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Executive Summary

There is increasing interest in developing the discipline 
and practice of learning engineering to improve student 
outcomes. Learning engineering combines scientific 
knowledge and theory on learning, and applies a rigorous 
combination of theory, data, and analysis to develop 
and improve educational systems and methodologies 
to produce enduring, high-quality learning. Learning 
Engineering is most frequently applied in educational 
technologies, which are increasingly used for learners 
of all ages. In terms of academic disciplines, learning 
engineering brings together a combination of computer 
science, data science, cognitive psychology, behavioral 
science, education and instructional design. Though the 
idea of learning engineering was first introduced by Herbert 
Simon in the 1960s, the uptake of learning engineering by 
the broader field of education has been slow, both among 
researchers and educational technology developers. 
However, today, the use of learning engineering has 
increased considerably, supported by a leap forward in the 
instrumentation of learning environments, the advent and 
low cost of cloud computing, and advances in data science 
methods.

Prior efforts have demonstrated that a data-intensive 
learning engineering approach has the potential to 
revolutionize education. In ASSISTments, for instance, 
Worcester Polytechnic Institute’s Neil Heffernan has 
shown that crowdsourcing hints from teachers has a clear 
and robust positive effect on student outcomes (Patikorn & 
Heffernan, 2020). Similarly, OpenStax rolled out embedded 
retrieval practice to help students review material, weaving 
new and old concepts into the review process, leading to 
substantial gains on the final exam (Butler et al., 2014). 
Many platforms have rolled out infrastructures that offer 
rich support for personalization, such as Newsela, which 
offers the same reading assignment at different reading 
levels. At a more macro level, predictive analytics platforms 
such as Civitas have used predictions of which students 
are at risk of dropping out of college (and why) to support

interventions that lead to increases in student on-time 
graduation (Milliron et al. 2014).  However, the benefit of this 
approach has not yet extended to the full range of student 
learning experiences, nor to a broad range of learning 
software developers and educational organizations. 

In this report, we discuss the potential of learning 
engineering to bring the theory and practice of learning 
forward, including both key areas where learning 
engineering can bring benefits, and key steps towards 
making those benefits a reality. We also discuss some 
of the challenges that have slowed uptake of learning 
engineering, and how they can be addressed. To 
summarize, this report identifies the top areas within the 
science and engineering of learning that with bigger and 
better data, improvements in algorithmic approaches, and 
more support for experimental research, could lead to 
major improvements in educational outcomes.
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Better Learning Engineering

Ten Key Areas of Opportunity for 
Learning Engineering

Opportunity No. 1 
Enhance R&D Infrastructure in Widely Deployed 
Platforms

A wide variety of online learning platforms are used by K-12 
and college students in the U.S. every day, but only a small 
number of these platforms are engaged in ongoing processes 
of iterative improvement to benefit learners or learning 
science research.  Despite often having an interest in R&D, 
most platforms make very limited use of their data and do 
not share their data with the broader research community. 
Most platforms do not have capacity for automated 
experimentation. Developing infrastructure and tools so that 
the millions of educational practitioners and researchers 
in the U.S. can conduct research and study educational 
improvement with the thousands of scaled learning systems, 
and mechanisms to translate those findings into improved 
educational technologies, is a key opportunity for learning 
engineering. 

Opportunity No. 2
Bring Learning Engineering to Domain-Based 
Education Research 

Adaptive learning systems -- and learning systems and 
curricula in general -- depend on a high-quality model of the 
content and learning needs in a given domain, including both 
the structure of the domain -- which skills are prerequisite 
to other skills -- and the misconceptions and conceptual 
misunderstandings that students struggle with. Support for 
tools to discover these models more efficiently from existing 
data, and support for sharing these models publicly, would 
reduce the substantial amount of duplicated effort seen 
today. Similarly, more should be done to identify the skills and 
knowledge that are most relevant to future learning, to make 
learning more efficient for students who need to catch up. 

Opportunity No. 3
Build Components to Create Next Generation 
Learning Technologies Faster 

Currently, developing a new learning platform with advanced 
adaptivity takes years of effort, limiting entrants to the field 
and leading to a proliferation of lower-quality platforms. There 
is substantial duplication of effort across learning platforms. 
The average quality of future learning systems could be 
substantially increased by creating reusable components 
for generally-applicable development tasks such as student 
modeling, modeling complex competencies, mindset 
interventions, and the educational applications of natural 
language processing.
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Support Human Processes

Ten Key Areas of Opportunity for 
Learning Engineering

Opportunity No. 4
Enhance Human-Computer Systems

Computers and humans have different strengths -- by using 
each for what they are best at, we can obtain better results 
than either alone. The learning engineering challenge is to 
help them work better together -- using computers for routine 
and repetitive parts of instruction, empowering teachers and 
tutors with more complete information from the computer, 
and developing technology that knows when to loop in a 
tutor or teacher when the learner isn’t making progress. 
Currently, development of learning systems often focuses on 
the interaction between the student and the technology, but 
prototype examples of design demonstrate what is possible 
when more attention is paid to designing for teachers as part 
of a more complex and comprehensive learning system.

Opportunity No. 5
Better Engineer Learning System Implementation 
in Schools

Many learning systems and curricula work well under 
favorable conditions -- motivated teachers and supportive 
administration, with significant involvement from the 
developers in teacher professional development and 
ongoing support as the system is being used. However, 
these same learning systems and curricula often fail when 
extended to a broader range of classrooms, where teachers 
may be unfamiliar or uncomfortable with new methods and 
technologies, and may attempt to assimilate new technologies 
back into traditional teaching practices. Learning engineering 
can play a role in determining which practices around the 
use of learning technology are both effective and scalable, 
monitoring through data whether these practices are 
occurring, and designing automated or semi-automated 
methods to help teachers use the right practice at the right 

time. For example, a pop-up message in a dashboard might 
encourage a teacher to speak with one student who has been 
struggling for the last thirty minutes and to provide a peer 
tutor to a different student who might be uncomfortable with 
direct teacher feedback.

Opportunity No. 6
Improve Recommendation, Assignment, and 
Advising Systems

Despite the increasing use of dropout prediction and 
course failure prediction technologies in schools and 
universities, course selection and registration processes at 
many institutions remain passive, leaving it to students to 
identify and select courses with minimal support, despite a 
substantial body of research in this area and large datasets 
from prior students. This results in many students taking 
“excess” credits in college or community college that don’t 
count towards degree requirements and use up financial 
aid. Learning engineering could be used to develop advising 
systems that proactively analyze student trajectories and 
make recommendations (to advisors or to the students 
themselves) that increase the likelihood of successful 
graduation. Relatedly, predictive models are not built into K-12 
school assignment, leading to students being assigned to 
schools that they are dissatisfied with and/or perform poorly 
at. Much better results are possible if prediction algorithms 
are used to help students select schools that are appropriate 
for them, and help match students to schools where they are 
likely to succeed.
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Better Learning Technologies

Ten Key Areas of Opportunity for 
Learning Engineering

Opportunity No. 7
Optimize for Robust Learning and Long-Term 
Achievement

Most of the research in learning engineering focuses on rapid 
innovation cycles that improve short-term learning gains and 
on skills that are simple to assess. While this work is important, 
learning engineering also needs to push towards longitudinal 
work that verifies that developers are selecting designs and 
algorithms that benefit students over a longer period of time, 
and that students are not simply being trained for specific 
skills but are being prepared to learn in new situations.

Opportunity No. 8
Support Learning 21st Century Skills and 
Collaboration

Much of the learning technology currently in use focuses on 
relatively narrow academic skills, but more complex skills such 
as communication, critical thinking, and collaboration -- often 
referred to as “21st-century skills”-- will be key to career and 
life success in the coming decades.  Using new technologies 
and data collection, in combination with analytics, learning 
engineering can focus on the development of reliable and 
valid measures of these hard to measure constructs, and 
produce learning experiences that support their development. 
For instance, natural language processing could be used to 
measure collaboration in a MOOC, or machine learning could 
be used to track “grit” within an online platform.

Opportunity No. 9
Improved Support for Student Engagement

Student affect and behavioral disengagement are amenable 
to measurement, and are associated with differences in 
learner outcomes over a decade later. However, though the 
technology exists to measure engagement and affect, there 
has been considerably less effort to use these measurements 
to improve engagement and affect. Though a small number 
of pilot studies have been effective at improving engagement 
and learning, these approaches have not scaled. Learning 
engineering needs to be used to figure out which engagement/
affective interventions (both teacher-driven and automated) 
are effective for which students, in which situations. In parallel, 
work is needed to figure out how to design these interventions 
in ways that teachers, school leaders, parents, and students 
are comfortable with.

