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Abstract: Evidence Centered Game Design (ECgD) is an increasingly popular model 

used for stealth game assessments employing education data mining 
techniques for the measurement of learning within serious (and other) games 
(GlassLab, 2014). There is a constant tension in ECgD between how pre-
defined the learning outcomes and measures need to be, and how much 
important, but unanticipated, learning can be detected in gameplay. The EdGE 
research team is employing an emergent approach to developing a game-based 
assessment mechanic that starts empirically from what the players do in a 
well-crafted game and detects patterns that may be indicate implicit 
understanding of salient phenomena. Implicit knowledge is foundational to 
explicit knowledge (Polanyi, 1966) yet is largely ignored in education because 
of the difficulty measuring knowledge that a learner has not yet formalized. 
This chapter describes our approach to measuring implicit science learning in 
the game, Impulse, designed to foster an implicit understanding of Newtonian 
mechanics using a combination of video analysis, game log analyses, and 
comparisons with pre-post assessment results. This research demonstrates that 
it is possible to reliably detect strategies that demonstrate an implicit 
understanding of fundamental physics using data mining techniques on user-
generated data. 
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1. INTRODUCTION 

Games have long been recognized as natural assessments (Gee, 2003, 2007).  
However, it was the call for games as stealth assessments (Shute, Ventura, 
Bauer, Zapata-Rivera, 2009) that encouraged game-based learning 
researchers to think more about switching from using formal pre-post 
assessments to using assessments embedded within and/or consisting solely 
of gameplay data. In this move to stealth assessments, most instantiations 
use an Evidence-Centered Game Design (ECgD) model (Shute et al., 2009; 
GlassLab, 2014; Plass et al., 2014; Halverson, Wills & Owens, 2012) where 
explicit learning outcomes and measures are designed and developed as part 
of the game design process.  The EdGE research team builds upon the ECgD 
framing with an emergent approach to detect implicit learning from complex 
patterns within data generated from a game whose mechanics are grounded 
in science. Grounded in videos of learners playing the game, EdGE studies 
where students’ strategic game behavior is consistent with an implicit 
understanding of the science content and validates the use of those strategies 
against an external measure of implicit science learning (Asbell-Clarke & 
Rowe, 2014; Asbell-Clarke, Rowe & Sylvan, 2013).  Implicit science 
learning is expressed in brief instances of play but unfolds and changes over 
course of play. This chapter outlines the theoretical lenses with which we 
view game-based science learning and describes the methods we use to 
measure that learning. 

2. IMPLICIT SCIENCE LEARNING IN GAMES 

Implicit knowledge (also called tacit knowledge) has a variety of forms or 
definitions. Polanyi (1966), a philosopher and scientist, argued that tacit 
knowledge is foundational to all explicit knowledge. Within tacit knowledge, 
Collins (2010) distinguishes between somatic tacit knowledge of primal 
tasks such as walking and talking; collective tacit knowledge in a community 
such as language and humor; and tacit relational knowledge, the tacit 
knowledge that with effort can become related to explicit, or formalized, 
knowledge. Tacit relational knowledge is likely of most direct consequence 
to formal education.  
 
The ways in which implicit knowledge can impact learning and teaching is 
not completely new to education. Vygotsky (1978) described preparedness 
for learning as the abilities and understandings a learner brings to a learning 
situation that can be scaffolded by a teacher, environment, and tools. Late in 
the last century much literature in US science education turned attention to 
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implicit learning in the form of misconceptions that may get in the way of a 
learner’s conceptual development (e.g. McCloskey, 1983a, 1983b; Minstrell, 
1982). diSessa (1993) notes the robustness of physics misconceptions with 
over half of respondents agreeing with several common misconceptions 
about basic physics, such as Newton’s Laws of Motion. diSessa also 
distinguishes between the intuitive knowledge that novices hold — that a 
book will not fall through a table or that a glowing filament is hot —from an 
expert understanding of these phenomena. For novices these understandings 
guide behavior, but are not necessarily expressible in formalisms or 
questioned in a deeper sense. Experts, however, not only think about a 
phenomenon in a more nuanced sense but also may seek consistency across 
phenomena to be able to abstract their experiences towards more general 
principles about the world (diSessa, 1993). 
 
Implicit knowledge is, by definition, largely unexpressed by the learner 
making it particularly challenging to measure. Games may provide an 
innovative assessment solution as a growing body of research shows how 
games may engage learners in cognitive processes that are not necessarily 
perceived by learner or recognized in external learning assessments (Gee, 
2013; NRC, 2011; Thomas & Brown, 2011; GlassLab, 2014).  
 
The unique affordances that games offer for the measurement of implicit 
science learning include (a) the ability to engage learners by encouraging 
them to dwell in scientific phenomena over repeated trials towards success 
(with appropriate scaffolding and feedback) and (b) the wealth of 
information that can be recorded during game play to provide evidence of 
their implicit learning. These features open opportunities to reveal tacit 
learning previously invisible to educators. 

3. STEALTH ASSESSMENTS 

In the past decade, researchers have begun assessing learning occurring in 
interactive environments such as games (Shute & Ventura, 2013; Fisch et al., 
2010; Halverson, Wills & Owens, 2012). A common way researchers have 
assessed learning in games is through pre-post tests or tasks before and after 
a specified period of gameplay. In contrast, stealth assessments measure 
learning using tasks embedded within the gameplay itself to “support 
learning, maintain flow, and remove (or seriously reduce) test anxiety, while 
not sacrificing validity and reliability” (Shute et al., 2010, p. 10).  To satisfy 
validity and reliability requirements, researchers often use an Evidence-
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Centered Design (ECD) framework that seeks to establish a logically 
coherent, evidence-based argument between the domain being assessed and 
assessment task design and interpretation (Mislevy & Haertel, 2006).  
 
