Week 5 Video 3

Relationship Mining
Association Rule Mining

Association Rule Mining

 Try to automatically find simple if-then rules within the data set

Example

- Famous (and fake) example:
 - People who buy more diapers buy more beer
- If person X buys diapers,
- Person X buys beer
- Conclusion: put expensive beer next to the diapers

Interpretation #1

 Guys are sent to the grocery store to buy diapers, they want to have a drink down at the pub, but they buy beer to get drunk at home instead

Interpretation #2

 There's just no *time* to go to the bathroom during a major drinking bout

Serious Issue

 Association rules imply causality by their ifthen nature

But causality can go either direction

If-conditions can be more complex

 If person X buys diapers, and person X is male, and it is after 7pm, then person Y buys beer

Then-conditions can also be more complex

- If person X buys diapers, and person X is male, and it is after 7pm, then person Y buys beer and tortilla chips and salsa
- Can be harder to use, sometimes eliminated from consideration

Useful for...

- Generating hypotheses to study further
- Finding unexpected connections
 - Is there a surprisingly ineffective instructor or math problem?
 - Are there e-learning resources that tend to be selected together?

Association Rule Mining

- Find rules
- Evaluate rules

Association Rule Mining

- Find rules
- Evaluate rules

Rule Evaluation

What would make a rule "good"?

Rule Evaluation

- Support/Coverage
- Confidence
- "Interestingness"

Support/Coverage

- Number of data points that fit the rule, divided by the total number of data points
- (Variant: just the number of data points that fit the rule)

Example

Rule:
 If a student took
 Advanced Data
 Mining, the student
 took Intro Statistics

Support/coverage?

Took Adv. DM	Took Intro Stat.
1	1
0	1
0	1
0	1
0	1
0	1
1	0
1	0
1	0
1	0
1	1

Example

- Rule:
 If a student took
 Advanced Data
 Mining, the student
 took Intro Statistics
- Support/coverage?
- 2/11 = 0.1818

Took Adv. DM	Took Intro Stat.
1	1
0	1
0	1
0	1
0	1
0	1
1	0
1	0
1	0
1	0
1	1

Confidence

- Number of data points that fit the rule, divided by the number of data points that fit the rule's IF condition
- Equivalent to precision in classification
- Also referred to as accuracy, just to make things confusing
- NOT equivalent to accuracy in classification

Example

Rule:
 If a student took
 Advanced Data
 Mining, the student
 took Intro Statistics

• Confidence?

Took Adv. DM	Took Intro Stat.
1	1
0	1
0	1
0	1
0	1
0	1
1	0
1	0
1	0
1	0
1	1

Example

- Rule:
 If a student took
 Advanced Data
 Mining, the student
 took Intro Statistics
- Confidence?
- 2/6 = 0.33

Took Adv. DM	Took Intro Stat.
1	1
0	1
0	1
0	1
0	1
0	1
1	0
1	0
1	0
1	0
1	1

Important Note

- Implementations of Association Rule Mining sometimes differ based on whether the values for support and confidence (and other metrics)
- Are calculated based on exact cases
- Or some other grouping variable (sometimes called "customer" in specific packages)

For example

 Let's say you are looking at whether boredom follows frustration

If Frustrated at time
 N,
 Then Bored at time

Frustrated Time N	Bored Time N+1
0	0
0	0
0	0
0	0
0	0
0	1
1	1
1	1
1	1
1	0
1	1

For example

If you just calculate it this way,

□ Confidence = 4/5

Frustrated Time N	Bored Time N+1
0	0
0	0
0	0
0	0
0	0
0	1
1	1
1	1
1	1
1	0
1	1

For example

- But if you treat student as your "customer" grouping variable
- Then whole rule applies for A, C
- And IF applies for A, C
- So confidence = 1

Student	Frustrated Time N	Bored Time N+1
Α	0	0
В	0	0
С	0	0
Α	0	0
В	0	0
С	0	1
Α	1	1
С	1	1
С	1	1
Α	1	0
С	1	1

Arbitrary Cut-offs

- The association rule mining community differs from most other methodological communities by acknowledging that cut-offs for support and confidence are arbitrary
- Researchers typically adjust them to find a desirable number of rules to investigate, ordering from best-to-worst...
- Rather than arbitrarily saying that all rules over a certain cut-off are "good"

Other Metrics

- Support and confidence aren't enough
- Why not?

Why not?

- Possible to generate large numbers of trivial associations
 - Students who took a course took its prerequisites (AUTHORS REDACTED, 2009)
 - Students who do poorly on the exams fail the course (AUTHOR REDACTED, 2009)

Interestingness

Interestingness

- Not quite what it sounds like
- Typically defined as measures other than support and confidence
- Rather than an actual measure of the novelty or usefulness of the discovery

Potential Interestingness Measures

Cosine

$$\frac{P(A^{A}B)}{sqrt(P(A)^{*}P(B))}$$

- Measures co-occurrence
- Merceron & Yacef (2008) note that it is easy to interpret (numbers closer to 1 than 0 are better; over 0.65 is desirable)

Potential Interestingness Measures

Lift

$$\frac{\text{Confidence}(A->B)}{P(B)} = \frac{P(A^*B)}{P(A)^*P(B)}$$

- Measures whether data points that have both A and B are more common than would be expected from the base rate of each
- Merceron & Yacef (2008) note that it is easy to interpret (lift over 1 indicates stronger association)

