

Automated Feature Generation Automated Feature Selection

Automated Feature Generation

The creation of new data features in an automated fashion from existing data features

Multiplicative Interactions

- You have variables A and B
- \Box New variable C = A * B

Do this for all possible variables

Multiplicative Interactions

- A well-known way to create new features
- Rich history in statistics and statistical analysis

Less Common Variant

$\square A/B$

\square You have to decide what to do when B=0

Function Transformations

- □ X²
- Sqrt(X)
- □ Ln(X)

Automated Threshold Selection

- Turn a numerical variable into a binary
- Try to find the cut-off point that maximizes your dependent variable
 - J48 does something very much like this
 - You can hack this in the Excel Equation solver or do this using code

Which raises the question

Why would you want to do automated feature selection, anyways?

Won't a lot of algorithms do this for you?

A lot of algorithms will

But doing some automated feature generation
 before running a conservative algorithm like Linear
 Regression or Logistic Regression

Can provide an option that is less conservative than just running a conservative algorithm

But which is more conservative than algorithms that look for a broad range of functional forms

Binarizing numerical variables by finding thresholds and running linear regression

Won't find the same models as J48

□ A lot of other differences between the approaches

Another type of automated feature generation

- Automatically distilling features out of raw/incomprehensible data
 - Different than code that just distills well-known data, this approach actually tries to discover what the features should be

Emerging method

Auto-encoders

Uses neural network to find structure in variables in an unsupervised fashion

Just starting to be used in EDM – use by Bosch and Paquette (2018) in automatic generation of features for affect detection

Automated Feature Selection

The process of selecting features prior to running an algorithm

First, a warning

Doing automated feature selection on your whole data set prior to building models

Raises the chance of over-fitting and getting better numbers, even if you use cross-validation when building models

- You can control for this by
 - Holding out a test set
 - Obtaining another test set later

Correlation Filtering

- Throw out variables that are too closely correlated to each other
- □ But which one do you throw out?
- An arbitrary decision, and sometimes the better variables get filtered
 - (cf. Sao Pedro et al., 2012)

Fast Correlation-Based Filtering (Yu & Liu, 2005)

- □ Find the correlation between each pair of features
 - Or other measure of relatedness Yu & Liu use entropy despite the name
 - I like correlation personally
- Sort the features by their correlation to the predicted variable

Fast Correlation-Based Filtering (Yu & Liu, 2005)

- Take the best feature
 - E.g. the feature most correlated to the predicted variable
- Save the best feature
- Throw out all other features that are too highly correlated to that best feature
- Take all other features, and repeat the process

Fast Correlation-Based Filtering (Yu & Liu, 2005)

Gives you a set of variables that are not too highly correlated to each other, but are well correlated to the predicted variable

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Find and Save the Best

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Delete too-correlated variables

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Save the best remaining

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Delete too-correlated variables

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.2	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

No remaining over threshold

	A	B	С	D	E	F	Predicted
А		.6	.5	.4	.3	.2	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

The set of features was the best set that was not too highly-correlated

In-Video Quiz: What Variables will be kept? (Cutoff = 0.65)

	G	Н	1	J	K	L	Predicted
G		.7	.8	.8	.4	.3	.72
Н			.8	.7	.6	.5	.38
Ι				.8	.3	.4	.82
J					.8	.1	.75
Κ						.5	.65
L							.42

A) I, K, L B) I, K C) G, K, L D) G, H, I, J

Removing features that could have second-order effects

- Run your algorithm with each feature alone
 - E.g. if you have 50 features, run your algorithm 50 times
 - With cross-validation turned on
- Throw out all variables that are equal to or worse than chance in a single-feature model
- Reduces the scope for over-fitting
 But also for finding genuine second-order effects

Forward Selection

Another thing you can do is introduce an outer-loop forward selection procedure outside your algorithm

- In other words, try running your algorithm on every variable individually (using cross-validation)
- Take the best model, and keep that variable
- Now try running your algorithm using that variable and, in addition, each other variable
- Take the best model, and keep both variables
- Repeat until no variable can be added that makes the model better

Forward Selection

- This finds the best set of variables rather than finding the goodness of the best model selected out of the whole data set
- Improves performance on the current data set
 i.e. over-fitting
 Can lead to over-estimation of model goodness
- But may lead to better performance on a held-out testset than a model built using all variables
 Since a simpler, more parsimonious model emerges

You may be asking

Shouldn't you let your fancy algorithm pick the variables for you?

 Feature selection methods are a way of making your overall process more conservative
 Valuable when you want to under-fit Automated Feature Generation and Selection

Ways to adjust the degree of conservatism of your overall approach

Can be useful things to try at the margins

Won't turn junk into a beautiful model

Knowledge Engineering