GlassLab (2014) describes how their team applied the ECD framework to 
the assessment of learning in SimCityEDU, creating an Evidence Centered 
Game Design (ECgD) approach that carefully defines how game and 
assessment design must work in concert to produce an evidentiary model for 
learning with an explicit framework for characterizing that evidence. Other 
researchers have developed stealth assessments guided by the ECgD 
framework using educational data mining techniques to discern evidence of 
learning from the vast amount of click data generated by online science 
games and virtual environments such as Progenitor X (Halverson, Wills & 
Owens, 2012), EcoMUVE (Baker & Clarke-Midura, 2013), Newton’s 
Playground (Shute, Ventura & Kim, 2013), and Surge (Clark, Nelson, 
Chang, D’Angelo, Slack, & Martinez-Garza, 2011).   
 
Within ECgD, measures of learning must be considered and designed along 
with the game mechanics. Plass and his colleagues (2014) argue that game 
mechanics, learning mechanics, and assessment mechanics must be designed 
in symbiosis with each other. For example, game mechanics to launch 
projectiles or maneuver objects through gravitational fields may have as 
their learning mechanics the development of specific understanding of forces 
and motion. The assessment mechanics in this case are the game behaviors 
(and often achievements) that correspond to the consistent use of strategies 
to grapple successfully with the forces and motion created by the 
gravitational effects.  
 
However, there is a constant tension in ECgD to make sure gameplay is 
designed to support and measure meaningful learning, while also remaining 
open to important learning that may occur during gameplay but that 
designers may have not considered from the start. This is especially 
important in game spaces with hundreds or, in some cases, thousands of play 
patterns where the player can be successful. There can also be a tension 
between the most enjoyable game mechanics, and the most effective learning 
and assessment mechanics. 
 
EdGE seeks to remain as open as possible to emergent evidence of implicit 
learning in games while still pursuing the logical coherence of the ECgD 
framework. We do this through a more open-ended, bottom-up iterative 
design process that optimizes game design for learner engagement (i.e. 
would they choose to play this game in their free time?) and allows the 
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assessment mechanisms to emerge from observations of gameplay rather 
than place any constraints on the game design. The remainder of this chapter 
describes the EdGE research team’s attempt to push game assessment 
mechanic development towards that more emergent end of the spectrum 
while maintaining validity and reliability.  We describe this process in the 
context of the game, Impulse, which has been played or downloaded by over 
10,000 players online and through the iOS and Android app stores. 

4. IMPULSE 

EdGE designed Impulse to foster and measure implicit learning about 
Newton’s First and Second Laws of motion by placing a simple game 
mechanic (get your particle to the goal without crashing into other particles). 
Impulse immerses players in an n-body simulation of gravitationally 
interacting particle in which they must predict the Newtonian motion of the 
particles to successfully avoid collisions and reach the goal (see Figure 1).  
For a better understanding of this work, readers are encouraged to play 
Impulse at edgeatterc.com/edge/games/impulse/.  
 

Figure 1: A screenshot from Impulse. The player is the green particle and is going 
towards the cyan goal in the bottom-left corner. 
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The motions of all particles in the game obey Newton’s laws of motion and 
gravitation, including accurate gravitational interactions and elastic 
collisions among ambient particles with varying mass. Players use an 
impulse (triggered by their click or touch) to apply a force to particles. If the 
player’s particle collides with any ambient particle, the level is over and they 
must start again. Each level of the game gets more complex, requiring 
players to grapple with the increasing gravitational forces of an increasing 
number of particles and also particles of different mass (and thus inertia).  
For each level, they must accomplish this goal with 20 impulses. Each 
impulse depleted the energy available to the player in the game (measured 
by the green bar in the upper right corner of Figure 1).  Once they exceed 20 
impulses, the player no longer has energy left to apply any force to the 
particles. 
 
Newton’s First Law states that an object in constant motion will stay in 
constant motion unless acted upon by an external force. This is 
counterintuitive for many learners because we rarely encounter a frictionless 
environment in real life (McColskey, 1983). Newton’s Second Law states 
that the acceleration an object experiences from a force depends on the mass 
of the object. The game mechanic increases n, the number of particles, to 
increase the complexity and difficulty of each level and also uses particles of 
different mass to provide opportunities for players to grapple with 
phenomena governed by Newton’s First and Second Laws. The learning 
mechanic is designed assuming that as players dwell in increasingly complex 
situations in the game, they may build strategies that help build tacit 
knowledge that is foundational for explicit learning of the behaviors 
governed by these laws.  
 
The assessment mechanic is designed to measure players’ behaviors that 
may indicate they are gaining an implicit understanding of Newtonian 
motion. We look for patterns of play in the game data logs reflect behaviors 
that players demonstrate that are consistent with implicit understanding. For 
example, players may let a ball “float” with added force, and then use an 
opposing force to stop the balls motion—both consistent with an 
understanding of Newton’s first law of motion. Even more directly, a player 
might consistently use more force to accelerate a heavier object than a 
lighter one – demonstrating an implicit understanding of Newton’s second 
law. 
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5. ASSESSING IMPLICIT SCIENCE LEARNING 

The EdGE research team is taking three steps to build assessment mechanics 
of Newton’s First and Second Law for Impulse. First, we coded videos in 
terms of specific strategic moves, noting which strategic moves are 
consistent with an understanding of Newton’s first and second laws (i.e., the 
phenomena in which they are dwelling).  Second, we mined the game log 
data for evidence consistent with an implicit understanding of those laws.  
Finally, we will be validating those play patterns against learner performance 
on a pre-post assessment of those concepts. These steps vary slightly for 
each of Newton’s Laws. While evidence for Newton’s First Law can be 
found in a player’s single actions (clicks), evidence for Newton’s Second 
Law relies on the relationship between sequences of actions (i.e., how many 
times they click on particles of different masses within a short time).  
 
We hypothesize that advancing to higher levels in Impulse depends upon, 
fosters, and demonstrates an implicit understanding of Newton’s laws.  
While navigating among particles that are colliding and are attracted or 
repelled by each other, players need to “study” the particles’ behavior. They 
must predict the motion of the particles so that they can avoid them as they 
travel to the goal. Specifically, we expect players to increase their 
understanding that each particle will keep moving on its path without an 
impulse or force from another particle (Newton’s First Law) and that 
different mass particles react differently to the same force (Newton’s Second 
Law).  

