
Week 1, video 2: 

Regressors



Prediction

 Develop a model which can infer a single aspect of 

the data (predicted variable) from some 

combination of other aspects of the data (predictor 

variables)

 Sometimes used to predict the future

 Sometimes used to make inferences about the 

present



Prediction: Examples

 A student is watching a video in a MOOC right now.

 Is he bored or frustrated?

 A student has used educational software for the last 

half hour.

 How likely is it that she knows the skill in the next 

problem?

 A student has completed three years of high school.

 What will be her score on the college entrance 

exam?



What can we use this for?

 Improved educational design

 If we know when students get bored, we can improve 
that content

 Automated decisions by software

 If we know that a student is frustrated, let’s offer the 
student some online help

 Informing teachers, instructors, and other 
stakeholders

 If we know that a student is frustrated, let’s tell their 
teacher



Regression in Prediction

 There is something you want to predict (“the label”)

 The thing you want to predict is numerical

 Number of hints student requests

 How long student takes to answer

 How much of the video the student will watch

 What will the student’s test score be



Regression in Prediction

 A model that predicts a number is called a 
regressor in data mining

 The overall task is called regression



Regression

 To build a regression model, you obtain a data set 

where you already know the answer – called the 

training label

 For example, if you want to predict the number of 

hints the student requests, each value of numhints is 

a training label
Skill pknow time totalactions numhints
ENTERINGGIVEN 0.704 9 1 0
ENTERINGGIVEN 0.502 10 2 0
USEDIFFNUM 0.049 6 1 3
ENTERINGGIVEN 0.967 7 3 0
REMOVECOEFF 0.792 16 1 1
REMOVECOEFF 0.792 13 2 0
USEDIFFNUM 0.073 5 2 0
….



Regression

 Associated with each label are a set of “features”, 

other variables, which you will try to use to predict 

the label

Skill pknow time totalactions numhints
ENTERINGGIVEN 0.704 9 1 0
ENTERINGGIVEN 0.502 10 2 0
USEDIFFNUM 0.049 6 1 3
ENTERINGGIVEN 0.967 7 3 0
REMOVECOEFF 0.792 16 1 1
REMOVECOEFF 0.792 13 2 0
USEDIFFNUM 0.073 5 2 0
….



Regression

 The basic idea of regression is to determine which 

features, in which combination, can predict the 

label’s value

Skill pknow time totalactions numhints
ENTERINGGIVEN 0.704 9 1 0
ENTERINGGIVEN 0.502 10 2 0
USEDIFFNUM 0.049 6 1 3
ENTERINGGIVEN 0.967 7 3 0
REMOVECOEFF 0.792 16 1 1
REMOVECOEFF 0.792 13 2 0
USEDIFFNUM 0.073 5 2 0
….



Linear Regression

 The most classic form of regression is linear 
regression

 Numhints = 0.12*Pknow + 0.932*Time –
0.11*Totalactions

Skill pknow time totalactions numhints
COMPUTESLOPE 0.544 9 1 ?



Quiz

 Numhints = 0.12*Pknow + 0.932*Time –
0.11*Totalactions

 What is the value of numhints?

A) 8.34

B) 13.58

C) 3.67

D) 9.21

E) FNORD

Skill pknow time totalactions numhints
COMPUTESLOPE 0.322 15 4 ?



Quiz

 Numhints = 0.12*Pknow + 0.932*Time –

0.11*Totalactions

 Which of the variables has the largest impact 

on numhints?

(Assume they are scaled the same)

A) Pknow

B) Time

C) Totalactions

D) Numhints

E) They are equal



However…

 These variables are unlikely to be scaled the same!

 If Pknow is a probability 

 From 0 to 1

 We’ll discuss this variable later in the class

 And time is a number of seconds to respond

 From 0 to infinity

 Then you can’t interpret the weights in a 

straightforward fashion

 You need to transform them first



Transform

 When you make a new variable by applying some 

mathematical function to the previous variable

 Xt = X2



Transform: Unitization

 Increases interpretability of relative strength of 
features

 Reduces interpretability of individual features

Xt = X – M(X) 

SD(X)



Linear Regression

 Linear regression only fits linear functions…

 Except when you apply transforms to the input 

variables

 Which most statistics and data mining packages can 

do for you
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Linear Regression

 Surprisingly flexible…

 But even without that

 It is blazing fast

 It is often more accurate than more complex models, 
particularly once you cross-validate

 Caruana & Niculescu-Mizil (2006)

 It is feasible to understand your model
(with the caveat that the second feature in your 
model is in the context of the first feature, and so 
on)



Example of Caveat

 Let’s graph the relationship between number of 

graduate students and number of papers per year
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Model

 Number of papers =
4 +
2 * # of grad students
- 0.1 * (# of grad students)2

 But does that actually mean that 
(# of grad students)2 is associated with less 

publication?

 No!



Example of Caveat

 (# of grad students)2 is actually 

positively correlated with publications!

 r=0.46
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Example of Caveat

 The relationship is only in the negative 

direction when the number of 

graduate students is already in the 

model…
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Example of Caveat

 So be careful when interpreting linear regression 

models (or almost any other type of model)



Regression Trees



Regression Trees (non-linear; RepTree)

 If X>3

 Y = 2

 else If X<-7

◼ Y = 4

◼ Else Y = 3



Linear Regression Trees (linear; M5’)

 If X>3

 Y = 2A + 3B

 else If X< -7

◼ Y = 2A – 3B

◼ Else Y = 2A + 0.5B + C



Linear Regression Tree
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Later Lectures

 Other regressors

 Goodness metrics for comparing regressors

 Validating regressors



Next Lecture

 Classifiers – another type of prediction model