Opportuinty No. 10
Design Algorithms and Learning Systems for 
Diversity and Equity

Recent evidence suggests that many research findings on 
learning technologies and machine-learned models which 
are obtained on convenience samples do not generalize 
to broader and more diverse groups of learners. As a field, 
learning engineering needs to incorporate equity as a 
foundational principle: to understand which differences 
between learners matter, and how these differences impact 
the effectiveness of learning technologies. A key part of this is 
collecting much more complete data on learner diversity, and 
checking models and findings in terms of it. Race, ethnicity, 
second-language status, gender, neurodiversity, disability 
status, urbanicity, and military-connected status can all 
impact effectiveness, but are often not collected or analyzed.
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Recommendations Table

Ten Key Areas of Opportunity for 
Learning Engineering

Top Ten Opportunity

Opportunity No. 2 
Bring Learning Engineering 
to Domain-Based Educational 
Research

Better Learning Engineering

Make high-quality data available for a broader range of platforms

Develop an ecosystem where researchers can more easily build on each others’ 
findings and research code

Develop general-purpose software components for identifying how effective content is

Extend experimentation infrastructure to a broader range of learning platforms, along 
with good tools for authoring content for studies

Create a network to incentivize and scaffold widespread sharing and collaboration on 
domain knowledge gaps

Extend experimentation testing infrastructure to study the effectiveness of combined 
interventions

Fund support for hybrid AI/human methods for knowledge graph discovery

Develop general-purpose software components for reinforcement learning

Support infrastructure for discovering and remedying student misconceptions

Embed measures of student affect, self-regulated learning, and engagement into 
learning engineering platforms

Support the development of easier processes and technologies for IRB and privacy 
compliance for learning platforms

Opportunity No. 1 
Enhance R&D Infrastructure in 
Widely Deployed Platforms

Example
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Top Ten Opportunity

Opportunity No. 3 
Build Components to Create 
Next-Generation Learning 
Technologies Faster

Opportunity No. 4 
Enhance Human-Computer 
Systems

Opportunity No. 5 
Better Engineer Learning System 
Implementation in Schools

Opportunity No. 6 
Improve Recommendation, 
Assignment, and Advising 
Systems

Support Human Processes

Increase the richness of data given to teachers, while maintaining usability and 
comprehensibility

Develop advising and recommendation systems that support better advising practices

Provide teachers with real-time recommendations about when to provide additional 
support to students, and what kind of support to provide

Design explainable AI methods for re-purposing prediction models into easy-to-
understand recommendations for advisors and students

Fund infrastructure that enables experimentation around prediction and 
recommendation and connects it with outcome data

Create production-grade components for student modeling that can be integrated into 
different learning systems and used at scale

Support research on integration of computer tutoring and human tutoring

Example

Support research on the data needs and practical limitations of modern student 
modeling algorithms

Create reusable components for interventions such as mindset interventions

Develop production-grade toolkits to facilitate modeling complex student behavior

Develop toolkits for natural language processing in education

Improve integration of data between classroom practices, students’ learning 
experiences, and teacher professional development to study which practices around 
the use of learning technology are effective and scalable.

Develop a taxonomy of teacher practices around the use of learning technology, and 
use it to study which practices and professional development is effective and scalable.

Develop automated and semi-automated methods to encourage teachers to use the 
right practice at the right time

Ten Key Areas of Opportunity for 
Learning Engineering
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Top Ten Opportunity

Opportunity No. 7 
Optimize for Robust Learning and 
Long-Term Achievement

Opportunity No. 8 
Support Learning 21st-Century 
Skills and Collaboration

Opportunity No. 9 
Improved Support for Student 
Engagement

Opportunity No. 10 
Design Algorithms and Learning 
Systems for Diversity and Equity

Better Learning Technologies

Increase awareness of existing cognitive science findings around robust learning

Examine which engagement/affective interventions (both teacher-driven and 
automated) are effective for which students, in which situations

Require that projects collect more complete data on learner identity and characteristics

Incentivize and plan for longer-term follow-up for A/B studies

Create a competition where engagement/affective interventions are combined and 
compared, in a sample large enough to also study individual differences

Require that projects check models and findings for algorithmic bias and differential 
impact

Develop better understanding of teacher and student preferences and comfort for 
engagement/affective interventions

Encourage participatory and inclusive design, involving members of the communities 
impacted

Example

Develop data science challenges to drive competition to create reliable and valid 
measures of 21st-century skills, including collaboration, using new technologies and 
data collection methods

Develop data science challenges to drive competition to create learning systems that 
scaffold collaboration, and support the development of 21st-century skills

Ten Key Areas of Opportunity for 
Learning Engineering
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Our Approach

In 2020, a community came together to discuss the potential of 
the emerging field of learning engineering and key challenges 
and opportunities for the field. This report represents the 
findings and discussions from this community convening.

Due to the COVID-19 pandemic, and the impossibility of 
traveling to hash out ideas together in person, the organizing 
team chose an unusual structure. This structure lacked face-
to-face discussion and large group discussion, but enabled 
the organizers to solicit the opinions of individuals worldwide, 
at times of their convenience. It also allowed for multiple 
rounds of soliciting different opinions (allowing us to realize, 
in many cases, that a key perspective was missing, and then 
solicit it). 

In this asynchronous virtual convening, a set of questions was 
posed to a group of around 30 researchers, learning system 
developers, policy-makers, and thought-leaders. Some of 
these stakeholders were supported in assembling into small 
groups (taking both interests and time zones into account) 
and met virtually to propose ideas on the future of the field. 
Other stakeholders met one-on-one with the organizers of the 
report, or offered written comments. The organizers followed 
up with clarifying questions on some of the most intriguing 
ideas, and put together a report summarizing the findings. 
The result, this report, attempts to represent the perspective 
of many stakeholders, while bringing it into a single voice and 
set of coherent recommendations.

Teachers, policy makers, researchers, and parents have 
wanted to know which practices are best for understanding 
and supporting learning since before there was an established 
science of learning. However, even as the science of learning 
has emerged over the last decades (Hoadley, 2018), there 
is still a considerable gap between theories and findings on 
learning, and the curricula and approaches that are used in 
the real-world (Uncapher & Cheng, 2019). 

There is increasing interest in building the discipline of 
learning engineering, combining scientific knowledge on 
learning with rigorous practice and data  to develop and 
improve educational systems and methodologies to produce 
enduring, high-quality and efficient learning. Put differently, 
learning engineering is a field of study at the intersection of 
computer science and learning science, and the field aims 
to harnesses the power of big data and learning analytics to 
gain insights on how students learn, to improve learning within 
various educational systems, and to inform evidence-based 
decision making around the design of learning activities.

Learning engineering is a new and emerging field that builds 
off of work from across various domains in the education, 
technology and science space. Such fields include 
instructional design, curriculum development and evaluation, 
learning analytics, computer science, and learning science. 

As Dede, Richards, and Saxberg (2018) note, learning 
engineering it not just about better designs -- it is also about 
efficiency:

What is Learning 
Engineering?

“...it is very valuable to find more efficient 
ways to reach the same levels of mastery–
engineering is about effectiveness and 
efficiency, within the constraints of real-
world delivery, to free up resources to do 
even more to help learners.”
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Key Accomplishments 
of Learning 
Engineering

While the field of learning engineering is still emerging and 
being codified, recent work and previous work that could 
be classified as learning engineering have already begun to 
contribute significantly to our understanding of how to best 
design, measure and implement learning systems. Learning 
engineering’s blend of theoretical and algorithmic innovation, 
combined with a focus on developing and testing systems in 
a real-world setting with the goal of making a real impact on 
learning in the classroom and related high-stakes objectives, 
has led to substantial advances in learning science and 
technologies.

One such contribution is the development and implementation 
of theoretical frameworks that provide systematic and 
structured guides on how to best implement research findings 
in an applied setting. These frameworks are designed to 
help guide instruction and/or instructional design, providing 
instructional principles to practitioners and researchers 
that are based upon empirical evidence. Perhaps the most 
widely-used framework is the Knowledge Learning Instruction 
Framework (KLI;  Koedinger,  Corbett, Perfetti, 2012), which 
provides  researchers and practitioners a systematic rigorous 
framework for examining the interaction between changes 
in instructional events and students’ transfer, retention, 
and preparation for future learning. Work within the KLI 
framework has investigated how practices interact, and which 
combination of practices are most appropriate (Koedinger, 
Booth, & Klahr, 2013), as well as applying KLI principles to 
the study of new environments such as massive online open 
courses (Koedinger et al., 2016), extending beyond the original 
team that developed KLI (e.g. Bergamin & Hirt, 2018; Borracci 
et al., 2020).

Learning engineering (and its antecedent work) has also led 
to the development of paradigms for learning system and 
content development, which provide an overall approach 
to learning design. For instance, cognitive task analysis 
breaks down tasks into components to better understand 

and identify what skills, knowledge, and actions are needed 
to complete the task at an acceptable  performance level 
(Lovett, 1998). Constraint-Based Modeling is used to support 
students in learning material where there may be multiple 
correct answers by representing the features of a correct 
answer rather than the process of finding it, bridging naturally 
into giving students feedback on the errors that they make 
during problem solving (Mitrovic, 2010). Knowledge graphs/
spaces provide an ontology or model of the knowledge 
and skills needed for a specific task or domain knowledge 
(Doignon & Falmagne, 2012), and are used to select what 
content a student should work on next. Instruction modeling 
is the practice of engineering automated replications of  the 
instructional practices of expert teachers (Khachatryan, 
2020). 

A Practical Improvement: Improved Feedback

One of the major successes of learning engineering and the 
learning platforms it supports has been the provision of useful 
feedback to learners. Providing timely, accurate feedback is 
crucial for student success (Razzaq et al., 2020), but is often 
prohibitively time consuming for teachers. By automating 
feedback and using learning engineering to improve it 
iteratively, it is possible to scalably give students feedback  
that is adaptive to a student’s current state of knowledge in 
a domain and topic, at the time which is best for their learning 
(McBroom et al., 2018; Pardo et al., 2019). 

Multiple approaches to automated feedback have found 
success in learning environments. Technology can 
provide teachers with recommendations on how to guide 
students based on student performance (e.g., Ingebrand & 
Connor, 2016). Automated student feedback and adaptive 
scaffolding have led to learning gains for students (e.g., Kim 
et al., 2018; Kroeze et al., 2019; Zhu et al., 2020). Student-
facing dashboards are one location where such feedback 
can be given. For example, one study explored the impact 
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of a dashboard that provided real-time feedback of their 
digital engagement with course material, giving alerts when 
engagement was detected as low (Khan & Pardo, 2016).

There are a number of dimensions along which the design of 
feedback can vary, and the best approach to feedback -- the 
best combination of design choices -- may vary by context 
(Koedinger, Booth, & Klahr, 2013). Numerous factors have 
been studied to determine what forms of  feedback are optimal 
for different learners and situations. For example, one study 
determined that the nuanced revising behaviors of writers 
(i.e., patterns of deletion, addition, and keystrokes) can inform 
adaptive feedback to promote better writing output (Roscoe 
et al., 2015). Another study found that responses to feedback 
varied significantly across grade levels but that superficial 
changes to  feedback messages were not impactful (Howell 
et al., 2018). Feedback systems that account for students’ 
affective states can enhance engagement and, ultimately, 
learning by providing personalized prompts and activity 
recommendations (Grawemeyer et al., 2017).