5.1 Video Coding as Ground Truth 

Two researchers, one the game designer with a physics background and the 
other with expertise in the learning sciences and limited background in 
physics, began developing the coding system using video recordings from 
two play test sessions, one with 10 high school students from urban and 
suburban schools in the northeastern U.S., and another with 6 Physics 
graduate students in from a small university in Canada. These samples 
represent players with novice and near-expert understandings of Newton’s 
Laws of Motion.  
 
Players’ interactions with Impulse were recorded with Silverback software 
(ClearLeft, 2014) capturing both players’ onscreen game activities and video 
of their faces and conversations. Students were asked to ‘think aloud” while 
playing. Typically students played in groups, one student per computer, 
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prompting conversation about gameplay and phenomena they observed.  
Silverback solves many synchronization problems others have experienced 
using multiple video cameras to record screen activity, facial expressions, 
and conversations.  
 
Data from a larger number of learners were needed to build detectors based 
on this coding system. These data were collected over six hour-long 
workshops conducted in March-June 2013 with 69 high school students (29 
female) from urban and suburban schools in the Northeastern United States. 
A third coder with no physics background was trained using the coding 
system and coded randomly selected three-minute segments from all 69 
videos. Segments were randomly chosen above Level 20 whenever possible 
to ensure players had already mastered the game mechanic and had 
encountered particles of different masses. Twenty-nine of the players (42%) 
did not reach level 20 and had time segments earlier in the game. Two 
additional coders and one of the designers of the coding system double 
coded the segments from 10 videos for inter-rater reliability checking.  
 
The final version of this coding system presented here was developed 
through repeated coding of hundreds of clicks with different play styles. 
These codes are not mutually exclusive (i.e., it is possible for one click to be 
both a ‘Float’ and a ‘Move Toward Goal’).  Each click was coded with at 
least one of these codes. Table 1 includes definitions of the codes with inter-
rater (human-human) Kappas exceeding 0.70 and the implicit understanding 
of Newton’s First Law we claim they reflect. 

 
Table 1. Video Codes, Definitions, and Kappas for Newton’s First Law (NFL). 

 
Intended Strategy 
Code label 

Game-based move Implicit 
Understanding 

Kappa 

Float The learner did not act upon 
the player particle for more 
than 1 second 

Player particle will 
move in a straight 
path if no force is 
applied (NFL) 

0.759 

Move Toward Goal The learner intended to apply 
force to direct the player 
particle toward the goal 

Control movement 
of player particle by 
applying force  

0.809 

Stop/slow down The learner intended to use 
opposing force on player 
particle in the path of the 
player particle to stop/slow it 
down 

Slow particle down 
by using an opposing 
force (NFL) 

0.720 
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Keep player path 
clear 

The learner intended to apply 
force to non-player particles to 
keep them out of the path of 
the player particle 

Player particle will 
move in a straight 
path if no force is 
applied (NFL) 

0.819 

Keep goal clear The learner intended to apply 
a force to non-player particles 
to keep the goal clear by 
removing the non-player 
particle 

Control movement 
of non-player 
particles by applying 
force 

0.832 

Buffer The learner intended to apply 
a force between the player and 
other particles to avoid 
collision 

Control movement 
of player and non-
player particles by 
applying force 

0.772 

Source: Rowe, Baker, Asbell-Clarke, Kasman, & Hawkins (2014). 
 
When coding we distinguished between intended and actual game moves—
what the player wanted to accomplish with each click versus what actually 
happened. Player intentions are judged based not only on their screen 
actions, but also audio commentary and mouse over behaviors. Often players 
hold their mouse over spots, ready to click if needed, providing visible clues 
of their intended path or strategy. While not directly visible in the 
clickstream data, these behaviors are observable in video and aid 
interpretation. For actual moves, we coded whether or not intended and 
actual moves matched and, if not, which of five unanticipated outcomes 
occurred. These unanticipated outcomes include (1) no effect on the target 
particle; (2) rapid acceleration of the target particle (i.e. click was too close 
to the particle and made it accelerate more rapidly than expected); (3) moved 
the player particle closer to another particle (i.e. causing a potential 
collision), (4) moved the player particle away from the goal (in the absence 
of reason to do so); and (5) the target particle did not move as expected with 
no negative consequences as is the case with the other outcomes. The 
reliability of this code depends on the reliability of the intended codes.  If 
they did not agree on the intended strategy, it is likely they would not agree 
whether the actual move was as intended or not. Therefore, it was not 
surprising that the coding of unanticipated outcomes (Kappa=0.35) was 
much less reliable than the coding of intended moves (see Table 1).  
 
Players clearing a particle from their path towards the goal may show 
evidence of their implicit understanding of Newton’s First Law in that are 
predicting that the particle will stay at constant motion in the absence of a 
force (and thus will collide) so they impart the force to move it away. Even 
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more compelling evidence of an implicit understanding of Newton’s First 
Law is when the player directly opposes straight-line motion with their 
impulse (Stop/Slow Down), explicitly providing the force needed to stop 
their particles’ motion. When a player uses a Float strategy, particularly 
when accompanied by a mouseover trailing along with the particle, their 
behavior is consistent with an implicit understanding that an external force is 
not needed to keep the particle moving at a constant speed (Newton’s First 
Law).  
 
For evidence of an implicit understanding of Newton’s Second Law, we 
coded information about the target of the click and whether or not the target 
of the current click was the same as the previous click (see Table 2). 
Together these codes were used to determine if the player treated the 
different mass balls differently, more specifically if they consistently used 
more force (clicks) to move the heavier particles than the lighter ones. 
 

Table 2. Video codes, definitions, and Kappas used for measuring Newton’s Second Law. 
 

Code Definition Kappa 
Target Type of particle (player, other, both) 

the learner intended to move 
0.920 

Same as Last Target The learner intended to move the 
same target as the last action 

0.869 

Source: Rowe, Baker, Asbell-Clarke, Kasman, & Hawkins (2014). 
 