Merceron & Yacef recommendation

 Rules with high cosine or high lift should be considered interesting

Other Interestingness measures

(Tan, Kumar, & Srivastava, 2002)

```
P(A,B)-P(A)P(B)
                                                                                                                                                                   0.8
 1
        \phi-coefficient
                                                             \sqrt{P(A)P(B)(1-P(A))(1-P(B))}
                                                              _{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})
2
         Goodman-Kruskal's (\lambda)
                                                                                          2-\max_{i} P(A_{i})-\max_{k} P(B_{k})
                                                           P(A,B)P(\overline{A},\overline{B})
 3
         Odds ratio (\alpha)
                                                           P(A, \overline{B})P(\overline{A}, B)
                                                          \frac{P(A,B)P(\underline{A,B})}{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}
        Yule's Q
 4
                                                          \sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}
 5
        Yule's Y
                                                           \sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}
                                                           P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})
                                                                       \frac{+P(A,B)-r(A)}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}_{P(A_i,B_j)}
        Kappa (\kappa)
                                                          \frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}
 7
        Mutual Information (M)
                                                          \max \left( P(A,B) \log(\frac{P(B|A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B}|A)}{P(\overline{B})}), \right.
        J-Measure (J)
                                                                   P(A, B) \log(\frac{P(A|B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A}B)}{P(\overline{A})})
                                                         \max \left( P(A)[P(B|A)^2 + P(\overline{B}|A)^2] + P(\overline{A})[P(B|\overline{A})^2 + P(\overline{B}|\overline{A})^2] \right)
         Gini index (G)
                                                                        -P(B)^2 - P(\overline{B})^2
                                                                  P(B)[P(A|B)^2 + P(\overline{A}|B)^2] + P(\overline{B})[P(A|\overline{B})^2 + P(\overline{A}|\overline{B})^2]
                                                                       -P(A)^2 - P(\overline{A})^2
                                                          \max\big(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\big)
12
        Laplace (L)
                                                          \max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)
13
        Conviction (V)
                                                              P(A,B)
14
        Interest (I)
                                                            P(A)P(B)
P(A,B)
        cosine (IS)
15
                                                            \sqrt{P(A)P(B)}
16
        Piatetsky-Shapiro's (PS)
                                                            P(A,B) - P(A)P(B)
                                                                     \frac{P(B|A)-P(B)}{1-P(B)}, \frac{P(A|B)-P(A)}{1-P(A)}
17
         Certainty factor (F)
                                                          \max(P(B|A) - P(B), P(A|B) - P(A))
18
        Added Value (AV)
                                                                                               \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{}
                                                                P(A,B)+P(\overline{AB})
19
        Collective strength (S)
                                                           P(A)P(B)+P(\overline{A})P(\overline{B})
                                                                                                        1-P(A,B)-P(\overline{AB})
                                                                     P(A,B)
20
        Jaccard (\zeta)
                                                           P(A)+P(B)-P(A,B)
21
                                                              \overline{P(A,B)} \max(P(B|A) - P(B), P(A|B) - P(A))
        Klosgen (K)
```

Worth drawing your attention to

Jaccard

$$\frac{P(A^{B})}{P(A)+P(B)-P(A^{B})}$$

 Measures the relative degree to which having A and B together is more likely than having either A or B but not both

Other idea for selection

 Select rules based both on interestingness and based on being different from other rules already selected (e.g., involve different operators)

Alternate approach (Bazaldua et al., 2014)

- Compared "interestingness" measures to human judgments about how interesting the rules were
- They found that Jaccard and Cosine were the best single predictors
- And that Lift had predictive power independent of them
- But they also found that the correlations between [Jaccard and Cosine] and [human ratings of interestingness] were negative
 - □ For Cosine, opposite of prediction in Merceron & Yacef!

Open debate in the field...

Association Rule Mining

- Find rules
- Evaluate rules

The Apriori algorithm (Agrawal et al., 1996)

- Generate frequent itemset
- Generate rules from frequent itemset

Generate Frequent Itemset

- Generate all single items, take those with support over threshold – {i1}
- Generate all pairs of items from items in {i1}, take those with support over threshold – {i2}
- Generate all triplets of items from items in {i2}, take those with support over threshold – {i3}
- And so on...
- Then form joint itemset of all itemsets

Generate Rules From Frequent Itemset

- Given a frequent itemset, take all items with at least two components
- Generate rules from these items
 - E.g. {A,B,C,D} leads to {A,B,C}->D, {A,B,D}->C, {A,B}->{C,D}, etc. etc.
- Eliminate rules with confidence below threshold

Finally

 Rank the resulting rules using your interest measures

Other Algorithms

 Typically differ primarily in terms of style of search for rules

Variant on association rules

Negative association rules (Brin et al., 1997) ☐ What <i>doesn't</i> go together? (especially if probability suggests that two things should go together)
□ People who buy diapers don't buy car wax, even though 30-year old males buy both?
People who take advanced data mining don't take hierarchical linear models, even though everyone who takes either has advanced math?
☐ Students who game the system don't go off-task?

Next lecture

Sequential Pattern Mining