Week 1, video 2:

Regressors

Prediction

\square Develop a model which can infer a single aspect of the data (predicted variable) from some combination of other aspects of the data (predictor variables)
\square Sometimes used to predict the future
\square Sometimes used to make inferences about the present

Prediction: Examples

\square A student is watching a video in a MOOC right now.
\square Is he bored or frustrated?
\square A student has used educational software for the last half hour.
\square How likely is it that she knows the skill in the next problem?
\square A student has completed three years of high school.
\square What will be her score on the college entrance exam?

What can we use this for?

\square Improved educational design
\square If we know when students get bored, we can improve that content
\square Automated decisions by software

- If we know that a student is frustrated, let's offer the student some online help
\square Informing teachers, instructors, and other stakeholders
- If we know that a student is frustrated, let's tell their teacher

Regression in Prediction

\square There is something you want to predict ("the label")
\square The thing you want to predict is numerical
\square Number of hints student requests
\square How long student takes to answer
\square How much of the video the student will watch
\square What will the student's test score be

Regression in Prediction

\square A model that predicts a number is called a regressor in data mining
\square The overall task is called regression

Regression

\square To build a regression model, you obtain a data set where you already know the answer - called the training label
\square For example, if you want to predict the number of hints the student requests, each value of numhints is a training label

Skill	pknow	time	totalactions	numhints
ENTERINGGIVEN	0.704	9	1	0
ENTERINGGIVEN	0.502	10	2	0
USEDIFFNUM	0.049	6	1	3
ENTERINGGIVEN	0.967	7	3	0
REMOVECOEFF	0.792	16	1	1
REMOVECOEFF	0.792	13	2	0
USEDIFFNUM	0.073	5	2	0

Regression

\square Associated with each label are a set of "features", other variables, which you will try to use to predict the label

Skill	pknow	time	totalactions	numhints
ENTERINGGIVEN	0.704	9	1	0
ENTERINGGIVEN	0.502	10	2	0
USEDIFFNUM	0.049	6	1	3
ENTERINGGIVEN	0.967	7	3	0
REMOVECOEFF	0.792	16	1	1
REMOVECOEFF	0.792	13	2	0
USEDIFFNUM	0.073	5	2	0

Regression

\square The basic idea of regression is to determine which features, in which combination, can predict the label's value

Skill	pknow	time	totalactions	numhints
ENTERINGGIVEN	0.704	9	1	0
ENTERINGGIVEN	0.502	10	2	0
USEDIFFNUM	0.049	6	1	3
ENTERINGGIVEN	0.967	7	3	0
REMOVECOEFF	0.792	16	1	1
REMOVECOEFF	0.792	13	2	0
USEDIFFNUM	0.073	5	2	0

Linear Regression

\square The most classic form of regression is linear regression
\square Numhints $=0.12 *$ Pknow $+0.932 * T i m e-$
0.11 *Totalactions

Skill	pknow	time	totalactions	numhints
COMPUTESLOPE	0.544	9	1	$?$

Quiz

	pknow	time	totalactions	numhints
Skill	15	4	$?$	

\square Numhints $=0.12^{*}$ Pknow $+0.932 *$ Time 0.11 *Totalactions
\square What is the value of numhints?
A) 8.34
в) $\quad 13.58$
с) 3.67
D) 9.21
E) FNORD
\square Numhints $=0.12 * P k n o w+0.932 * T i m e-$
0.11 *Totalactions
\square Which of the variables has the largest impact on numhints?
(Assume they are scaled the same)
A) Pknow
B) Time
C) Totalactions
D) Numhints
E) They are equal

However...

\square These variables are unlikely to be scaled the same!
\square If Pknow is a probability

- From 0 to 1
\square We'll discuss this variable later in the class
\square And time is a number of seconds to respond
\square From 0 to infinity
\square Then you can't interpret the weights in a straightforward fashion
- You need to transform them first

Transform

\square When you make a new variable by applying some mathematical function to the previous variable
$\square \mathrm{Xt}_{\mathrm{t}}=\mathrm{X}^{2}$

Transform: Unitization

\square Increases interpretability of relative strength of features
\square Reduces interpretability of individual features

$$
X t=\frac{X-M(X)}{S D(X)}
$$

Linear Regression

\square Linear regression only fits linear functions...
\square Except when you apply transforms to the input variables
\square Which most statistics and data mining packages can do for you

$\operatorname{Ln}(X)$

Sqrt(X)

X^{2}

X^{3}

1/X

$\operatorname{Sin}(X)$

Linear Regression

\square Surprisingly flexible...
\square But even without that
\square It is blazing fast
\square It is often more accurate than more complex models, particularly once you cross-validate

- Caruana \& Niculescu-Mizil (2006)
\square It is feasible to understand your model (with the caveat that the second feature in your model is in the context of the first feature, and so on)

Example of Caveat

\square Let's graph the relationship between number of graduate students and number of papers per year

Data

Data

Model

\square Number of papers $=$
4 +
2 * \# of grad students

- 0.1 * (\# of grad students) ${ }^{2}$
\square But does that actually mean that
(\# of grad students) ${ }^{2}$ is associated with less publication?
\square No!

Example of Caveat

\square (\# of grad students) ${ }^{2}$ is actually positively correlated with publications!
$\square \mathrm{r}=0.46$

Example of Caveat

\square The relationship is only in the negative direction when the number of graduate students is already in the model...

Example of Caveat

\square So be careful when interpreting linear regression models (or almost any other type of model)

Regression Trees

Regression Trees (non-linear; RepTree)

\square If $\mathrm{X}>3$
$\square Y=2$
\square else If $X<-7$

- $Y=4$

Else $Y=3$

Linear Regression Trees (linear; M5')

\square If $X>3$
$\square Y=2 A+3 B$
\square else If $X<-7$
$\square Y=2 A-3 B$
\square Else $Y=2 A+0.5 B+C$

Linear Regression Tree

Later Lectures

\square Other regressors
\square Goodness metrics for comparing regressors
\square Validating regressors

Next Lecture

Classifiers - another type of prediction model