There were four different colored particles besides the player with each color 
signifying a different mass (in order from least to most massive): blue, red, 
white, dark grey. The color of the target was recorded alongside the target. 
The blue, red, and white balls also increased in size (consistent with the 
same density of ball) but the grey ball was most massive and smallest in size. 
This was to ensure that mass was being differentiated in players’ behaviors 
rather than size. From these codes, the number of consecutive clicks for each 
color target was calculated. 

5.2 Game Log Analyses 

As the learner plays Impulse, the game logs every game event as well as the 
location of every object in the game space. Recorded game events include 
level starts/ends, pausing and resuming the game, clicks (impulses) in the 
game space, collisions between particles, collisions between the particles and 
the walls of the game space, and collisions of the player with the goal. The 
game state is recorded along with the event. The final outcome of each game 
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level is also recorded:  Advance with energy remaining, Advance without 
energy remaining, Collision with energy remaining, Collision without 
energy remaining, Restart, and Quit.  Players have a limited amount of 
energy (20 clicks) to at each level of the game, so if they ‘Advance without 
energy remaining’ it means they floated into the goal after they ran out of 
energy. 
 
From this raw game log, we have distilled a set of 60+ features in five major 
categories: (1) Location/Vector Movement of Player Particle; (2) Timing and 
Location of Impulses; (3) Number and Location of Other Particles; (4) 
Overall Game Characteristics, and (5) Game Outcome. The feature 
distillation process explicitly selected features thought by domain experts to 
be semantically relevant to the strategies observed by the human coders (Sao 
Pedro et al., 2012). Table 3 gives a non-exhaustive list of examples: 
 

Table 3:  Distilled feature categories, examples, and rationale 

Category 
Distilled Feature 
Examples  Rationale 

Player Particle 

1 Distance between Player 
and Goal 

Players use different strategic moves when 
close to the goal than when farther away 

2 Current speed of player 
particle 

When the player is moving faster they need to 
use different strategic moves than when slow 

3 Distance travelled since 
last event 

This provides an indication of how much the 
game state has changed 

4 Change in angle between 
player’s path and a 
straight-line path to goal 

Strategic moves vary depending on whether or 
not player has a straight-line clear path to the 
goal 

Impulses 

1 Proximity of impulse to 
player particle 

Identifies the likely intended target (player 
particle or other) of the impulse. 

2 Time since last impulse Very quick actions may indicate panicking or 
intentional increased force; very slow actions 
may indicate floating strategies 
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3 Distance from impulse to 
three closest other particles 
and their color 

Identifies the likely intended target (player 
particle or other) of the impulse and identifies 
if players click more near certain color 
particles. 

Other Particles 

1 Number of other particles 
in play space 

Describes the potential complexity of the play 
space 

2 Number of particles in 
path between player and 
goal 

Describes difficulty of immediate task of 
getting to goal 

3 Number of particles in 
current path of player 
particle 

Describes immediate danger of collision 

Overall Game Characteristics 

1 Total time spent playing 
this level across multiple 
rounds 

Describes difficulty of the level 

2 Total number of times 
playing this level  

Describes players experience with the level  

Source:  Asbell-Clarke, Rowe, Sylvan, Baker (2013). 
 
The distilled features were added to the original backend data. Using the 
synchronized timestamps, these features are then aggregated at the click 
level to map to the labels provided by the video coder (Sao Pedro et al., 
2013). 

5.2.1 Building Detectors of Strategic Moves: Evidence for Newton’s 
First Law 

With the distilled data and the human-coded data, we followed a standard 
process for developing a model that could replicate the human judgments 
using the distilled log files. In other words, the goal of these analyses was to 
develop software that could look at the logs of student interaction with the 
software, and come to the same judgments as a human being. 
 
Specifically, we developed classifiers that could infer the human-coded data 
(1 for the presence of a specific category, 0 when it was absent), in 
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RapidMiner 5.3. A separate classifier was developed for each human-coded 
construct (strategic move), six classifiers in total.   
 
Four algorithms were tried for the first three classifiers developed:  
• W-J48—a “decision tree” algorithm which makes a set of yes/no 

decisions based on the data to make an eventual decision with a known 
confidence; based on the first decision, the second decision will be 
different (Quinlan, 1993) 

• W-JRip—a “decision rules” algorithm which makes a set of yes/no 
decisions based on the data to make an eventual decision with a known 
confidence; the order of decisions is always the same regardless of 
previous decisions  

• Logistic Regression—regression conducted using a logistic function in 
order to predict a binary variable rather than the quantitative variable 
predicted in linear regression  

• Step Regression—regression conducted using a step function rather than 
a logistic function or a linear function using the standard software 
RapidMiner 5.3 with the Weka Extension Package. Step regression is 
not to be confused with stepwise regression.  

 
These algorithms were selected based on their success in past problems 
where researchers attempted to classify student behavior within online 
learning environments for science inquiry (cf. Baker & Clarke-Midura, 
2013; Sao Pedro et al., 2012, 2013; Baker et al., 2014), as well as in other 
domains. W-J48 worked best for the first three constructs, and so W-J48 was 
the only algorithm attempted for the remaining three. W-J48 is a decision 
tree algorithm with several virtues: it produces relatively interpretable 
models, is fast to create and use (facilitating both validation and use in a 
running system), and tends to be conservative (reducing the risk of over-
fitting, where a model is fit to the noise in the data as well as the signal). 
 
The models were validated in the following fashion. For each construct, the 
algorithm was validated using 4-fold student-level cross-validation. The 
students were randomly distributed into four groups. The algorithm was run, 
training a model on data from three of the groups. Then the model was 
applied to the data from the students in the fourth group, and tested to see 
how well the model functioned on this unseen group. It is important to use 
student-level cross-validation to avoid training and testing a model on the 
same student; if a student’s behavior is idiosyncratic, then the model may 
become over-fit to that student and less able to function effectively for other 
students. Student-level cross-validation penalizes models that over-fit to the 
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specific student. Within student-level cross-validation, the number of folds 
may lie between 2 and the number of students. This type of cross-validation 
is thought to be asymptotically equivalent to the Bayesian Information 
Criterion (Moore, 2003); while the choice of number of folds remains 
arbitrary, four is a common number of folds that leads to models repeatedly 
being built on 75% of students and tested on the remaining 25%.  
 