Educational Data Mining and Learning Analytics: 
Opportunities for learning engineering

A final major area of contribution from learning engineering is 
the growth of the educational data mining/learning analytics 
community. Although seen by some as a separate field from 
learning engineering, there is a large overlap in the broader 
motivations as well as individual scientists and practitioners 
between learning engineering and learning analytics.  The 
key role of data and analytics in recent advances in learning 
engineering suggests that, at minimum, if they are separable 
fields, they function best together closely, like peanut butter 
and jelly.

While Learning Engineering has focused on well-defined 
knowledge domains, Learning Analytics has been focused on 
broader processes of educational attainment and student risk 
of not persisting in their educational goals.  A hallmark of this 
work has been the analysis of the log data from educational 
technology systems and using that data to make inferences 
about students. Educational Data Mining has focused more 
specifically around algorithmic development that contributes 
to advances in the learning sciences and to automated 
adaptation; added together, these areas have major promise 
to contribute to our educational understanding and practices. 

Data and models of it have played a major role both in refining 
learning systems, and in creating algorithms that can be 
used to underpin personalization and adaptivity. Traditionally 
learning and student progress -- and a system’s degree of 
success in supporting these -- was measured using delayed, 
distal, and loosely-aligned information such as grades and 
standardized test scores. The move towards measuring 

learning and other forms of progress using log data has allowed 
the development of measures which are immediate, proximal, 
and tightly-aligned to the learning experience. The potential 
of log data is also being recognized by psychometricians in 
the analysis of standardized assessment results (i.e. Bergner 
& Von Davier, 2019)

Simply developing the ability to measure learning as it 
changed (i.e. Corbett & Anderson, 1995), was a step that 
enabled mastery learning, the underpinning of many modern 
adaptive learning systems. Going beyond that to measuring 
complex learning and performance in real-time (Gobert et 
al., 2013; Rowe et al., 2017) enabled learning systems such 
as Inq-ITS (Li et al., 2018) to provide feedback and support 
on complex skills such as scientific inquiry. Going further still, 
recent experimental systems measure and attempt to support 
students in learning to self-regulate their strategy (Roll et al., 
2011; Duffy & Azevedo, 2015) and affect (Karumbaiah et al., 
2017; DeFalco et al., 2018). Better measurement has also 
supported efforts to iteratively engineer learning systems 
(Aleven et al., 2017; Huang et al., 2020), for instance by 
identifying where skills are mis-specified (Corbett & Anderson, 
1995), or by systematically searching for less-effective 
learning content (Baker, Gowda, & Salamin 2018).

In the end, it’s clear why a data-intensive learning engineering 
approach can be so powerful. It shifts the very nature of 
instruction, from intuitive and uncertain, to precise and 
iterative. Recent interventions have shown an impact on 
outcomes. While almost all of these interventions are relatively 
small, they show the potential for the field. One study showed 
how automated content selection improved outcomes 
(Wilson & Nichols, 2015); others found that providing support 
for engagement led to better learning (Baker et al., 2006; 
Karumbaiah et al., 2017); and work has shown how providing 
recommendations to instructors can help them select material 
for their students to work on (Zou et al., 2019).

Other approaches can show what does not work. Using 
UpGrade from Carnegie Learning, the Playpower Labs team 
found that adding a specific set of “gamification” features 
actually reduced learner engagement by 15 percent. Similarly, 
data has helped identify key context variables within the 
COVID-19  pandemic. Data from the Zearn platform, for 
instance, was used by external researchers to study the 
impacts of COVID-19. The researchers found that COVID-19 
caused student progress to skew dramatically by parent 
wealth, with learning decreasing by approximately half for 
learners in low-income areas, whereas learning dipped 
temporarily but quickly returned to normal for students in 
high-income areas (Chetty et al., 2020).
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Better Learning Engineering: 
Enhance R&D Infrastructure in 
Widely Deployed Platforms

Top High-Leverage Opportunities

One major step towards increasing the positive impact of 
learning engineering is to improve the tools available for 
conducting learning engineering. If learning engineering 
research can be conducted faster, with higher quality, 
at less effort, the benefits of learning engineering can 
correspondingly become available faster and to a larger 
number of research and development teams. There has already 
been considerable investment in research and development 
infrastructure for learning engineering, in no small part due 
to the efforts of Schmidt Futures, and the impacts are seen 
in the rapid deployment of studies through the ASSISTments 
platform (Ostrow & Heffernan, 2016) compared to the previous 
relatively intensive LearnLab model (Koedinger, Corbett, & 
Perfetti, 2012), which in turn was much faster and easier for 
researchers than developing all infrastructure and arranging 
each research study one by one. Developing infrastructure 
and tools so that the millions of educational practitioners 
and researchers in the U.S. can use better, faster methods to 
conduct research and study educational improvement with 
the thousands of scaled learning systems is a key opportunity 
for learning engineering. One could argue that all of the other 
opportunities for learning engineering that this document will 
discuss will be supported by improving the infrastructure for 
learning engineering. There are several opportunities in this 
area.

First, there are opportunities around increasing the scope 
of educational data available and the tools for collaboration 
among researchers. One of the key developments facilitating 
the uptake of educational data mining (EDM) methods has 
been the wide availability of high-quality data -- however, 
these benefits have been spread unevenly, with the majority of 
research conducted on data from a small number of platforms, 
ASSISTments and MATHia/Cognitive Tutor in particular as well 
as a number of MOOCs. 

Simply making data available for a broader range of platforms 
would amplify the positive impact on the field. Going further, 
the creation of an ecosystem where researchers can more 
easily build on each others’ findings and research code would 
speed work compared to today, where even when researchers 
share their code, it is often difficult to get it to run correctly 
(Boettiger, 2015). While both LearnSphere (Liu et al., 2017) 
and the MORF platform (Gardner et al., 2018) have attempted 
to create ecosystems that function in this fashion, neither 

In the following sections, we provide ten high-level 
recommendations as to where the high-leverage 
opportunities are for learning engineering, 
emerging from our discussions with stakeholders 
in the AVCs and additional meetings. We group 
these recommendations into three broad 
categories: enhancing learning engineering, 
supporting human processes, developing 
better learning technologies.

platform’s ecosystem has achieved widespread use, due 
both to limitations in these platforms that require further 
engineering (such as constraints on what kinds of research 
is possible in these platforms), and a lack of incentives for 
researchers to share their code in this fashion.

Part of the benefit of large datasets is that they can help find 
the complex answers that are needed to resolve long-standing 
“dilemmas” in education, such as the assistance dilemma 
(Koedinger & Aleven, 2007). In this instance, large-scale 
data with variation in what assistance students are offered 
could help researchers better understand what support is 
helpful to which students and under what conditions. Does 
the assistance needed differ for students who generally 
have very low prior knowledge (cf. Roll et al., 2014)? Does it 
differ when students have challenges with procedures versus 
conceptual misunderstandings (cf. VanLehn, 1996)? When is 
a worked example better than a hint (cf. McLaren et al., 2008)? 
Do students from different cultural backgrounds respond 
differently and benefit differently from the same seemingly-
cognitive learning support (cf. Ogan et al., 2015)? Can we 
develop generative and broadly-applicable theory, that works 
across learning contexts? Large and diverse data sets can 
help.

In addition, these datasets can also catalyze “benchmark” 
challenges that researchers and technologists compete 
on, and incentivize advancements in both fundamental and 
domain-specific aspects of education. Data competitions 
around automated essay scoring and future performance 
prediction have attracted a large number of competitors 
and produced scientific contributions and technological 
advancements (Stamper & Pardos, 2016; Taghipour & Ng, 
2016); many areas appear ripe for such competitions. For 
instance, images around math handwriting seems ripe for a 
competition, given developments in OCR and the amount of 
handwriting in math. Similarly, the use of voice recognition to 
identify students struggling to learn to read could benefit from 
the availability of a benchmark dataset. In this instance, the 
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field needs audio files of younger readers as well as “ground 
truth” data on future reading issues. 

EDM methods can also help to drive progressive refinement 
and improvement of learning technologies. For example, 
several online learning platforms now automatically distill 
information from their student models to determine if 
specific skills are ill-specified (Agarwal et al., 2018) or if 
specific learning content is more effective or less effective 
than the average (Baker et al, 2018). However, these types of 
approaches are, again, seen only in a small number of learning 
platforms. Creating infrastructure that can be widely adopted 
-- such as packages that take data formatted in a standard 
fashion and generate automated reports -- may speed the 
adoption of this type of practice. 

Second, A/B testing and other forms of rapid automated 
or semi-automated experimentation (see review in Motz et 
al., 2018) make it possible to quickly ask questions about 
learning. Currently, this type of technology is only used 
within a small number of platforms and studies (see review in 
Salvi et al., 2017), although its scope is expanding over time. 
Extending this infrastructure to a broader range of learning 
platforms, along with good tools for authoring content for 
studies, would facilitate research on a variety of questions. 
The same experimental infrastructure that supports scientific 
discovery may also hold benefits for refining and progressively 
improving a learning system. 

This infrastructure may help us to understand not only 
whether a specific intervention works, but which interventions 
work in combination. Over the last decades, there has been 
a great deal of work investigating single interventions, but 
considerably fewer studies of whether two interventions 
thought to impact students in the same fashion (or in different 
fashions) have additive effect or are in fact counterproductive 
when combined (Koedinger, Booth, & Klahr, 2013) -- a question 
that needs considerable data to answer. In these cases, 
strategies such as reinforcement learning (Zhou et al., 2020) 
may help a learning system decide what intervention to offer 
which student, in which situation; creating software packages 
that implement these algorithms and can be plugged into 
a variety of learning platforms will speed the process of 
improving learning platforms.

