Limitations of Current Approaches

Annotated data of student emotions

Nye et al. (2018)

Gather sample S from P • $\{<x_1, y_1>, <x_2, y_2>, ..., <x_n, y_n>\}$

Engaged Concentration

Annotated data of student emotions

Nye et al. (2018)

Kearns, CIS 399

- Gather sample S from P $\{<x_1, y_1>, <x_2, y_2>, ..., <x_n, y_n>\}$
 - Design/choose model class H

Engaged Concentration

Annotated data of student emotions

Nye et al. (2018)

Engaged

Concentration

- Gather sample S from P $\{<x_1, y_1>, <x_2, y_2>, ..., <x_n, y_n>\}$
- Design/choose model class H
- Use algorithm/heuristic to find $h \in H$ with small error $\hat{e}(h)$

Annotated data of student emotions

Nye et al. (2018)

Engaged Concentration

- Gather sample S from P $\{<x_1, y_1>, <x_2, y_2>, ..., <x_n, y_n>\}$
- Design/choose model class H
- Use algorithm/heuristic to find $h \in H$ with small error $\hat{e}(h)$
- Estimate e(h) on new data also from P

Annotated data of student emotions

Nye et al. (2018)

Engaged Concentration Kearns, CIS 399

- Gather sample S from P $\{<x_1, y_1>, <x_2, y_2>, ..., <x_n, y_n>\}$
- Design/choose model class H
- Use algorithm/heuristic to find $h \in H$ with small error $\hat{e}(h)$
- Estimate e(h) on **new** data also from P

Learning = generalization

Fundamental Theorem of Machine Learning Learning = generalization

DETECTOR

No matter what P looks like... ...and for any reasonable H... ...if we have enough data S... ...then for every $h \in H$, we have $\hat{e}_{s}(h) \approx e_{P}(h)$

- Gather sample S from P
 {<x1,y1>, <x2, y2>,....<xn, yn>}
- Design/choose model class H
- Use algorithm/heuristic to find $h \in H$ with small error $\hat{e}(h)$
- Estimate e(h) on new data also from P

But Learning Context Varies Widely Generalization to Student Subgroups

No matter what P looks like...

...and for any reasonable H...

... if we have enough data S...

...then for every $h \in H$, we have

minimizing error on data \approx minimizing true/future error

Student population not reported with generalization estimates (Paquette et al., 2020)

DETECTOR

- Design/choose model class H
- Use algorithm/heuristic to find $h \in H$ with small error $\hat{e}(h)$
- Estimate e(h) on new data also from P

The Problem of Bias

No matter what P looks like...

...and for any reasonable H...

... if we have enough data S...

...then for every $h \in H$, we have

minimizing error on data \approx minimizing true/future error

"All models are wrong but some are useful" - George Box

The Problem of Bias

DETECTOR

No matter what P looks like...

...and for any reasonable H...

... if we have **enough data** S...

...then for every $h \in H$, we have

minimizing error on data \approx minimizing true/future error

Karumbaiah, S., & Brooks, J. (2021) How Colonial Continuities Underlie Algorithmic Injustices in Education. [IEEE RESPECT21]

Current Downstream Efforts Focus on Model Development and Evaluation

DETE

No matter what P looks like...

- ...and for any reasonable H...
- ... if we have enough data S...
- ..then for every $h \in H$, we have

minimizing error on data

minimizing true/future error

 \approx

Kizilcec, R. F., & Lee, H. (2020). Algorithmic Fairness in Education. Baker, R. S., & Hawn, A. (2021). Algorithmic Bias in Education.

	Study	Subgroups	Prediction ⁻
	Hu & Rangwala, 2020	Gender, Race	At-Risk (cou
	Yu et al., 2020	Gender, Race	College suc
CTOR	Lee & Kizilcec, 2020	Gender, Race	Course gra
	Anderson et al., 2019	Gender, Race	Graduatio
	Kai et al., 2017	Gender, Race	Online colle retentior
	Bridgeman et al., 2009, 2012	Gender, Nationality	Essay scor
	Ogan et al., 2015	Nationality	Learning Outcome

Need to Move Upstream

No matter what P looks like...

- ...and for any reasonable H...
- ... if we have enough data S...
- ...then for every $h \in H$, we have

minimizing error on data \approx minimizing true/future error

Karumbaiah, S., & Brooks, J. (2021) How Colonial Continuities Underlie Algorithmic Injustices in Education. [IEEE RESPECT21]

What upstream sources shape data collection, modeling, and adaptive decision making? Are they context aware?

Upstream Sources of Bias Focus on Data Collection Method, System Design, and Theory

No matter what P looks like...

...and for any reasonable H...

... if we have enough data S...

...then for every $h \in H$, we have

minimizing error on data \approx minimizing true/future error

Upstream Sources of Bias Focus on Data Collection Method, System Design, and Theory

- Assumptions around the conceptualization of the construct
- Interpretation of student behaviors in the data collected
- Construction of variables used in predictive modeling
- Design of interventions in adaptive systems

Wise, A. F., & Shaffer, D. W. (2015). Why theory matters more than ever in the age of big data. Journal of Learning Analytics.

Upstream Sources of Bias Focus on Data Collection Method, System Design, and Theory

- Theory -> Design (e.g., culturally irrelevant rewards as extrinsic motivators)
- Theory -> Data Collection (e.g., choice of culturally irrelevant affective states to collect data for)
- Theory -> System (e.g., theory-driven rules of affective interventions that are culturally insensitive)
- Theory -> Algorithmic model (e.g., influencing a biased choice of predictors for boredom detection)

Sources of Bias Focus on Data Collection Method, System Design, and Theory

For your example model, name some potential sources of bias (upstream or downstream). Try to be as specific as you can.

Discussion Board Question

