Week 7 Video 6

Knowledge Inference: Q-Matrix

What is the Q-Matrix?

(Has nothing to do with Keanu Reeves)

What is the Q-Matrix?

- A table
- Where rows are items
- And columns are skills
- (Tatsuoka, 1983; Barnes, 2005)
- Also called a KC [knowledge component]
 Model
- Or a skill-item mapping

What is the Q-Matrix? (Tatsuoka, 1983; Barnes, 2005)

	Skill1	Skill2	Skill3	Skill4
Item1	1	0	0	0
Item2	1	1	0	0
Item3	1	0	1	0
Item4	0	0	0	1
Item5	0	0	1	1
Item6	0	1	0	0

Example

	Add	Subtract	Multiply	Divide
7 + 3 + 2	1	0	0	0
7 + 3 - 2	1	1	0	0
(7+3) * 2	1	0	1	0
7/3/2	0	0	0	1
7 * 3 / 2	0	0	1	1
7 - 3 - 2	0	1	0	0

How do we get a skill-item mapping?

- Automatic model discovery
- Hand-development and refinement
- Hybrid approaches

How do we get a skill-item mapping?

- Automatic model discovery
- Hand-development and refinement
- Hybrid approaches

Automated Model Discovery

 Learn the mapping between items and skills solely from data

One popular algorithm

 Barnes, T., D. Bitzer, & M. Vouk. (2005).
 Experimental analysis of the q-matrix method in knowledge discovery. *Proceedings of the* 15th International Symposium on Methodologies for Intelligent Systems.

Not the only approach

- Recent interest in non-negative matrix factorization
- Lots of linear algebra
- Desmarais, M.C. (2011) Conditions for effectively deriving a Q-Matrix from data with Non-negative Matrix Factorization.
 Proceedings of the 4th International Conference on Educational Data Mining, 41-50.

First question

How many skills should we use?

- This is determined empirically
 - 1. Try 1 skill
 - 2. Try 1more skill than previous model (e.g. 2,3,4,5 ...)
 - 3. Does the new model do better than the previous model?

If so, go to step 2.

If not, quit and use the previous model.

After that: Follow pseudocode

```
Set MinError = LargeNumber;
For Starts= 1 to NumStarts
   Randomly initialize Q[NumCon][NumQues];
   Set Q^* = Q; Set CurrError = Error(Q);
   For Iter = 1 to NumIter;
     For c = 1 to NumCon
       For q = 1 to NumQues
         Q^{*}[c][q] = Q[c][q] + Delta;
         If (Error(Q*) < CurrError)
           Do
            Set Q=Q^*; Set CurrError = Error(Q^*);
            Q^{*}[c][q] = Q[c][q] + Delta;
           While (Error(Q*) < CurrError);
         Else
          Q^{*}[c][q] = Q[c][q] - Delta;
           While (Error(Q*) < CurrError)
              Set Q=Q^*; Set CurrError = Error(Q^*);
              Q^{*}[c][q] = Q[c][q] - Delta;
    If (CurrError < MinError)
     Set BestQ = Q; Set MinError = CurrError;
```

Any questions?

Let's Break That Down

- For each number of skills, the algorithm will be run a certain number of times, with a different (random) initial assignment of items to skills
- This avoids local minima

First Random Version

	Skill 1	Skill 2	Skill 3	Skill 4
7 + 3 + 2	0	0	0	0
7 + 3 - 2	1	1	0	1
(7+3)*2	1	1	0	0
7/3/2	0	1	0	1
7 * 3 / 2	1	0	1	1
7 - 3 - 2	0	1	0	1

Second Random Version

	Skill 1	Skill 2	Skill 3	Skill 4
7 + 3 + 2	1	1	1	0
7 + 3 - 2	1	1	1	1
(7+3) * 2	0	0	0	1
7/3/2	0	1	0	1
7 * 3 / 2	1	1	1	1
7 - 3 - 2	1	0	1	0

Next...

- Take a set of passes through the table
- Systematically look at whether flipping each 1 to 0 (and each 0 to 1)
- Produces a better model
- Continue this process a predetermined number of times, or until a pass results in no changes

How do we know if it's a better model?