This sort of experimentation should not be limited to 
researchers. Teachers can improve their teaching practice 
by conducting more systematic investigations of their own 
teaching, a practice seen for decades in other countries 
(Stigler & Hiebert, 1999). Partnering teachers with learning 
engineers in these endeavors will benefit both groups. To this 
end, the Learning Agency Lab has pulled together a cadre of 
teachers who are using RCTs and other high-quality research 
approaches to better understand the science of learning. 

The effort leverages the advent of robust data systems and 
easy-to-conduct RCTs, and provides teachers with research 
tools and training in research skills, which offer the potential 
for improving student outcomes and uncovering new 
interventions. 

More broadly, infrastructure should encourage more open 
science. This means more sharing of data as well as more 
sharing of tools. This could take the form of a crowdsourced 
platform where data could be stored, processed, and 
analyzed, similar to emerging platforms in other fields focused 
on nurturing innovation  One idea would be the creation of a 
“data-processing” platform for learning engineering where 
data can be stored, processed, and analyzed. Similar platforms 
are emerging in other fields (i.e., Galaxy used for biomedical 
research; Blankenberg et al., 2014) to support increased open 
innovation.
 
This infrastructure can be both bottom up and top down. 
For instance, many researchers will develop their own ideas 
of what to test to further their own work, relying on their 
intuition for important research questions. But at the same 
time, the field should use the infrastructure to explicitly test 
some of the ideas laid out in survey papers. Similarly, there 
are longstanding debates over issues such as the timeliness 
of feedback that are ripe for further testing within such 
infrastructures. 

Beyond this, support for embedding a greater number of 
measures -- measures of student affect, self-regulated 
learning, and engagement, among other constructs -- into 
these platforms would help us understand the full impact of 
an intervention. For example, if an A/B test only considers 
student correctness or the time taken to master a skill, it may 
miss important impacts on student engagement (cf. Lomas et 
al., 2013). 

As several attendees of the virtual convenings noted, this 
type of infrastructure presents challenges. The first challenge 
is funding, and this paper recommends additional funding to 
create “research as a service” opportunities, incentivizing 
companies to leverage their data for research. Practically 
speaking, this means two things. Funding organizations 
should support the development of research infrastructure. 
Instead of funding individual researchers who must create 
their own tools for experimentation, supporting the creation 
of open access tools will enable a broader range of educators 
and researchers to perform experiments on large populations, 
accelerating the rate of discovery.

When it comes to funding, there should also be greater 
support for private companies opening up their data. Currently 
a number of firms argue that they can’t offer research as a 
service because there’s not yet a market. Additionally, data is 
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often considered proprietary and therefore not made available 
to researchers. But private industries could be incentivized to 
open their data and systems to researchers. Increasing data 
openness would not only add to the science of learning’s 
body of knowledge, but also benefit the platform’s continued 
improvement. The success of such an effort will also depend 
on data being high enough quality to support learning 
engineering. Encouraging better data standards will support 
this effort, especially if it involves identifying and scaling best 
practices in data capture (i.e. what types of variables have 
been useful in past research efforts), rather than adopting 
“lowest common denominator” data schemas that work in all 
platforms but discard the most useful data.  

Data standardization efforts, such as xAPI, IMS Caliper, and 
the Pittsburgh Science of Learning Center DataShop formats, 
may remove some of the barriers to learning engineering. 
However, there have been significant challenges using 
data collected in the practice of educational research and 
development, even when using these standards, primarily 
caused by the lack of consideration of the ultimate uses of the 
data collected. Support to extend these standards for use in a 
broader range of learning sciences and learning engineering 
applications could serve to improve the quality of data and 
reduce the data engineering efforts currently needed. For 
instance, these standards could be extended with fuller 
representation of the context of learner behavior and more in-
depth representation of inferences made by the system about 
learners.

Beyond funding and technical capacity development, there 
are also key challenges around ethics, legal compliance, and 
student privacy. Currently, for many developers, the easiest 
way to comprehensively protect learner privacy -- or at least 
themselves -- is to avoid sharing any data at all, or to share 
extremely limited data, such as global summaries or highly 
redacted data sets. Often, measures taken to avoid holding 
personally identifying information inhibit the feasibility of 
longitudinal follow-up or avoiding algorithmic bias. If data 
limitations -- based on very reasonable privacy concerns 
-- make it so that learning scientists and learning engineers 
can only ask certain questions, then largely those are the 
questions that they will ask.

Learning engineering can be part of the solution to this 
problem, providing frameworks and research around best 
practices for data security and privacy within educational 
technologies: methods for automatically redacting forum post 
data (Bosch et al., 2020), obfuscation and blurring methods that 
retain but reduce the specificity of demographic information 
or introduce a small amount of error into data to prevent 
confident reidentification (Bakken et al., 2004), platforms 
that allow trusted organizations to hold personally identifying 
information for longitudinal follow-up, and platforms that allow 

trusted organizations to hold personally identifying information 
for longitudinal follow-up, and platforms that allow analysis 
using full data but do not allow querying or output in terms of 
specific data values (Gardner et al., 2018). Support for these 
technologies will enable a broader range of research, helping 
to achieve many of the other recommendations in this report.

In terms of compliance, the ASSISTments platform has done 
important work to streamline Institutional Review Board 
(IRB) processes at Worcester Polytechnic Institute (WPI) and 
create standard procedures for the WPI IRB to work with other 
IRBs. Resources should be created so that this work can be 
replicated across platforms -- having to obtain approval for 
each study from a different IRB with different “house rules” 
is a major delaying and complicating factor for learning 
engineering research. Compliance issues become even 
more challenging when dealing with cross-border research 
(i.e. different expectations for human subjects protections 
and privacy between the USA and the EU). Ideally, processes 
should be designed so that there is both standardization 
(limited bureaucratic effort to bring in new research or 
school partners) and flexibility (ability to easily accommodate 
different rules and practices, ideally with a limited number of 
button-clicks within the platform).
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Adaptive learning systems -- and learning systems and 
curricula in general -- depend on a high-quality model of the 
content and learning needs in a given domain. Ideally, such a 
model represents both the structure of the domain -- which 
skills are prerequisite to other skills -- and the concepts that a 
disproportionate number of students struggle with (including 
misconceptions and preconceptions about them). 

However, as attendees of the asynchronous virtual convenings 
noted, the current state of domain modeling in learning 
engineering is highly uneven between domains. There has 
been considerable work on modeling mathematical domains, 
with some areas of mathematics having full knowledge graphs 
developed separately by multiple companies or curricular 
providers. In this case, there are probably opportunities for 
the field by creating incentives for these knowledge graphs to 
be shared more broadly -- there is considerable inefficiency 
in having multiple organizations (possibly even funded by the 
same funders) spend hundreds of thousands of dollars to 
create highly similar knowledge graphs.

By contrast, there has been considerably less focus on domain 
modeling in other domains. In science, language learning, and 
reading, models of student learning progressions focus on 
the development of broader concepts (e.g. Schwarz et al., 
2009; Berland & McNeill, 2010; Bailey & Heritage, 2014; Van 
Rijn et al., 2014) and there are Bayesian Network models that 
compose meta-skills but do not model prerequisites formally 
(Martin & VanLehn, 1995). In other domains, there has been 
even less work on domain modeling (indeed, existing ways of 
representing domain structure in adaptive learning systems 
may not even be appropriate in some domains, such as history 
or social studies). 

However, recently approaches have been proposed that 
may be able to capture prerequisites for knowledge graphs 
more generally, from data sources such as university course 
catalogs and student interaction with MOOCs (as well as the 
content of MOOC videos themselves) (Liang et al., 2017; Pan 
et al., 2017; Chen et al., 2018). Providing funding for these 
approaches (particularly if developers keep humans in the 
loop to identify spurious correlations) has the potential to 
speed the development and deployment of knowledge graphs 
to a broader range of domains.

To speed efforts in this area, we recommend the creation of 
a network of R&D teams -- both in industry and academia 
-- who receive funding for their work to create knowledge 
graphs, under the agreement that they will open-source 
and share the knowledge graphs and findings they produce. 
This network could include machine learning researchers 
working on automated approaches to distill knowledge 
graphs, and a central hub whose work is to integrate across 
all of the work being conducted into single, crowdsourced, 
shared knowledge graphs. These shared knowledge graphs 
would represent commonalities (including translation across 
different ontologies) as well as the different ways knowledge 
can be represented based on how skills and concepts are 
taught.

In addition, the infrastructure improvements discussed above 
in section “Enhance R&D Infrastructure in Widely Deployed 
Tools” can be used to support discoveries about student 
misconceptions that impact their learning (Elmadani et al., 
2012), and pedagogical strategies for helping students learn 
these difficult skills and concepts (cf. Lomas et al., 2016). 

Infrastructural improvements of this nature can also provide 
fine-grained data on what approaches work for helping 
students learn very specific content. To cite one example, 
a group of researchers led by Erin Ottmar used research 
infrastructure within ASSISTments to test the spacing of 
multiplication signs. The team found using an RCT that 
students learn more if spacing is consistent like “22 − 4 + 3 × 
5 = __)” rather than “22 − 4 + 3×5 = __)” (Harrison et al., 2020). 
The work indicates that even slight variations in presentation 
and the design of content can make a difference for student 
learning.
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Another key area of enabling research and development for 
learning engineering is in creating software components 
that make it possible to build next-generation learning 
technologies more quickly. Currently, developing a new 
learning platform with advanced adaptivity takes years 
of effort, limiting entrants to the field and leading to a 
proliferation of lower-quality platforms. There are a range of 
potential tools and components that could be engineered for 
general-purpose use. 