In this study, two goodness (performance) metrics were used to determine 
how effective each detector was: Cohen’s Kappa (Cohen 1960) and A' 
(Hanley and MacNeil 1982). Each of these metrics was applied at the level 
of the three-minute segments coded from the video data.  
 
Cohen’s Kappa assesses the degree to which the detector is better than 
chance at identifying which segments involve a specific code. For example, 
a Kappa of 0.865 would indicate that a detector is 86.5% better than chance 
for a specific code. A Kappa of 0 indicates that the detector performs at 
chance, and a Kappa of 1 indicates that the detector performs perfectly.  
 
A' is the probability that the detector will correctly identify whether a 
specific code is present or absent in a specific clip, taking model confidence 
into account when comparing clips to each other. A' is equivalent to W, the 
Wilcoxon statistic, and closely approximates the area under the Receiver-
Operating Curve (Hanley & MacNeil 1982). A model with an A' of 0.5 
performs at chance, and a model with an A' of 1.0 performs perfectly. For 
example, an A' of 0.967 indicates that a detector of “keep player path clear” 
can distinguish a student demonstrating that strategy within a 3-minute 
segment from a player not demonstrating that strategy, 96.7% of the time.  
 
These two metrics have different virtues. Cohen’s Kappa assesses the quality 
of a model’s final decisions (and is therefore a better assessment of how well 
the model will perform when used to drive interventions in the most 
common fashion, assigning interventions when confidence is over 50%), 
while A' assesses a model’s confidence in its decisions (and is therefore a 
better assessment of how well the model will perform when used in 
discovery with models analyses, which typically take percent confidence 
into account).  
 
There are no specific cut-off values for the use of these metrics in 
educational data mining, as acceptable performance tends to depend on the 
usage and the expectations in the current domain; medical tests are published 
and used with A' values of 0.75-0.80 or higher; affect detectors are published 
as of this writing with Kappa values as low as 0.15 and A' values as low as 
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0.65 (Sabourin, Mott, & Lester, 2011; Pardos, Baker, San Pedro, Gowda,  
2013). Kappa values above 0.5 and A' above 0.8 tend to represent state-of-
the-art performance in most educational domains as of this writing.  
 

Table 4:  Kappas and A’ for each Intended Strategic Move 
 

Intended Strategic Move Kappa A' 

Float 0.738 0.901 

Move Toward Goal 0.757 0.907 

Stop/Slow Down 0.512 0.779 

Keep Player Path Clear 0.865 0.967 

Keep Goal Clear 0.772 0.943 

Buffer 0.759 0.928 

Source: Rowe, Baker, Asbell-Clarke, Kasman & Hawkins (2014). 
 
Table 4 shows the performance of the specific models created in this chapter. 
Hence, we have developed models that can judge a learner’s strategic moves 
relevant to Newton’s First Law, successfully drawing many of the same 
conclusions a human being can (for six codes). These models were assessed 
based on their ability to agree with a human rater on entirely new, unseen 
data, and achieve comparable reliability. They met this test, achieving 
reliability similar to the human coders (and much better than most automated 
detectors of this type in the published literature).  
 
The ability to detect these strategic moves reliably in the game data logs 
means we can now compare the learning of those players who use these 
moves consistently to those who don’t. We hypothesize that players who use 
these moves consistently will be better prepared to learn Newton’s first law 
of motion in class having developed this implicit foundational knowledge. 

5.2.2 Mining sequences of clicks: Evidence of Newton’s Second Law 

To seek evidence of implicit knowledge of Newton’s Second Law of motion 
(F=ma), we analyzed sequences of fast clicks. In specific, we looked at the 
length of sequences where players clicked near each color particle to move 
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it. Each color of particle has different mass and size, represented by the 
different colors. By looking at how frequently the players click near the 
same particle in a short amount of time, we can see if they recognize that 
more massive particles require a greater degree of force to be moved the 
same distance – or if they confuse mass and size. 
 
We examined this for a range of operationalizations of a “short time”, e.g. 
fast clicking, treating the cut-off as being 1 second, 2 seconds, up to 10 
seconds. The overall pattern of results was very similar across time lengths; 
within this chapter, we will just show values for 4 seconds, a time threshold 
long enough to include all students repeatedly clicking to move the same 
particle, but brief enough for students to avoid cases where the student is 
clicking on the same particle for different reasons. So, for each particle 
color, we looked for cases where a student clicked to move the same particle 
(as coded by the human coder) in under 4 seconds after the previous action. 
Then we look for how many times this happened in sequence (which would 
be 1 if the player clicked to move a particle once in under four seconds after 
the previous action and then did something else; 2 if the player clicked to 
move the same particle twice in under four seconds after the previous action 
and then did something else, and so on).  
 
Within this analysis, we compared the sequence length for different particle 
colors, across all sequences. A between-subjects comparison was used, as 
different students played different levels and therefore received different 
particles (and some students did not click near all the particles they saw). 
This discards some within-subjects information leading to a conservative 
assumption (leading to less statistical power to find significant results). We 
compared each color particle to each other color particle, using a two-sample 
t-test. Then we applied the Benjamini and Hochberg (1995) post-hoc 
correction to control for having run six statistical tests. Benjamini and 
Hochberg is a “false discovery rate” post-hoc method that controls for the 
number of tests run while avoiding the over-conservatism that characterizes 
family-wise error rate methods such as the Bonferroni correction.  
 
The Benjamini and Hochberg correction requires a smaller p value, for 
significance, varying by test (within this method, some tests in a set end up 
requiring a lower p value than others for significance). Three of the six 
differences between sequence length are statistically significant according to 
this test: grey versus red (t(40)=5.25, p<0.001, α = 0.008), grey versus blue 
(t(31)=3.76, p<0.001, α = 0.017), white versus red (t(57)= 2.98, p=0.004, α = 
0.025). A fourth was marginally significant, white versus blue (t(48)= 2.07, 
p=0.04, α = 0.03). The remaining two tests were not significant, white versus 
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grey (t(37)=1.65, p=0.11, α = 0.042), and blue versus red (t(51)=0.49, 
p=0.63, α = 0.05). This pattern of results is more clearly shown in Figure 2. 
 

