
Feature Engineering

Week 3 Video 3



Feature Engineering



Feature Engineering

◻ Up until this point in the class, we’ve talked 
about building and validating prediction 
models

◻ Models that infer a predicted variable from 
predictor variables



Where the Predicted Variable 
Comes From
◻ A couple lectures ago, we went into a little 

more detail about where the predicted variable 
can come from



Where the Predictor Variables 
Come From
◻ Where do the predictor variables come from?

◻ Do they fall out of the sky?

◻ Do they come from the Office for Predictor 
Variables in Washington, DC? 



Feature Engineering

◻ The art of creating predictor variables

◻ A major topic in its own right



Why is it important?

◻ Feature engineering is the least well-studied 
part of the process of developing prediction 
models
� But it’s arguably the most important part
� Your model will never be any good if your 

features (predictors) aren’t very good



Why is it important?

◻ It is an art, it is human-driven design
◻ It involves lore rather than well-known and 

validated principles
◻ It is hard!



The Big Idea

◻ How can we take the voluminous, ill-formed, 
and yet under-specified data that we now have 
in education

◻ And shape it into a reasonable set of variables

◻ In an efficient, effective, and predictive way?



A process in its own right

1. Brainstorming features 
2. Deciding what features to create
3. Creating the features
4. Studying the impact of features on model 

goodness
5. Iterating on features if useful
6. Go to 3 (or 1)



Brainstorming Features

◻ Can be more or less formal



IDEO tips for Brainstorming

1. Defer judgment
2. Encourage wild ideas
3. Build on the ideas of others
4. Stay focused on the topic
5. One conversation at a time
6. Be visual
7. Go for quantity

http://www.openideo.com/fieldnotes/openideo-team-
notes/seven-tips-on-better-brainstorming



Building on the Ideas of Others

◻ Doesn’t just have to be people nearby

◻ There’s a huge literature out there of features 
people have tried and what has worked, or failed 
to work, for a range of problems

◻ Read papers from researchers working on similar 
problems, and see what you can use

◻ Some folks have also tried crowd-sourcing 
(Veeramacheneni et al., 2014)



Brainstorming Features

◻ On hard projects, my research group often 
meets as a team over pizza and beer to 
brainstorm

◻ On easier projects, one person brainstorms 
solo
� And then often discusses their features with 

another person, who offers further suggestions



Deciding what features to 
create
◻ There is never infinite time
◻ A trade-off between the effort to create a 

feature and how likely it is to be useful
� “How likely it is to be useful” – the best you can 

do is to
■ Look at whether similar features have been useful for 

similar problems
■ Use your best intuition

◻ Worth biasing in favor of features that are 
different than anything else you’ve tried before
� Explores a different part of the space



Creating features

◻ Excel – Really good for prototyping features 
◻ Distillation Code – The scalable solution… but 

harder to check yourself or explore



Some useful tools in Excel

◻ Pivot Tables – great for aggregating data, and 
getting the average, min, max, stdev

◻ Vlookup – great for translating from 
aggregations (student-level data, for instance) 
back to action-level data

◻ Example in this week’s Walkthrough



Further resources

◻ http://www.howtogeek.com/howto/13780/using
-vlookup-in-excel/

◻ http://www.excel-easy.com/data-
analysis/pivot-tables.html

◻ http://spreadsheets.about.com/od/datamanage
mentinexcel/ss/8912pivot_table.htm



Other useful things you can do in 
Excel
◻ Counts-so-far 
◻ Counts-last-n-actions
◻ Differentiating first and subsequent attempts
◻ Ratios between events of interest
◻ Cut-off based features



Feature Iteration

◻ Sometimes when a feature looks like it might 
be good

◻ It’s worth iterating on that feature, trying close 
variants to see if they do better



Example

◻ You have a feature “slow actions after hints”
(cf. Shih, Koedinger, & Scheines, 2008)

◻ You define “slow action” as an action taking 
over 20 seconds

◻ What if 30 seconds is a better cut-off?



Ways to accomplish this…

◻ By hand
◻ Programming (Java? Matlab?)
◻ Excel Equation Solver



Details of features matter

◻ For example, the same feature can have 
different impact depending on context



(Baker et al., 2015)

◻ Whether a student has opened their e-
textbook predicts whether they fail the course

◻ But with totally different precision and recall on 
the first day of the class versus the 7th day of 
the class



Excel Equation Solver Tutorials

◻ http://office.microsoft.com/en-us/excel-
help/define-and-solve-a-problem-by-using-
solver-HP010072691.aspx

◻ http://www.youtube.com/watch?v=K4QkLA3sT
1o

◻ One tip: multistart option avoids local minima 
(that can sometimes block the solver from 
even getting started)



A few thoughts



Does feature engineering over-
fit?
◻ It can
◻ Which is why it’s useful to remember
◻ The true test of a model is whether it works on 

entirely unseen data

◻ If you iterate a lot and use cross-validated 
goodness

◻ Then the true test of your model will be either 
a held-out data set or newly-collected data 
later on



Feature Engineering

◻ Your features come from somewhere

◻ You can take a standard set of variables or 
pre-existing variables 
� No question it’s faster

◻ But thinking about your variables is likely to 
lead to better models
� Actually evidence for this, see (Sao Pedro et al., 

2012)



Next Lecture

◻ Automated feature generation and selection