At the moment, while several adaptive learning systems 
support various forms of adaptivity, their designs are largely 
one-off -- the same functionality has been repeatedly created 
several times for different learning systems. Occasionally, the 
same infrastructure will be used within a company or a team for 
multiple curricula (i.e. Cognitive Tutors for Algebra, Geometry, 
Middle School Mathematics; Algebra Nation content for 
Algebra and Geometry; ALEKS content for Mathematics and 
Chemistry), but different teams build adaptive functionality 
from scratch. 

Ideally, an effort to create general components for adaptivity 
would be modular in nature, so a new developer could integrate 
specific components into their own architecture rather than 
needing to adopt an entire architecture as-is. Similarly, if 
there is an intervention with benefits thought to be at least 
somewhat general across learning domains and populations 
(such as a values affirmation intervention -- Borman, 2017), it 
could be placed into a component so it can be reused across 
systems and does not need to be re-implemented. 

Perhaps the largest opportunity for creating reusable 
components is in the area of student modeling.  There has 
been a great deal of research in the last two decades into how 
to model a range of aspects of the student. However, little 
of this research has found its way into actual use in scaled 
learning systems. Currently, not even Bayesian Knowledge 
Tracing (BKT; Corbett & Anderson, 1995) -- the most widely-
used adaptive learning algorithm in the United States -- has 
good “plug and play” infrastructure for building models, 
continually re-fitting them, and deploying the algorithm into a 
running system for its most common use, mastery learning. 

Better toolkits -- implementation-quality instead of research-
quality -- are needed. Some algorithms, like BKT and ELO 

(Klinkenberg et al., 2011), are essentially ready for scaled 
use, and should be the first priority for development. Beyond 
that, there are more recently developed algorithms that offer 
benefits such as better fit to data (Khajah et al., 2016; Zhang 
et al., 2017), the ability to represent partial overlap between 
skills (Pavlik et al., 2009), and consideration of memory and 
forgetting (Mozer & Lindsey, 2016; Settles & Meeder, 2016). 
However, work is still ongoing to understand and address 
these algorithms’ limitations for real-world use (Yeung & 
Yeung, 2018). Thus, developing implementation-quality 
toolkits will also involve research into practical questions such 
as how much data is needed for these algorithms to function 
effectively, work already conducted for older algorithms such 
as BKT (e.g. Slater & Baker, 2018).

Going further, concerns were raised by multiple participants 
in the asynchronous virtual convenings that current 
student knowledge modeling typically captures relatively 
straightforward knowledge -- such as specific algebraic 
skills or factual knowledge -- rather than deeper conceptual 
understanding or complex generalizable skills. While a small 
number of projects have attempted to model and infer 
conceptual understanding (i.e. Kim et al., 2016; Rowe et al., 
2017; Almeda et al., 2019) or inquiry skill (i.e. Gobert et al., 
2013), these efforts largely represent “one-off” research 
projects and there is a lack of production-grade toolkits that 
can be quickly leveraged by practitioners.

One additional area where reusable software components 
would speed progress is in natural language processing. 
Specifically, much more should be done to develop toolkits, 
and funders should support the creation of toolkits that 
support a greater variety of activities. Natural language 
processing can be used for a wide variety of educational 
applications, from automated feedback on essays (Roscoe et 
al., 2013), to identifying evidence of 21st century skills within 
on-line discussion forums (Weinberger & Fischer, 2006; Rosé 
et al., 2008), to the creation of automated conversational 
agents (Ventura et al., 2018). Systems exist today which use 
each of these types of functionality, but the engineering 
process is highly intensive. Text classification still relies 
mostly on general-purpose tools rather than tools tailored to 
educational domains; tools exist for the creation of automated 
conversational agents, but either require extensive expertise 
(e.g. Cai et al., 2015) or offer only a limited range of functionality
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(Wolfe et al., 2013). 

Experts within the AVCs identified three broad areas of natural 
language processing software components that would be 
particularly valuable to learning engineering. First, there 
needs to be development work to make it easier to integrate 
existing algorithms smoothly and seamlessly into educational 
technologies via APIs, including algorithms for measuring 
readability, text cohesion and sophistication, and algorithms 
for sentiment analysis. Second, tools for integrating speech 
to text software into educational technologies would make 
it possible to automatically translate students’ spoken 
responses into text that NLP tools can process. Third, 
there needs to be more work to develop linguistic analysis 
resources (such as key word lists and topic models) for specific 
target domains, such as mathematics. These steps would 
considerably facilitate the integration of natural language 
processing into a broader range of learning systems.

One of the biggest opportunities for learning engineering 
is in enhancing the systems that emerge when humans 
(teachers, guidance counselors, school leaders) and 
learning technologies work together to better support 
students. Practices such as proactive remediation -- where 
a teacher obtains information from a learning platform on a 
specific student’s progress and reaches out to them to offer 
assistance (Miller et al., 2015) -- and re-design of classroom 
activities based on the previous night’s homework data -- 
create opportunities to combine what computers are good 
at (rapid measurement and simple inference at scale) and 
what humans are good at (understanding why a problem is 
occurring and adjusting teaching accordingly) (Baker, 2016). 

Ultimately the learning engineering goal and challenge is 
to develop ways for human and computer tutors to work in 
concert. There are several human-computer systems that 
provide opportunities for enhancement, through learning 
engineering, and several potential avenues for enhancement.

Perhaps the greatest immediate opportunity is in 
enhancing the data provided to classroom teachers, 
through dashboards. Dashboards have become a key 
part of learning technologies (Bodily & Verbert, 2017), and 
they have facilitated the development of new pedagogical 
strategies such as proactive remediation (Miller et al., 2015). 
Different dashboards provide a range of different types of 
information, from dropout prediction/SIS dashboards with 

Support Human Processes: Enhance 
Human-Computer Systems

data on attendance and assessments (Singh, 2018) to fine-
grained learning technology dashboards that provide data 
on in-the-moment student performance (Feng & Heffernan, 
2006). In some cases, these two types of dashboard are being 
integrated -- for example MATHia LiveLab predicts if a student 
will fail to reach mastery and provides these predictions to 
teachers (Fancsali et al., 2020). 

Thus far, most dashboards do not provide more in-depth data 
on student cognition or affect, although exceptions exist, 
such as Inq-ITS’s dashboard presenting data on student 
inquiry skill and supporting teachers in providing scaffolds to 
struggling students (Adair & Dickler, 2020). Here, the challenge 
and opportunity-- a human-computer interaction challenge as 
much as a learning engineering challenge -- is to increase the 
richness of data given to teachers, while maintaining usability 
and comprehensibility. 

Ethnographic research has suggested that teachers do not 
just want raw data -- they want real-time recommendations 
about when to provide additional support to students, and what 
kind of support to provide (Holstein et al., 2019). In tandem, 
it will be essential to design dashboards -- or other ways of 
informing teachers (i.e. Alavi & Dillenbourg, 2012; Holstein et 
al., 2018) -- that support and encourage effective pedagogies 
for classroom data use. In other words, data dashboards are 
not just about communicating information, they are about 
supporting/changing practices, and will succeed to the extent 
that they support teachers’ (or students’, or school leaders’) 
goals. In discussions, John Whitmer noted that one of the key 
goals for future research will be to identify whether providing a 
dashboard has an impact on improving student outcomes, an 
under-studied area (but see Xhakaj, Aleven, & McLaren, 2017).

An additional avenue for enhancing human computer-
systems is through enhancing the integration of computer 
tutoring experiences and human tutoring experiences. Many 
online learning platforms today offer access to human tutors 
as a complement to their otherwise digital offerings, from 
home credit recovery platforms such as Edgenuity (Eddy, 
2013) to blended learning systems such as Carnegie Learning 
(Fancsali et al., 2018) and Reasoning Mind (Khachatryan, 
2014). An industry of companies, such as Tutor.com, has 
grown to offer these services. However, there has been 
relatively limited formal research on this practice and how 
to use learning engineering to enhance it. In one of the few 
examples of research, Carnegie Learning analyzed the factors 
that predicted that a student would seek human tutoring 
through a linked platform (Fancsali et al., 2018). Considerably 
more research is needed to support learning engineering 
efforts in this area. Specific questions to address include:
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At the moment, human tutoring embedded into computer 
tutors is on-demand, depends on student meta-cognition, is 
used very unevenly (Fancsali et al., 2018), and requires tutors 
to get up to speed very quickly based only on information 
directly provided by the student. Eventually, through learning 
engineering, we may be able to develop a more sophisticated 
blend of approaches -- using computers for routine and 
repetitive parts of instruction, empowering teachers and 
tutors with more complete information from the computer, 
and developing technology that chooses to loop in a tutor or 
teacher when the learner isn’t making progress.

The example of mastery learning is an example of a success 
in learning engineering implementation. Mastery learning, 
the practice of advancing students between topics only 
when they demonstrate they know their current topic, proved 
both effective and difficult to scale in traditional classrooms 
(Guskey & Gates, 1986; Kulik et al., 1990). Adaptive learning 
systems such as Cognitive Tutor/MATHia made mastery 
learning a key part of their approach, and successfully 
scaled in American classrooms (Koedinger & Corbett, 2006). 
However, even in these cases, some teachers work around the 
mastery learning aspects of the system’s design, overriding 
the system to advance students who have not fully learned 
the current topic (Ritter et al., 2016). These decisions lead 
students to struggle more and make more errors (Ritter et al., 
2016). Understanding why teachers make these decisions 
will be key to developing learning systems -- and strategies 
that implement them -- that work in the real world, at scale. 
We cannot change teacher decisions, or improve our systems 
to better meet teacher goals, without understanding those 
decisions.

In these cases, both the design of learning systems and the 
design of professional support and training become areas 
where learning engineering is key. As Harvard’s Chris Dede 
noted in the virtual asynchronous convening, “We need 
to prepare a range of professionals (such as instructional 
designers, teachers, purchasing agents, managers, 
regulators) to work in new ways. This will be its own at-scale 
learning project: we need double or even triple-vision as we 
develop interventions, to recognize not only that the learner’s 
mind has to be handled in new ways – but also that all the other 
professionals involved need training, with sufficient practice 
and feedback, to change their practices. This is another kind 
of “learning engineering” opportunity that is still in its infancy, 
yet will be crucial for at-scale success.”