Figure 2. The average sequence length for the student quickly clicking each color particle. 
Standard error bars shown. 
 
These findings show that players are markedly differentiating the particles in 
terms of their mass, which is consistent with an implicit understanding of 
Newton’s second law of motion. In the game, the mass of the balls is near 
equal for the red and blue balls, and for the white and grey balls. Players 
behavior in the game are consistent with their differentiating these masses, 
they treat the red and blue ball similarly, but click more (impart more force) 
to accelerate the white and grey balls. Furthermore, the grey ball has a 
smaller radius of any of the other balls (as if it were made of a much more 
dense material) yet players still distinguish the mass from size as the factor 
causing the acceleration, demonstrating possible evidence of implicit 
understanding that the two particles have different relative density. 
 
A second potential test of this is how far players click from the various 
particle colors, as closer clicks create a greater force on the object. We can 
compute this by looking at the distance the player was away from the 
particle when he or she clicked, with that particle as a target, and then 
computing a two-sample t-test with Benjamini and Hochberg adjustment 
(e.g. the same test as conducted immediately above) to compare between 
particles colors. In this case, we find that three of the six statistical tests are 
significant: red versus white, (t(89)=5.17, p<0.001, α = 0.008), grey versus 
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white (t(49)=4.95, p<0.001, α = 0.017), and blue versus white (t(33)= 4.82, 
p<0.001, α = 0.025). In other words, players always clicked further away 
from the white particle than the other particles. The remaining three tests 
were not significant: grey versus red (t(68)= 1.36, p=0.18, α = 0.03), blue 
versus red (t(86)=0.69, p=0.49, α = 0.042), and blue versus grey (t(46)=0.65, 
p=0.52, α = 0.05). Therefore, there were no differences in click distance 
from the other particles. Note that the degrees of freedom are higher for 
these tests than for the previous set of tests; more students clicked near a 
particle of a certain color at least once, than clicked near that particle in 
under four seconds. The pattern of results for particle distance is more 
clearly shown in Figure 3. 
 

Figure 3. The average distance (pixels) away that the student clicked each color particle. 
Standard error bars shown. 
 
Players treat most of the particles the same with regard to distance of the 
impulse, but the white particle appears to be an exception. This may likely 
be due to the larger radius of the white particle (it appears much larger than 
the other particles on the screen). This finding may be explained by the fact 
that the balls were in motion so players’ accuracy in distance may have been 
compromised. The finding further highlights players’ ability to distinguish 
that it is the mass of the ball, rather than the size, that is important in the 
relationship between force and acceleration. 
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6. DISCUSSION OF THIS APPROACH FOR 

SERIOUS GAME ANALYTICS 

The results from this research provide a model set of methods to use game 
data logs to detect strategies that may be linked to foundational implicit 
knowledge that has previously gone unmeasured. We feel this emergent 
approach to developing a game-based assessment mechanic is particularly 
well suited to open-ended game spaces with large numbers of play patterns 
that could serve as evidence of implicit understanding. Table 5 provides a 
summary of how our method connects explicit learning outcomes to implicit 
game-based knowledge. 
 

Table 5: Connecting explicit and implicit science knowledge 
 
Explicit Learning 
Outcome  

Implicit Game-
based Knowledge 

Cognitive Strategy Game-based 
Strategic Move 

Newton’s First Law Each particle will 
keep moving on its 
path without an 
impulse or force 
from another particle 

Slow particle down 
by using an opposing 
force 

Consistently click in 
the path of a particle, 
close enough to stop 
or slow it down 

Newton’s Second 
Law 

The different mass 
particles react 
differently to the 
same force 

Impart more force to 
move heavier 
particles than lighter 
particles 

Consistently click 
more frequently next 
to heavier particles 
than lighter particles 

 
We have shown that we can reliably detect a series of strategic moves in 
Impulse data that players were observed using in their quests to get their 
particle to the goal while grappling with Newtonian mechanics. The use of 
float, stop, and clear path strategies may indicate players’ implicit 
understanding that the particle with stay in constant motion in the absence of 
an external force (Newton’s First Law).  
 
Even more striking to these authors is players’ differentiation between 
masses of the particles in Impulse. The notable difference between clicks 
near light and heavy particles is a strong indicator of possible implicit 
understanding of Newton’s Second Law. Players use more force to 
accelerate the heavier particles – even when they are smaller in diameter.  
 
Having built and validated these detectors, we are now applying these 
detectors to a larger sample of gameplay data from 388 students as part of a 
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national implementation study of 39 classrooms (Rowe, Asbell-Clarke, 
Bardar, Kasman & MacEachern, 2014).  
 
This user-generated data and distilled features will be inputted into 
RapidMiner, along with the previously generated W-J48 decision trees. The 
trees will be applied to the data, producing a prediction for every click of the 
probability that each of the relevant strategic moves in Table 3 were used. 
Every learner action in this game will be annotated with the probability that 
the learner was using each of the strategic moves. 
 
We then plan to apply sequential pattern mining (Srikant & Agrawal, 1996) 
to the data set created by the application of the detector to all students’ log 
data. The annotated logs will show us sequences of student strategic moves 
over time; sequential pattern mining will allow us to find out whether there 
are specific combinations of strategic moves that emerge over time and how 
those sequences are connected to broader learning of the physics concepts 
present in Impulse. Similar strategies have been used to infer whether 
students form strategies over time in Betty’s Brain, a learning-by-teaching 
environment (Kinnebrew & Biswas, 2012).  
 
Our ability to detect common strategies in the game data logs that are related 
to learning outcomes is a foundational step in research on implicit learning. 
Ultimately we are using these data along with many different instruments to 
measure engagement, attention, and non-cognitive factors that may be 
influencing the entire learning experience. In such, we are developing new 
models of learning in which data reveal learning that was previously 
invisible. 
 

