
Comparison of Three Programming Error Measures
for Explaining Variability in CS1 Grades

Valdemar Švábenský
valdemar.research@gmail.com
University of Pennsylvania

Philadelphia, PA, USA

Maciej Pankiewicz
maciej_pankiewicz@sggw.edu.pl
Warsaw University of Life Sciences

Warsaw, Poland

Jiayi Zhang
joycez@upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Elizabeth B. Cloude
elizabeth.cloude@tuni.fi
Tampere University
Tampere, Finland

Ryan S. Baker
ryanshaunbaker@gmail.com
University of Pennsylvania

Philadelphia, PA, USA

Eric Fouh
efouh@cis.upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

ABSTRACT
Programming courses can be challenging for first year university
students, especially for those without prior coding experience. Stu-
dents initially struggle with code syntax, but as more advanced
topics are introduced across a semester, the difficulty in learning to
program shifts to learning computational thinking (e.g., debugging
strategies). This study examined the relationships between students’
rate of programming errors and their grades on two exams. Using
an online integrated development environment, data were collected
from 280 students in a Java programming course. The course had
two parts. The first focused on introductory procedural program-
ming and culminated with exam 1, while the second part covered
more complex topics and object-oriented programming and ended
with exam 2. To measure students’ programming abilities, 51095
code snapshots were collected from students while they completed
assignments that were autograded based on unit tests. Compiler
and runtime errors were extracted from the snapshots, and three
measures – Error Count, Error Quotient and Repeated Error Density
– were explored to identify the best measure explaining variability
in exam grades. Models utilizing Error Quotient outperformed the
models using the other two measures, in terms of the explained
variability in grades and Bayesian Information Criterion. Compiler
errors were significant predictors of exam 1 grades but not exam 2
grades; only runtime errors significantly predicted exam 2 grades.
The findings indicate that leveraging Error Quotient with multi-
ple error types (compiler and runtime) may be a better measure
of students’ introductory programming abilities, though still not
explaining most of the observed variability.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
programming education, introductory programming, introduction
to programming, novice programming, computer science education

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024), July
8–10, 2024, Milan, Italy, https://doi.org/10.1145/3649217.3653563.

ACM Reference Format:
Valdemar Švábenský, Maciej Pankiewicz, Jiayi Zhang, Elizabeth B. Cloude,
Ryan S. Baker, and Eric Fouh. 2024. Comparison of Three Programming
Error Measures for Explaining Variability in CS1 Grades. In Proceedings
of the 2024 Innovation and Technology in Computer Science Education V.
1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3649217.3653563

1 INTRODUCTION
A key component of computing education is acquiring knowledge,
skills, and abilities (KSAs) related to programming. However, intro-
ductory programming courses are notoriously difficult to master
for many undergraduates [22], and students’ deficiencies in KSAs
manifest in various struggles and errors they make while solving
programming assignments.

In programming courses, students typically use an integrated
development environment (IDE) to complete practical assignments,
which are evaluated by an automated assessment tool. Data from
the IDE and the automated assessment can be used by educators and
researchers to determine students’ KSAs and guide instruction [12].

1.1 Outcome-based vs. Behavioral Measures
To quantify students’ KSAs, researchers often use static outcome-
based measures and summative assessments, such as scores and
grades [25, 29, 30]. However, these data capture only the final sub-
mitted form of the assignment, which a student may have iteratively
refined to make it optimal using the results of the automated assess-
ment. Therefore, relying only on outcome-based data to determine
KSAs misses information on the process and students’ approach to
solving the programming assignment, such as differences in terms
of time or debugging sessions prior to submitting the final product.

Another method for understanding KSAs in programming in-
volves instrumenting the IDE to collect process-level data on stu-
dents’ learning behaviors during coding [2, 6, 11]. The resulting
behavioral measures, such as the number of recurring errors that
students made while completing an assignment, may be better for
measuring KSAs. These measures express how a student attempted
to solve an assignment or debug an error based on changes made to
their code. Specifically, error measures capture process-level infor-
mation on the changes (or lack thereof) in the correctness of code.
Behaviors related to programming errors also indicate students’

ar
X

iv
:2

40
4.