This sparks another recommendation. Many teachers adopt 
practices that are less effective than the practices designers 
intend -- but some teachers may adopt practices around 
learning technologies that work better than what the designers 
intended (e.g. Schofield, 1995). Improved integration of 
data between classroom practices and students’ learning 
experiences can be used to study which practices around 
the use of learning technology are effective and scalable, and 
what contexts/situations these practices work best in. The 
data can then be used to analyze and detect whether best 
practices are being used, and develop automated and semi-
automated methods to encourage teachers to use the right 
practice at the right time. For example, a pop-up message in a 
dashboard might encourage a teacher to speak with a student 
who has been struggling for the last thirty minutes. Moreso, by 
also integrating data on teachers’ professional development 
experiences, learning engineers can study which professional 
development experiences lead to changes in practice which 

Can we understand what leads to tutors being 
more or less effective in this blended context?

Is the earlier research on what makes human 
tutors effective relevant in this context?

When should students seek help from the 
computer, and when should they seek help from 
a human tutor?

Many learning systems and curricula work well under 
favorable conditions -- motivated teachers and supportive 
administration, with significant involvement from the 
developers in support for teacher professional development, 
as well as ongoing support during the use of the system. 
However, these same learning systems and curricula often 
fail when extended to a broader range of classrooms, where 
teachers may be unfamiliar or uncomfortable with new 
methods and technologies, and may attempt to assimilate 
new technologies back into traditional teaching practices. 
These challenges in implementation are ultimately challenges 
for learning engineering. Can we design learning technologies 
that are easier for teachers to incorporate into their practice, 
while maintaining the benefits and advantages of these 
technologies?

Support Human Processes: 
Better Engineer Learning System 
Implementation in Schools



20High-Leverage Opportunities for Learning Engineering

Top High-Leverage Opportunities

experiences lead to changes in practice which lead in turn 
to better outcomes for learners.

Hence, creating data systems where data on 
teachers’ professional development, their classroom 
practices, and students’ learning experiences are 
connected will act as a key enabling factor for research on 
improving implementation. Once this infrastructure is in 
place, support for work to develop a taxonomy of 
teacher practices in classrooms using learning technology 
will create a framework that can be used across learning 
platforms to study which practices benefit learners, and 
how to engineer systems and professional development 
that produce those practices. These efforts should 
acknowledge that there may not always be a single set of 
practices that are optimal in all situations -- the 
effectiveness of a given strategy may be impacted by 
local conditions and the attributes of both students and 
teachers. What’s more, a data-infused approach could help 
determine  if some teachers do a better job than their 
peers in helping a student master a given concept, a 
longstanding question in education. New-generation 
approaches will leverage far more information and thus 
go beyond narrow questions around very aggregate 
value-add (cf. Rubin et al., 2004) and instead identify 
specific instructional approaches that help students learn 
specific material. It may even become possible to identify 
how the best teachers customize and adapt learning 
environments for their classrooms, feeding back into the 
design of both professional development and adaptive 
support.

Improve Recommendation, 
Assignment, and Advising 
Systems

Over the last decade, applications that incorporate 
models that can predict if a student will fail a course or 
drop out have become a common part of K-12 and higher 
education (Bowers et al., 2012; Milliron, et al., 2014). Today, 
these models are used to provide reports to school 
leaders and advisors (Milliron et al., 2014; Singh, 2018), or to 
drive simple automated interventions (Whitehill et al., 2015), 
and have been successful at improving student outcomes in 
a variety of contexts (Arnold & Pistilli, 2012; Milliron, et al., 
2014; Whitehill et al., 2015).

However, predictive models are generally not yet built 
into advising or recommender systems used to support 
students in selecting courses. For example, course 
selection and 

registration processes at many institutions involve 
limited advising, leaving it to students to identify and select 
courses with minimal support. This leads to many 
students taking “excess” credits in college or community 
college that don’t count towards degree requirements and 
use up financial aid (Zeidenberg, 2015). 

There is an opportunity to use learning engineering to 
develop advising systems that proactively analyze 
student trajectories and make recommendations (to 
advisors or to the students themselves) that increase the 
likelihood that the student achieves their goals, during high 
school (graduation and enrollment into college), college 
(completion of degree or transfer to 4-year college), and in 
the workforce (success at obtaining job and at job 
performance). There are systems in wide use that make 
course recommendations to students (Bramucci & Gaston, 
2012), and there are already models that can make this type 
of longitudinal prediction (see, for instance, San Pedro et al., 
2013; Makhlouf & Mine, 2020), and there are models for how 
to deliver recommendations of this nature (e.g. Castleman 
& Meyer, 2020), but only a few examples of this integration 
(e.g. Jiang, Pardos, & Wei, 2019). 

The key challenge is to take these models developed 
with one purpose -- prediction -- and re-purpose them 
for a different use, recommendation. Then, learning 
engineering is needed to make the recommendation 
and proposed intervention maximally effective at achieving 
its goals -- going beyond just improving the algorithms to 
re-engineering the practices of counselors and advisors, 
shaping their practices with the technology. A key part of 
this will be conducting iterative design, building on 
relevant research literatures such as the extensive work 
on nudge interventions (Hansen & Jespersen, 2013; 
Damgaard & Nielsen, 2018), to develop recommendations 
that students and instructors follow, and that achieve their 
desired goals of improved outcomes. 

One concern raised in the AVC sessions regarding this 
type of technology is that some of the algorithms currently 
being used for advising and recommendation do not provide 
details on why recommendations are made, making it 
difficult for practitioners to understand and trust the 
recommendations, and raising concerns of unknown 
algorithmic bias. There are also concerns that current 
approaches offer recommendations for students “on the 
bubble” of success and failure while leaving students at 
very high-risk unsupported. 

Recommendation and advising systems can be advanced 
through increased support for research on re-
purposing prediction models in this space for use in 
recommendation. There are two key steps to this. First, 
research on how to distill human-interpretable and actionable 
recommendations out of complex prediction models. 
Adapting explainable AI methods to the problem of 
actionability -- so that models are not just 
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“The things that may be most easy to 
immediately measure (number of problems 
done or such) may not be the things we wish 
to optimize.”
There is a risk that this problem will be amplified by learning 
engineering, despite its significant benefits overall. The 
common practice of improving a product using rapid 
innovation cycles risks focusing on measures that can be 
applied at that rapid time-scale. Similarly, the practice of using 
learning system data to assess the effects of an innovation 
risks focusing energy on improvements that are easy to 
measure. It is easy to measure immediate performance 
improvement on an exact well-defined skill -- there are now 
hundreds of examples of this type of work. It is significantly 
harder to quickly measure transfer across skills or preparation 
for future learning -- although many examples still exist 
(Koedinger, Corbett, & Perfetti, 2012; Kodinger, Booth, & Klahr, 
2013). Taking this step is nonetheless essential to guarantee 
that learning engineering produces learning that is active and 
useful to learners.

As Caitlin Mills noted in our AVC sessions, the field has poor 
understanding of which interventions’ effects persist over 
time -- and the dynamics of different interventions across 
multiple time-scales (i.e. dosage, appropriate repetition, 
half-life). Measuring long-term impacts requires researchers 
to plan ahead and maintain continuity of follow-up on 
students. Relatively few researchers even look at retention of 
knowledge over the span of a few weeks or months. Over a 
period of several years, a span of time where students move 
to new schools, learning systems may change their designs 
in significant ways, and research team composition is likely 
to change, it becomes even harder. Unlike research on much 
coarser-grained interventions, such as charter schools (Sass 
et al., 2016), we are only aware of one example where students 
who used an adaptive learning system were followed up over 
the span of several years (San Pedro et al., 2013, 2015; Almeda 
& Baker, 2020).

Given that many pedagogies and learning strategies work 
in the short term and for the exact material studied, but can 
lead to poor recall and transfer (Donovan & Radosevich, 1999; 
Ben-Zeev & Star, 2001; Rawson et al., 2013), this limitation 
in current practice carries risks of worsening outcomes 
for students, rather than improving them. We need to try 
to understand what the longer-term impacts of learning 
engineering decisions made today are. This concern can be 
addressed in multiple ways. 

First, the field should be made more aware of designs and 
approaches that are already known to lead to worse outcomes 

explainable, but explainable in ways that enable action -- will 
require research projects that bring together machine learning 
researchers, human-computer interaction researchers, and 
educational researchers.

Second, modern recommender systems in other domains 
can improve their own performance by studying whether 
their recommendations are followed, and what the results 
are; this can be achieved for this problem by building a 
laboratory at a specific institution such as a community 
college (or several such institutions) that brings together an 
infrastructure that enables experimentation around prediction 
and recommendation and connects it with outcome data. In 
taking these steps, it will be essential to support and fund 
solutions that are inspectable, understandable, trustworthy, 
and beneficial to the full range of learners. 

A related problem is matching students to schools in large 
school districts or local educational agencies. Many school 
districts still use cumbersome, complicated multi-stage 
enrollment processes where many schools leave places 
unfilled and many students end up in schools that they do 
not prefer and end up leaving. Work over the last decade, 
in several cities, has shown that even relatively simple 
matching algorithms can lead to much better matching 
outcomes (Pathak, 2017). Extending this work with the use 
of sophisticated AI-driven recommender systems has the 
potential to guide students to make better choices about which 
schools they list as their preferences (both more realistic and 
more likely to lead to personal and career success), as well as 
guiding schools to choose students more optimally.