Several definitions

Barnes et al.'s definition

- Better models have the property that if a student knows skill X
- And item 1 and item 2 both have skill X
- Then a student who gets item 1 right will be more likely to get item 2 right
 - \Box And item 1 wrong \rightarrow item 2 wrong
 - \Box And item 2 right \rightarrow item 1 right
 - □ And item 2 wrong \rightarrow item 1 wrong

Barnes et al.'s definition

- Given a skill-item mapping, you can predict, for each combination of skills whether a student should get each item correct or not
- A model's degree of error is based on how many item-student pairs the prediction gets wrong

Subtlety

- Is skill conjunctive? (as in Barnes)
 - You need all relevant skills to get an item right
- Or is it compensatory? (Pardos et al., 2008)
 Any relevant skill leads to getting an item right

Assumption

 The exact approach in Barnes et al. assumes no learning

Alternate Test of Model Goodness

- Look at student improvement over time
- Fit a model like PFA or BKT from Week 4, and see how well it fits data, given the skill-item mapping
- More on this in a sec

How do we get a Q-Matrix?

- Automatic model discovery
- Hand-development and refinement
- Hybrid approaches

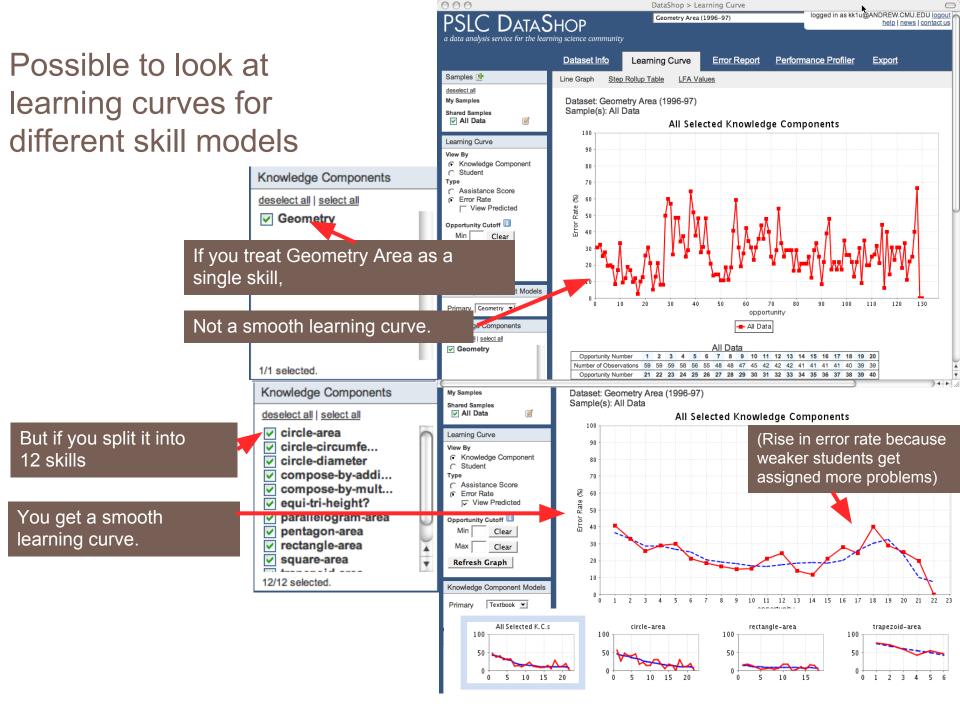
Hand Development and Refinement

- The original way that Q-Matrices were created
- A domain expert creates the Q-Matrix using knowledge engineering

