
Automated Feature Generation

Automated Feature Selection

Week 3 Video 4



Automated Feature Generation

 The creation of new data features in an automated 

fashion from existing data features



Multiplicative Interactions

 You have variables A and B

 New variable C = A * B

 Do this for all possible variables



Multiplicative Interactions

 A well-known way to create new features

 Rich history in statistics and statistical analysis



Less Common Variant

 A/B

 You have to decide what to do when B=0



Function Transformations

 X2

 Sqrt(X)

 Ln(X)



Automated Threshold Selection

 Turn a numerical variable into a binary

 Try to find the cut-off point that maximizes your 

dependent variable

 J48 does something very much like this

 You can hack this in the Excel Equation solver or do this 

using code



Which raises the question

 Why would you want to do automated feature 

selection, anyways?

 Won’t a lot of algorithms do this for you?



A lot of algorithms will

 But doing some automated feature generation 

before running a conservative algorithm like Linear 

Regression or Logistic Regression

 Can provide an option that is less conservative than 

just running a conservative algorithm

 But which is more conservative than algorithms that 

look for a broad range of functional forms



Also

 Binarizing numerical variables by finding thresholds 

and running linear regression

 Won’t find the same models as J48

 A lot of other differences between the approaches 



Another type of automated feature 

generation

 Automatically distilling features out of 

raw/incomprehensible data

 Different than code that just distills well-known data, 

this approach actually tries to discover what the 

features should be



Emerging method

 Auto-encoders

 Uses neural network to find structure in variables in 

an unsupervised fashion

 Just starting to be used in EDM – use by Bosch and 

Paquette (2018) in automatic generation of 

features for affect detection 



Automated Feature Selection

 The process of selecting features prior to running an 

algorithm 



First, a warning

 Doing automated feature selection on your whole 

data set prior to building models

 Raises the chance of over-fitting and getting better 

numbers, even if you use cross-validation when 

building models

 You can control for this by 

 Holding out a test set

 Obtaining another test set later



Correlation Filtering

 Throw out variables that are too closely correlated 

to each other

 But which one do you throw out?

 An arbitrary decision, and sometimes the better 

variables get filtered

(cf. Sao Pedro et al., 2012)



Fast Correlation-Based Filtering

(Yu & Liu, 2005)

 Find the correlation between each pair of features

 Or other measure of relatedness – Yu & Liu use entropy 

despite the name

 I like correlation personally

 Sort the features by their correlation to the 

predicted variable



Fast Correlation-Based Filtering

(Yu & Liu, 2005)

 Take the best feature

 E.g. the feature most correlated to the predicted 

variable

 Save the best feature

 Throw out all other features that are too highly 

correlated to that best feature

 Take all other features, and repeat the process



Fast Correlation-Based Filtering

(Yu & Liu, 2005)

 Gives you a set of variables that are not too highly 

correlated to each other, but are well correlated to 

the predicted variable



Example

A B C D E F Predicted

A .6 .5 .4 .3 .7 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



Cutoff = .65

A B C D E F Predicted

A .6 .5 .4 .3 .7 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



Find and Save the Best

A B C D E F Predicted

A .6 .5 .4 .3 .7 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



Delete too-correlated variables

A B C D E F Predicted

A .6 .5 .4 .3 .7 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



Save the best remaining

A B C D E F Predicted

A .6 .5 .4 .3 .7 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



Delete too-correlated variables

A B C D E F Predicted

A .6 .5 .4 .3 .2 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



No remaining over threshold

A B C D E F Predicted

A .6 .5 .4 .3 .2 .65

B .8 .7 .6 .5 .68

C .2 .3 .4 .62

D .8 .1 .54

E .3 .32

F .58



Note

 The set of features was the best set that was not too 

highly-correlated



In-Video Quiz: What Variables will be 

kept? (Cutoff = 0.65)

 What variables emerge from this table?
G H I J K L Predicted

G .7 .8 .8 .4 .3 .72

H .8 .7 .6 .5 .38

I .8 .3 .4 .82

J .8 .1 .75

K .5 .65

L .42

A) I, K, L B) I, K C) G, K, L D) G, H, I, J



Removing features that could have 

second-order effects

 Run your algorithm with each feature alone

 E.g. if you have 50 features, run your algorithm 50 
times

 With cross-validation turned on

 Throw out all variables that are equal to or worse 
than chance in a single-feature model

 Reduces the scope for over-fitting

 But also for finding genuine second-order effects



Forward Selection

 Another thing you can do is introduce an outer-loop 
forward selection procedure outside your algorithm

 In other words, try running your algorithm on every 
variable individually (using cross-validation)

 Take the best model, and keep that variable

 Now try running your algorithm using that variable and, 
in addition, each other variable

 Take the best model, and keep both variables

 Repeat until no variable can be added that makes the 
model better



Forward Selection

 This finds the best set of variables rather than finding 
the goodness of the best model selected out of the 
whole data set

 Improves performance on the current data set

 i.e. over-fitting

 Can lead to over-estimation of model goodness

 But may lead to better performance on a held-out test-
set than a model built using all variables

 Since a simpler, more parsimonious model emerges



You may be asking

 Shouldn’t you let your fancy algorithm pick the 

variables for you?

 Feature selection methods are a way of making 

your overall process more conservative

 Valuable when you want to under-fit



Automated Feature Generation and 

Selection

 Ways to adjust the degree of conservatism of your 

overall approach

 Can be useful things to try at the margins

 Won’t turn junk into a beautiful model



Next Lecture

 Knowledge Engineering