It is important to design learning experiences that support 
students in developing robust learning -- learning that is 
retained over time, transfers to new situations, and prepares 
students to learn in the future (Koedinger, Corbett, & Perfetti, 
2012). Learning design has often emphasized short-term 
learning outcomes, as they can be easier to measure. As 
Caitlin Mills noted in an asynchronous virtual convening, 

Better Learning Technologies: 
Optimize for Robust Learning and 
Long-Term Achievement
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for instance, that scientific inquiry skills learned in physics 
can be applied in biology as well (Sao Pedro et al., 2014). By 
finding which learning activities are most essential for future 
progress, we can focus instructional and design effort where 
it has the highest potential impact. More should be done to 
look at educational impact and accelerated future learning, 
further downstream from the intervention, even months or 
years later.

in the long-term, such as cramming (Rawson et al., 2013), 
massed practice (Donovan & Radosevich, 1999), and the 
lack of interleaving of related skills (Ben-Zeev & Star, 2001). 
Many learning systems, particularly in mathematics, still use 
massed practice of skills taught in a block. Extensive research 
in cognitive psychology suggests that this practice may be 
less effective for learning.

Second, the field needs to go beyond conducting short-term 
studies on interventions and designs. Short-term A/B tests are 
convenient to run, but may favor approaches whose benefits 
do not sustain. As such, we recommend additional work in 
this space. Specifically, explicit plans should be put in place 
to follow up promising studies, systems, and pedagogies, to 
see if the apparent benefits sustain over a longer term. This 
should be applied to a range of types of intervention, from 
learning interventions to persistence/retention interventions. 
A range of possible benefits may be possible, from greater 
educational attainment, to career and even health benefits.

This type of follow-up research is easier if it is planned for 
in advance, by saving key follow-up information (in ways 
that respect students’ choices of whether to be followed 
longitudinally) and deciding in advance how and when follow-
up will occur. This trend is already occurring and simply needs 
further encouragement, perhaps by setting aside funding for 
follow-up at the start of a project. Elizabeth Albro at the US 
Department of Education, Institute of Education Sciences, 
noted in an AVC conversation that “we have supported long-
term follow ups for several IES-funded projects. We also 
encourage PIs to plan for long-term follow up at the outset 
of their projects – including attending to language in their 
consent letters to ensure that long-term data collection is an 
option.” She further suggested that researchers should “use 
state longitudinal data systems to measure long-term impact”, 
an opportunity to facilitate the sometimes challenging task of 
tracking longitudinal impacts.

Similarly, there should be greater emphasis on preparation 
for future learning. What areas of mastery, or ways of 
learning a topic, improve a student’s ability to learn the next 
topic faster or more effectively (e.g. Bransford & Schwartz, 
1999; Chi & VanLehn, 2007)? Much of the work seen in this 
area so far is specific to a single learning domain, such as a 
specific mathematical skill being key to the development 
of other, later skills (Booth & Newton, 2012). For example, 
work by NWEA and EDC involving a data set of over 200,000 
students found that student performance in  four 6th-grade 
mathematical domains were each independently predictive 
of achievement in 8th grade algebra (Almeda et al., 2020). 
For example, a one standard deviation increase in Real and 
Complex Number Systems was related to a third of a standard 
deviation improvement in math overall, two years later. This 
applies beyond just mathematics. Emerging work suggests, 

Much of the learning technology currently in use focuses on 
relatively narrow academic skills, but more complex skills such 
as collaboration, communication, and critical thinking -- often 
referred to as “21st-century skills” -- will be key to career and 
life success in the coming decades (Dede, 2010). These skills 
are often hard to measure as they do not have a purely right or 
wrong answer to easily classify. Using new technologies, new 
data collection tools, analytics and psychometrics, learning 
engineering can focus on the development of reliable and valid 
measures of these hard to measure constructs, and produce 
learning experiences that support their development. 

For example, game-based assessments and simulations 
appear to have promise for measuring a range of 21st-century 
skills, from inquiry skills (Gobert et al., 2013; Sparks & Deane, 
2015), to cognitive flexibility and conscientiousness (Shute 
et al., 2015), to collaborative problem-solving (Chopade et 
al., 2018; San Pedro et al., 2019). Intelligent tutors have also 
proven to be useful environments for studying self-regulated 
skills such as help-seeking and strategies for improving these 
skills (Aleven et al., 2006; Aleven et al., 2016). One of the largest 
challenges to developing these types of measurements is 
obtaining reliable and agreed-upon human judgments of 
21st-century skills, that can be used to leverage machine 
learning or to inform evidence-centered design approaches 
to developing these measures. One path to collecting this 
data may be to improve tools for visualizing and annotating 
student log data (Rodrigo et al., 2012; Gobert et al., 2013; 
Rowe et al., 2019), to support discussion and refinement of 
coding schemes, comparison between human coders and 
analysis.of their differences, and data-driven discussion 
around measurement design. 

Better Learning Technologies: 
Support Learning 21st-Century 
Skills and Collaboration
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Learning engineering has a role to play in creating 
learning experiences that can measure and support the 
development of 21st-century skills. This work will 
involve the creation of better measures and better 
methods for developing measures. Evidence-centered 
design and educational data mining have each been 
successful at measuring specific 21st-century skills (e.g. 
Shute & Torres, 2012; Gobert et al., 2013; Kantar et al., 
2018); however, there is still insufficient work to understand 
when each method is best and how to use these methods 
together (but see Mislevy et al., 2012; Rupp et al., 2012).

Support for formalizing methods for measuring 21st-
century skills, including collaboration, may expand the use 
of these methods, particularly if it can articulate and 
systematize how evidence-centered design and 
educational data mining should be used together. In 
addition, work to enhance students’ 21st-century skills, 
including collaboration, has not sufficiently looked into the 
long-term retention of what is learned, and the translation of 
those skills to new contexts (a more general problem; see 
previous recommendation). 

These research areas are currently moving forward, and 
these goals are on track to be achieved -- but not quickly. 
Hence, the major challenge here is to speed research on key 
goals such as developing better measures of 21st century 
competencies and better methods for developing them. 
More should be done in this area, from additional research 
funding to greater focus among researchers.

Although considerable effort goes into this problem 
today, different research and development teams are 
working on different aspects of this problem. As such, 
there is limited scope for the type of competition that 
often accelerate progress. Attempts to bring together 
large numbers of researchers to discuss these problems 
has led to committee solutions that do not seem to 
kick-start the field (e.g. Graesser et al., 2018; Krumm et 
al., 2016). Instead, the field may benefit from explicit 
competition, such as seen in the ongoing competition to 
develop better measures of student knowledge or in other 
domains such as natural language processing and image 
processing. 

Existing competitions in educational data have been too 
brief in duration for this type of challenge. We recommend 
instead establishing challenges like the Loebner Prize 
that attach funding to demonstrating specific types of 
functionality in measurement or skill development. For 
instance, a prize could be given to the first team to 
produce an automated measurement of collaboration 
associated with better workplace outcomes in cross-
culture workplaces, or the first team to produce an 
intervention based upon automated measurement of 
conscientiousness that led to higher 
conscientiousness in real-world tasks.

An area of particular importance is 21st-century skills 
around collaborative learning and collaborative 
performance. Collaborative work is an integral part of our 
society both at the academic level and in the 
workforce. Learning engineering is uniquely positioned 
to help practitioners, employers, and students better 
understand collaboration through advanced technology 
and methodologies. While there has been initial work on 
collaboration and patterns of collaboration (Lahti et al., 
2004), and development of frameworks for using 
evidence-centered design to assess collaboration (Nouri 
et al., 2017; Andrews-Todd & Kerr, 2019), this work is still 
in its beginnings.

Collaboration is an important strategy for learning but 
current learning tools and systems for collaboration are less 
advanced than tools and systems for individual 
learning. Learning engineering can begin to shed more 
light on best practices for evaluating collaborative work, 
teams, communication and other skills directly related to 21st 
century skills. This challenge becomes more tractable as 
learning shifts increasingly online -- collaboration taking 
place completely in person is difficult to measure without 
complex multimodal approaches (Laru & Järvelä, 2008; 
Noel et al., 2018) or sophisticated equipment (Martinez-
Maldonado, et al., 2013) that are difficult to deploy in real 
classrooms. By contrast, collaboration taking place fully 
online, whether synchronous (Diziol et al., 2010) or 
asynchronous (Calvo et al., 2010) can be considerably easier 
to measure. Discussion forum data, for instance, is quite 
easy to analyze, leading to research that integrates across 
grain-sizes, from textual cohesion to social networks 
(Joksimovic et al., 2015). Even ZOOM recordings, while not 
collected with data analysis in mind, provide direct images 
of participants’ faces and a view of the document being 
shared, which will be easier to work with than cameras 
deployed in classrooms where students are moving around 
as they work together. 

Learning engineering can help develop tools that 
scaffold collaboration, and better assess collaborative 
skill, to help learners learn to collaborate, and learn more 
effectively while collaborating. As an example, 
researchers could further examine the viability of 
sociometers (Choudhury & Pentland, 2002), wearable 
devices that measure social interactions. Such tools 
could better measure 21st-century skills like 
collaboration and social engagement by examining 
which students engage with others and how it shapes 
performance and learning (Martinez-Maldonado et al., 
2012; Evans et al., 2016). In general, data will enable us to 
study which learner behaviors and strategies lead to 
effective collaboration and learning outcomes through 
collaboration -- given the unique nature of collaborative 
learning, social relationships and the behaviors that 
support their development may play a key role (i.e. Kreijns, 
2004; Gasevic et al., 2013). 
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Better Learning Technologies: 
Improved Support for Student 
Engagement
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There is growing acknowledgment that there is more to 
learning than just what is learned. Student engagement can 
make a big difference, both to immediate learning (Craig 
et al., 2004; Cocea et al., 2009), and to longer-term interest 
and participation in a subject (San Pedro et al., 2015; Almeda 
& Baker, 2020). Developing technologies that take student 
engagement and affect into account has therefore become 
an important goal for many in the learning engineering field. 
Engagement and affect have been measured from both 
sensors and from logs of student interactions with learning 
systems (Calvo & D’Mello, 2010; Baker & Rossi, 2013; Baker 
& Ocumpaugh, 2014). However, though the technology 
exists to measure engagement and affect, the technology 
is not yet in place to reliably use these measurements to 
improve engagement and affect. Though a small number of 
approaches have been effective at improving engagement 
and learning, these technologies have not scaled.