REFERENCES 

Asbell-Clarke, J., Rowe, E., Sylvan, E., & Baker, R. (2013, June). Working through Impulse: 
Assessment of Emergent Learning in a Physics Game. Paper presented at the 9th annual 
meeting of the Games+Learning+Society (GLS) conference, Madison, WI. 

Asbell-Clarke, J., Rowe, E., & Sylvan, E. (2013, April). Assessment Design for Emergent 
Game-Based Learning Paper presented at the ACM SIGCHI Conference on Human 
Factors in Computing Systems (CHI’13). Paris, France. 

Asbell-Clarke, J & Rowe, E. (2014). Scientific Inquiry in Digital Games.  In F. Blumberg 
(Ed.) Learning by Playing:  Video Games in Education. New York: Oxford University 
Press. 

Baker, R. S., & Clarke-Midura, J. (2013). Predicting successful inquiry learning in a virtual 
performance assessment for science. In User Modeling, Adaptation, and Personalization 
(pp. 203-214). Springer Berlin Heidelberg. 



# - will be assigned by editors. Serious Games Analytics to Measure 
Implicit Science Learning 

21 

 
Baker, R. S., Ocumpaugh, J., Gowda, S.M., Kamarainen, A., Metcalf, S.J. (2014) Extending 

Log-Based Affect Detection to a Multi-User Virtual Environment for Science. To appear 
in Proceedings of the 22nd Conference on User Modelling, Adaptation, and 
Personalization, 290-300. 

Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B 
(Methodological), 289-300. 

Clark, D. B., Nelson, B., Chang, H., D’Angelo, C. M., Slack, K. & Martinez-Garza, M., 
(2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: 
Comparison of learning and affective outcomes for students in Taiwan and the United 
States. Computers and Education, 57(3), 2178-2195. 

Clearleft Ltd. (2013) Silverback (Version 2.0) [Software]. Available from 
http://silverbackapp.com.  

Cohen, J. (1960). "A coefficient of agreement for nominal scales". Educational and 
Psychological Measurement 20 (1): 37–46. doi:10.1177/001316446002000104 

Collins, H. (2010). Tacit and explicit knowledge: University of Chicago Press. 
diSessa, Andrea A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 

10(2/3), 105-225. doi: 10.2307/3233725 
Fisch, S.M., Lesh, R., Motoki, E., Crespo, S., & Melfi, V. (2011). Children’s mathematical 

reasoning in online games: Can data mining reveal strategic thinking? Child Development 
Perspectives. 5(2), 88-92. 

Gee, J. P. (2003). What Video Games Have to Teach Us about Learning and Literacy. New 
York: Palgrave/Macmillan. 1st ed.  

Gee, J. P. (2007). What Video Games Have to Teach Us about Learning and Literacy. New 
York: Palgrave/Macmillan. 2nd ed. 

GlassLab (2014). Psychometric Considerations In Game-Based Assessment. Institute of Play. 
Downloaded 7/1/14 from: http://www.instituteofplay.org/work/projects/glasslab-research/  

Halverson, R., Wills, N. & Owen, E (2012). CyberSTEM: Game-Based Learning Telemetry 
Model for Assessment. Presentation at 8th  Annual GLS, Madison, WI, USA. 

Hanley, J. A.; McNeil, B. J. (1982). The Meaning and Use of the Area under a Receiver 
Operating Characteristic (ROC) Curve. Radiology 143 (1): 29–36. PMID 7063747. 

Hestenes, D., Wells, M., & Swackhamer, Gr. (1992). Force concept inventory. THE 
PHYSICS TEACHER, 30, 141.  

Kinnebrew, J. S. and Biswas, G. (2012). Identifying Learning Behaviors by Contextualizing 
Differential Sequence Mining with Action Features and Performance Evolution. 
Proceedings of the International Conference on Educational Data Mining, 57-64. 

McCloskey, M. (1983). Intuitive Physics. Scientific American, 248(4), 122-130.  
Minstrell, J. (1982). Explaining the “at rest” condition of an object. The physics teacher, 

20(1), 10-14. 
Mislevy, R. & Haertel, G. (2006). Implications of Evidence-Centered Design for Educational 

Testing. Educational Measurement: Issues and Practice, 25(4), 6-20. 
Moore, A.W. (2003) Cross-validation for detecting and preventing overfitting. Statistical Data 

Mining Tutorials. 
National Research Council (2011). Learning Science Through Computer Games and 

Simulations. M.A. Honey and M. L. Hilton (Eds.), Washington, DC: National Academies 
Press.  

Pardos, Z.A., Baker, R.S.J.d., San Pedro, M.O.C.Z., & Gowda, S.M., (2013) Affective states 
and state tests: Investigating how affect throughout the school year predicts end of year 



22 Chapter # - will be assigned by editors 
 

learning outcomes. Proceedings of the 3rd International Conference on Learning Analytics 
and Knowledge, 117-124. 

Plass, J., Homer, B.D., Kinzer, C.K., Chang, Y.K., Frye, J., Kaczetow, W., Isbister, K., Perlin, 
K. (2013). Metrics in Simulations and Games for Learning. In M. Seif El-Nasr, Drachen, 
A., & Canossa, A. (Eds.), Game Analytics: Maximizing the Value of Player Data (pp. 694-
730). London: Springer-Verlag. 

Polanyi, M. (1966). The Tacit Dimension. University of Chicago Press. Chicago, IL. USA. 
Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. San Francisco, CA: Morgan 

Kaufmann 
Rowe, E., Asbell-Clarke, J., Bardar, E., Kasman, E., & MacEachern, B. (2014, June). 

Crossing the Bridge:  Connecting Game-Based Implicit Science Learning to the 
Classroom.  Paper presented at the 10th annual meeting of Games+Learning+Society in 
Madison, WI. 

