has been used to improve understanding of the deployment of visual attention and 

cognitive processing for neurodiverse learners. The work here indicates that additional more nuanced analysis of the 

eye movement record may be helpful in understanding why some neurodivergent learners may struggle to learn in a 

GBL environment and what supports may be needed to help them address attention or processing difficulties that may 

impact their performance. 

 While these analyses are consistent with evidence that the eye movement record may be predictive of implicit 

knowledge of Newtonian physics, much work remains before such a connection can be established. This work is 

exploratory and is intended to demonstrate that a connection exists. Follow up work will need to address whether 

performance can be accurately assessed on individual trials and explore whether this finding can be replicated with 

emergent more affordable eye tracking solutions. In addition, other forms of eye movement analysis including scan 

path analyses should be explored to provide a more complex analysis of gaze allocation patterns in this and similar 

assessment activities. 

Key to the successful wide deployment of eye movement-based assessments is the maturation of webcam- and mobile-

based eye tracking solutions. The current study used a research grade eye tracker (Eyelink 1000)  that retails for 

thousands of dollars. Indeed, it is unlikely that you would find an eye tracker today for much less than a thousand 

dollars that would be accurate enough to allow for the analysis proposed here. However, recent advances in deep 

learning algorithms are making the potential for accurate and affordable remote eye tracking a likely reality in the near 

future (Rakhmatulin & Duchowski, 2020; Valliappan et al., 2020). Importantly, these solutions require no specialized 

hardware, setup, or calibration. As these technological solutions become available, it is important to conduct the type 

of research described in this paper in parallel to have tools ready to support computer-based learning as webcam and 

mobile-based eye tracking solutions mature.  

 This assessment model is especially relevant to computer-based learning. Traditional classrooms provide far 

more opportunities for teachers and other learning support personnel to monitor and intervene during the learning 

process, whereas there is less opportunity for that with many forms of computer-based learning. The COVID-19 global 

pandemic has highlighted the need for better tools to monitor the progress of struggling learners in remote learning 

and the need for approaches to better understand the source of those struggles. The use of real-time eye tracking can 

provide online formative assessments that can be used by teachers or adaptive models to support learners. 

The use of GBLA and other digital assessments informed by multi-modal data streams such as eye tracking show 

great promise in leveling the playing field for many struggling learners. Using emerging technologies that require no 

specialized hardware or setup, these tools can seamlessly be deployed and can provide real-time feedback to adaptive 

tools and intelligent tutoring systems. This can enable more customized computer-based learning to meet the needs of 

diverse individuals without many of the language and attention barriers faced by neurodivergent learners on more 

traditional forms of assessment.  

 This work has several limitations that need to be addressed in future studies. This includes the need to replicate 

findings with larger samples of students, to provide an explanatory mechanism between specific eye movement 

patterns and implicit knowledge of Newtonian physics, to gain a better understanding of the eye movement patterns 

exhibited by different clusters of players, and to explore task independent models with greater predictive power. Prior 

work in eye tracking supports the finding that when task performance is time sensitive (such as in reading and search 

tasks) longer fixation or gaze durations are associated with processing difficulty (Rayner, 2009). This finding has been 

replicated here and serves as the most viable task independent metric for assessing learner performance. However, 

translating these data into information that supports educators in a learning setting is not trivial because low fixation 

durations are an indicator of both low processing difficulty and an individual who is not attempting to solve the 

problem. Work in this area will need to carefully integrate both eye movement and behavioral measures to guide 

supports for neurodivergent learners. In addition, high-quality eye tracking remains expensive which limits the 



scalability of this work currently. However, as new and cheaper means of eye tracking become more available, the 

potential for this work to be taken to scale will become more viable. 

 While traditional assessments remain far easier to implement and collect than the assessments being explored in 

this work, there are clear differences between the barriers imposed by these assessments with respect to neurodivergent 

learners. GBLA that use eye movement and behavioral measures do not impose some of the barriers that can negatively 

impact the performance of neurodivergent learners. This study has used traditional assessments as a means to provide 

an initial viability check for the use of eye movements to measure implicit learning. However, given the issues with 

validity of these items for neurodivergent learners, future work must explore the use of more direct assessments of 

physics knowledge using such approaches as in-depth structured interviews with a trusted ally. 

 

 

 

6 Conclusion 

 

The use of eye movement patterns as a means of providing formative and eventually summative assessment of 

Newtonian physics holds a lot of promise, particularly for neurodivergent students. Knowledge can be assessed with 

little impact of the functional limitations experienced by these populations. As understanding of the explanatory 

mechanisms between particular eye movement patterns and physics knowledge matures, interventions can be 

customized to better support underserved populations. The work presented in this paper provides guidance to 

researchers looking to develop eye movement-based measures by illustrating how the data can be collected, segmented 

into gazes, and analyzed. Further refinement of the patterns associated with student behavior can improve equitable 

access to assessments not only in physics but in other related fields as well. 
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