Investments in infrastructure in this area, recommended in our 
discussions with John Whitmer, may assist in the scaling of this 
type of technology. Currently, three approaches have been 
used to collect data on engagement and affect for developing 
automated measurements: classroom observations, video 
data, and self-report. The classroom observation path to 
developing automated measurements has been used in over 
a dozen systems, has a widely-used Android app for data 
collection (Baker, Ocumpaugh, & Andres, 2020), and even the 
financial costs have been systematically studied (Hollands 
& Bakir, 2015). However, it is not feasible in remote learning 
contexts. Developing a standard self-report instrument for 
engagement and affect -- realized as a software plug-in -- 
and validating it across learner populations will increase the 
feasibility of collecting large-scale remote data which can be 
used to develop detectors that recognize student engagement 
and affect from interaction data. For video, it may be possible 
to develop a single suite of engagement/affect detectors 
validated to work across populations, much as has been 
done for basic emotions by several commercial vendors. The 
largest challenge to doing this will be the collection of a large-
scale and diverse corpus of video learning data, annotated in 
terms of key individual differences such as age, gender, race/
ethnicity, and type of camera/webcam.

Moving forward, learning engineering has the opportunity 
to examine which engagement/affective interventions (both 

teacher-driven and automated) are effective for which 
students, in which situations. A range of possible types of 
interventions have been developed -- from conversational 
agents (D’Mello et al., 2009), to visualizations of student 
engagement (Arroyo et al., 2007; Xia et al., 2020), to messages 
in between learning activities (DeFalco et al., 2018). 

However, relatively little work has studied how student 
individual differences impact the effectiveness of these 
interventions (but see D’Mello et al., 2009; Arroyo et al., 2013), 
and insufficient work has compared different intervention 
types to each other or attempted to integrate multiple 
interventions. Learning engineering can help to answer 
these questions. This limitation in the research so far can be 
addressed through creating a competition where different 
interventions are compared and integrated, in a large sample 
of students where individual difference measures are also 
collected.

In parallel, work is needed to figure out how to design these 
interventions in ways that teachers, school leaders, parents, 
and students are comfortable with. Many interventions that 
are successful at reducing disengagement or improving 
affect are not acceptable to students or teachers (e.g. D’Mello 
et al., 2009), reducing their potential to scale. Greater support 
for work to understand stakeholder needs and desires, and 
to design in accordance with these needs (i.e. Holstein et al., 
2019) increase the potential for uptake and scaling. 

The role of parents is particularly important. As a long-standing 
body of research shows, parents, home-life and other factors 
external to the classroom have a considerable impact and can 
exacerbate achievement gaps (Hara & Burke, 1998). A number 
of programs show that engaging parents can make substantial 
impacts (Berkowitz et al., 2015; Mayer, Kalil, Oreopoulos, & 
Gallegos, 2015). One of the challenges in empowering parents 
to support their children is the numerous gaps that currently 
exist in the communication between school administrations, 
students, and parents. Simple interventions like providing 
parents login information for school learning management 
systems can lead to improvements in student achievement 
(Bergman, 2020), as can providing parents automated text 
nudges (Bergman et al., 2019). Hence, it is becoming clear that 
opportunities can be created if  learning engineering focuses 
on parents as a lever.
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Better Learning Technologies: 
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Systems for Diversity and Equity
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We conclude this set of topics with the most important 
recommendation for the ultimate success of learning 
engineering as a field, one that interacts in key ways with all of 
the other recommendations that precede it. Promoting equity 
in education and closing achievement gaps is a long-standing 
goal for educators and researchers, but has remained elusive 
(Hanushek et al., 2019). One approach to equitable instruction 
is making learning more individualized. As several convening 
participants noted, it is essential to get beyond one-size-fits-
all interventions and create interventions that are sensitive to 
differences between learners and promote equity. Learning 
engineering is well-suited to help educators identify these 
needs and provide for them, in theory producing a more 
equitable learning experience through technology-enhanced 
innovation (Aguilar, 2018). 

However, it is not a given that learning engineering will steer 
instruction and assessment towards equity. Researchers and 
developers must be mindful to avoid algorithmic biases in 
analytics and recommendations (Gardner et al., 2019; Holstein 
& Doroudi, 2019), which can lead to models and interventions 
being less effective for specific (ofter historically-underserved) 
groups of learners. Research has suggested that models fit 
on convenience samples can be less effective for specific 
groups of learners (Ocumpaugh et al., 2014). Building models 
that are verified to function correctly for all of the groups of 
learners using it remains a challenge for the field, although 
tools such as The Generalizer (Tipton, 2014) can help identify 
schools to sample to achieve a representative population. 

However, there is still limited understanding of which 
differences between learners matter in specific situations, and 
how these differences impact the effectiveness of learning 
technologies. As demand increases within school districts for 
evidence of equity as well as evidence of broader effectiveness 
(Rauf, 2020), it will become essential for learning engineers to 
fill this gap. This limitation can be addressed fairly quickly if 
research funders require that projects work with diverse and 
representative populations of learners, collect more complete 
data on learner diversity, and check models and findings 
for algorithmic bias using these variables. Race, ethnicity, 
studying in a second-language, gender, neurodiversity, 
disability status, urbanicity, and military-connected status 
can all impact algorithm effectiveness (Baker & Hawn, 2021). 
However, data on these variables is currently seldom even 

collected (Paquette et al., 2020), a key first step that needs to 
be taken for the field to move forward on increasing equity. 

Similarly, the designs that work in one learning context may 
not work as well in other contexts, due to differences in school 
culture, students’ prior learning experiences and curricula, 
and differences in the national culture and background of 
learners. For example, learning science findings derived from 
non-diverse populations sometimes do not apply to other 
/learners (Karumbaiah et al., 2019), and learning science 
findings obtained in one national culture sometimes do not 
apply within other cultures (Ogan et al., 2015). Improving the 
degree to which learning experiences are culturally relevant 
and build on material that students are already familiar with 
can also have significant benefits (e.g. Pinkard, 2001; Lipka et 
al., 2005). To develop designs that function well where they are 
applied, there is a need for participatory and inclusive design, 
involving members of the communities impacted (cf. Tuhiwai-
Smith, 2013).
A final concern for equity through learning engineering is 
that not all students have equal experience with or access 
to technology. Remote learning or opportunities to acquire 
additional support are limited by a student’s access. For 
example, despite MOOCs being thought of as an educational 
equalizer, they are not equally available to all learners (Park et 
al, 2019) and outcomes are often poorer for learners from less 
privileged socioeconomic backgrounds (Kizilcec et al., 2017). 

The recent pandemic has shown that technology access can 
also be much lower in under-funded school districts than 
elsewhere (Wolfman-Arent, 2020), and for undergraduates 
coming from lower-income backgrounds (Jaggars et al., 
2021). Learning engineering clearly cannot solve all inequities 
that lead to differences in access to technologies or how it is 
used. But the field needs to consider how effective results will 
be in practice, given these constraints. Realistic estimations 
of effectiveness will encourage transparency around who 
will benefit from learning engineering advances, while also 
shining a spotlight on the inequities that exist for students and 
the need to address them.
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Conclusions & Next Steps

In this report, we have outlined ten key areas of opportunity 
for research in learning engineering (see executive summary 
for a summary of these areas), and within those areas 
propose 33 potential lines of funding (summarized in the 
recommendations matrix). There are overlaps between many 
of these potential lines of funding -- for example, better 
algorithms for equity can and should be pursued in projects 
focused on other topics, and enhanced R&D infrastructure will 
support all other research areas in this document. Encouraging 
researchers to consider multiple of these opportunities in a 
single project will help to expand coverage and bring the field 
forward. Over the coming months, we intend to seed thinking 
around these areas and their possible integrations through 
a series of thought pieces. However, even with integration 
between ideas, it is unlikely that any single program can 
provide support for all of these opportunities. Coordination 
between funders can ensure that the full set of opportunities 
presented here are addressed.

As this report demonstrates, learning engineering has the 
potential to have huge impacts across a variety of areas. A 
considerable number of successful examples of learning 
engineering exist. However, scaling and dissemination remain 
challenges. 

In terms of scaling, too many of the most sophisticated 
technological approaches and pedagogical approaches 
remain in research classrooms -- either as wholly academic 
projects, or as demonstrations and pilots by platforms 
that have broader use. The move towards making learning 
platforms into platforms for research has led to a proliferation 
of papers on how to engineer learning better -- but many of 
those innovations have not scaled, even in the systems being 
studied. This situation underpins the recommendation around 
better engineering of implementation, a key step towards 
scale.

In terms of dissemination, many of the findings of learning 
engineering could apply in new learning platforms and in 
non-technological learning situations, but remains applied 
in a single platform. Even when shared, most learning 
engineering findings are disseminated in academic journals or 
at academic conferences. While this is effective at engaging 

other scientists and sharing ideas as well as promoting 
collaboration, these mediums are not optimal for putting work 
into practice at scale. 

Teachers, parents, policy makers, and even many learning 
system developers are unlikely to read (or, often, have access 
to) academic journals and conferences and thus are often 
unaware of new results and findings that directly impact 
their classrooms and learners. Until work is more widely 
disseminated there will remain a disconnect between the 
large volumes of high-quality R&D work being generated both 
in academia and industry and educational practice. Thus, 
in addition to recommending funding for the opportunities 
within this document, we also recommend continued efforts 
to enhance connections between research and practice. 

Learning engineering has great promise for enhancing 
learning experiences, enriching learning, and supporting 
better long-term achievements by learners. Considerable 
strides have already been made; we are at the beginning of 
the field’s journey towards transforming education.
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