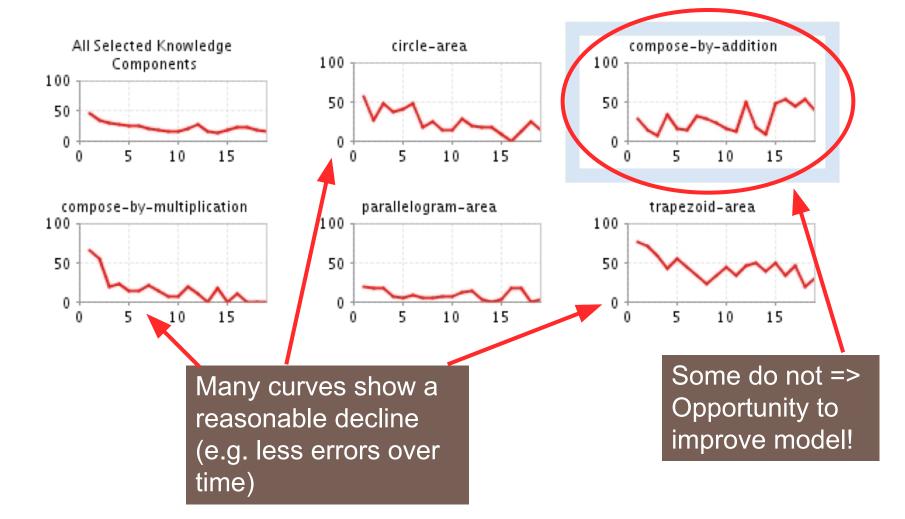
Hand Development and Refinement

What kind of data can we use to guide refinement?

 Some slides adapted from a talk in my clas by John Stamper



Strategies for Q-Matrix Refinement


- Try to smooth learning curves
- Look for skills with no apparent learning
- Look for problems with unexpected error rates

Tool for doing this

- Pittsburgh Science of Learning Center DataShop
- https://pslcdatashop.web.cmu.edu/

You can inspect curves for individual skills

Also look for problems with unexpected error rates

Shared Samples All Data 1 <u>,</u> PSLC testdata01 1 Stu3110 Ø Stu3110 a ٨ Performance Profiler KC Models ¥ Primary Textbook New Secondary DecomposeArith ¥ *🎤* 🖻 Knowledge Components select all I deselect all circle-area circle-circumfe... circle-diameter ✓ compose-by-addi... compose-by-mult ... equi-tri-height? parallelogram-area pentagon-area trapezoid-area triangle-area 1/10 selected. ٨ Students 59/59 selected. Θ Problems 40/40 selected.

1. (SIDEWALK-AREA QUESTION3) 2. (PAINTED-AREA QUESTION3) PAINTED-AREA QUESTION2 4. (SIDEWALK-AREA QUESTION2) 5. (SCRAP-METAL-AREA QUESTI 6. (SCRAP-METAL-AREA QUESTI ... SCRAP-METAL-AREA QUESTI... 8. (UNWATERED-AREA QUESTION1) ₽9. (SCRAP-METAL-AREA QUESTI... €10. GIDEWALK-AREA OUESTION1) 211. (SCRAP-METAL-AREA QUEST ... 12. (UNSHADED-AREA QUESTION1) 13. (SHADED-AREA QUESTION1) 14. (UNWATERED-LAWN-AREA QU... 15. (PAINTED-AREA QUESTION1) SCRAP-METAL-AREA QUEST... 17. (CIRCLE-RADIUS_AB QUEST... 18. (SHADED-AREA QUESTION1) 19. (SHADED-AREA QUESTION1) 20. (CIRCLE-AREA_A QUESTION1)

Step

Error Rate (%) 0 10 20 30 40 50 60 70 80 90 100 Bars (shaded from the left) represent the actual error rate Lines show the predicted error rate for KC models The original KC model (square points) A new KC model (round points) in which compose-by-addition is split into 3 KCs. The predictions of these three KCs produce better fits (with some exceptions) for the steps with high (decompose KC), medium (reduced compose-by-addition KC), and low (subtract KC) error rates.

🔲 Incorrects 🔲 Hints 🔲 Corrects 🛥 Predicted Error Rate 🔶 Secondary Predicted

DataShop can apply model for you!

- Applies a mathematical model called LFA (similar to PFA) to data
- Can give AIC and BIC goodness measures for different skill-item mappings

Decompose created by system on 2008-11-21 12:48:05.0	15 KCs	export
mapping type: correct-transaction-to-kc	status: ready to use	
LFA values — AIC: 14697.59 BIC: 15237.72 14875 observations labeled with KCs		
show model details		
Textbook	13 KCs	export
reated by system on 2008-11-21 12:48:05.0		
napping type: correct-transaction-to-kc	status: ready to use	
FA values — AIC: 14865.38 BIC: 15375.07		
14875 observations labeled with KCs		
show model details		

snow model details

Next Up

 Knowledge Structure Inference: Hybrid Approaches and Models with Prerequisites and Hierarchy