Rowe, E., Baker, R., & Asbell-Clarke, J., Kasman, E., & Hawkins, W. (2014, July).  Building 
automated detectors of gameplay strategies to measure implicit science learning.  Poster 
presented at the 7th annual Meeting of the International Educational Data Mining society, 
July 4-8, London. 

Sabourin, J., Mott, B., and Lester, J. (2011). Modeling Learner Affect with Theoretically 
Grounded Dynamic Bayesian Networks. Proceedings of the 4th International Conference 
on Affective Computing and Intelligent Interaction, pp. 286- 295. 

Sao Pedro, M., Baker, R.S.J.d., Gobert, J. (2012) Improving Construct Validity Yields Better 
Models of Systematic Inquiry, Even with Less Information. Proceedings of the 20th 
International Conference on User Modeling, Adaptation and Personalization (UMAP 
2012), 249-260. 

Sao Pedro, M.A., Baker, R.S.J.d., Gobert, J., Montalvo, O. Nakama, A. (2013). Leveraging 
Machine-Learned Detectors of Systematic Inquiry Behavior to Estimate and Predict 
Transfer of Inquiry Skill. User Modeling and User-Adapted Interaction, 23 (1), 1-39.  

Shute, V. J., Masduki, I., Donmez, O.... Wang, C-Y. (2010). Assessing key competencies 
within game environments. In D. Ifenthaler, P. Pirnay-Dummer, N. M. Seel (Eds.), 
Computer-based diagnostics and systematic analysis of knowledge (281-309). New York, 
NY: Springer-Verlag. 

Shute, V. & Ventura, M. (2013). Stealth assessment: Measuring and supporting learning in 
video games. MIT Press. 

Shute, V., Ventura, M. & Kim, J. (2013). Assessment and Learning of Qualitative Physics in 
Newton's Playground. The Journal of Educational Research, 106 (6.), 423-
430, doi:10.1080/00220671.2013.832970   

Shute, V., Ventura, M., Bauer, M., and Zapata-Rivera, D., (2009).  Melding the power of 
serious games and embedded assessment to monitor and foster learning? Flow and Grow.   
Serious Games: Mechanisms and Effects, 1 (1), 1-33. 

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and 
performance improvements (pp. 1-17). Springer Berlin Heidelberg. 

Thomas, D. and Brown, J. S. (2011). A New Culture of Learning: Cultivating the Imagination 
for a World of Constant Change. Lexington, KY: CreateSpace. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes 
Cambridge, Mass.: Harvard University Press. 



# - will be assigned by editors. Serious Games Analytics to Measure 
Implicit Science Learning 

23 

 
ACKNOWLEDGEMENTS 

We are grateful for NSF/EHR/DRK12 grant #1119144 and our research 
group, EdGE at TERC, which includes Erin Bardar, Teon Edwards, Jamie 
Larsen, Barbara MacEachern, Emily Kasman, and Katie McGrath. Our 
evaluators, the New Knowledge Organization, assisted with establishing the 
reliability of the coding.  

AUTHOR INFORMATION 

Elizabeth Rowe 
EdGE at TERC 
2067 Massachusetts Avenue 
Cambridge MA 02140 
Phone: 617-873-9704 
Email address: elizabeth_rowe@terc.edu 
Website: edge.terc.edu 
 
Dr. Elizabeth Rowe is the Director of Research for the Educational Gaming 
Environments (EdGE) group at TERC, responsible for data collection, 
analysis and interpretation for all EdGE projects.  In her 14 years at TERC, 
Dr. Rowe has studied and developed innovative uses of technology in and 
out of school including several NSF-funded projects such as Kids’ Survey 
Network, InspireData software for K-12 students, and the Learning Science 
Online study of 40 online science courses for teachers. Dr. Rowe has led 
formative and summative evaluations of several technology professional 
development programs. Prior to joining TERC, Dr. Rowe was a research 
analyst at the American Institutes for Research where she analyzed national 
survey data for the National Center for Education Statistics. She holds a 
bachelor’s degree in mathematics and a Ph.D. in human development and 
family studies.   
 
Jodi Asbell-Clarke 
EdGE at TERC 
2067 Massachusetts Avenue 
Cambridge MA 02140 
Phone: 1-617-873-9716 
Email address:  jodi_asbell-clarke@terc.edu 
Website: http://edge.terc.edu 
 
Dr. Jodi Asbell-Clarke is the director of the Educational Gaming 
Environments Group (EdGE) at TERC in Cambridge, MA, USA. TERC is a 



24 Chapter # - will be assigned by editors 
 
not-for-profit research and development organization that has been focusing 
on innovative, technology-based math and science education for nearly 50 
years. As the director of EdGE, Jodi leads a team of game designers, 
educators, and researchers who are designing and studying social digital 
games as learning environments that span home, school, and community. 
Jodi’s background includes MA in Math, an MSc in Astrophysics and a PhD 
in Education. She started her career at IBM working on the first 25 missions 
of the space shuttle as an onboard software verification analyst. After 
teaching at the laboratory school at University of Illinois, she joined TERC 
and has spent the past 20+ years developing science education programs and 
researching new ways to promote science learning. In 2009, she co-founded 
EdGE at TERC.  
 
Ryan S. Baker 
Teachers College 
Columbia University 
525 W. 120th St.  
New York NY 10027 Box 118 
Phone: (212) 678-8329 
Email: baker2@exchange.tc.columbia.edu 
Website: http://www.columbia.edu/~rsb2162/ 
 
Ryan Baker is Associate Professor of Cognitive Studies at Teachers College, 
Columbia University. He earned his Ph.D. in Human-Computer Interaction 
from Carnegie Mellon University. Dr. Baker served as the first technical 
director of the Pittsburgh Science of Learning Center DataShop, the largest 
public repository for data on the interaction between learners and 
educational software. He is currently serving as the founding president of the 
International Educational Data Mining Society, and as associate editor of the 
Journal of Educational Data Mining. His research combines educational data 
mining and quantitative field observation methods to better understand how 
students respond to educational software, and how these responses impact 
their learning. He studies these issues within intelligent tutors, simulations, 
multi-user virtual environments, and educational games. 