05
98

8v
1

 [
cs

.P
L

]
 9

 A
pr

 2
02

4

https://orcid.org/0000-0001-8546-280X
https://orcid.org/0000-0002-6945-0523
https://orcid.org/0000-0002-7334-4256
https://orcid.org/0000-0002-7599-6768
https://orcid.org/0000-0002-3051-3232
https://orcid.org/0000-0003-3869-9112
https://doi.org/10.1145/3649217.3653563
https://doi.org/10.1145/3649217.3653563

ITiCSE 2024, July 8–10, 2024, Milan, Italy Valdemar Švábenský, Maciej Pankiewicz, Jiayi Zhang, Elizabeth B. Cloude, Ryan S. Baker, and Eric Fouh

ability to identify and debug an error effectively, which significantly
impacts one’s success in solving a programming problem [12].

1.2 Goals and Scope of This Paper
Our literature review (see Section 2) showed that it is unclear which
programming error measure is the best at capturing student KSAs.
Therefore, this study aims to build statistical models that use be-
havioral error measures to explain variability in outcome-based
measures. We examine relationships between students’ (a) rate of
compiler and runtime errors across multiple programming assign-
ments that vary in difficulty and (b) performance on two exams
that capture programming knowledge relevant to the assignments.

We define and compare the rate of the errors using three different
measures: Error Count, Jadud’s Error Quotient, and Repeated Error
Density. Our study is guided by the following research questions:

• Which of the three error measures best explains variability in
outcome-based measures (course exam grades)?

• Do the results change when using only data about students’
compiler errors vs. when adding data about runtime errors?

2 REVIEW OF RELATED LITERATURE
This section starts with an overview of studies that analyze pro-
gramming errors to determine student performance (Section 2.1).
Next, Section 2.2 provides definitions and usage of specific error
measures. Section 2.3 summarizes the novelty of this paper.

2.1 Programming Errors and Performance
Relationships between students’ programming errors and their per-
formance are an area of substantial interest for computing educators
and researchers (e.g., [5, 13, 26]). In a classic work, Pea [19] argued
that programming errors result from misconceptions about topics
held by programmers. Ko and Myers [17] offered a more formal
framework for understanding errors, arguing that errors do not
always result from cognitive failures on the part of the programmer,
but may stem from a variety of external factors, such as problems
with the IDE or work interruptions.

Other researchers focused on relationships between performance
and error debugging. Denny et al. [10] conducted a study to explore
the time it took students to debug common syntax errors. Their
results showed that the higher-performing students do not debug
common errors more quickly than low performers. Instead, certain
types of common syntax errors required a significant amount of
time for all students to debug. Similar findings were reported by
Rodrigo et al. [24] in a different teaching context.

2.2 Error Measures in Programming Education
This section defines two programming error measures1 and reviews
their applications in previous research.

2.2.1 Jadud’s Error Quotient (EQ). The EQ is one of the most stud-
ied measures of programming errors. It uses compilation log data
to quantify the degree of repeated compiler errors in consecutive
1We use the term error measures to be consistent with the cited literature. However,
since they capture only errors reported in the IDE (which are a result of student error),
a more accurate term might perhaps be error message measures. Since some types of
student errors are not recognized by these measures, they are effectively an (imperfect)
proxy for student errors.

compilation events [14]. The EQ value is a decimal number between
0 and 1, indicating students’ struggle to solve the programming
problem. A value of 0 suggests that a student had only successful
or a mix of successful and unsuccessful compilations. The value in-
creases for each pair of successive compilation events that ended in
a compiler error; additional penalty is applied if the error type was
the same in both of those events. A maximum value of 1 suggests
the student consistently encountered the same type of error.

Jadud [14] indicated that a higher EQ is negatively associated
with learning outcomes. The results revealed a significant, but weak
negative relationship between a student’s EQ and their average
grade on programming assignments (𝑅2 = 0.11). Similarly, EQ ex-
plained only 25% of the variability in final course grades, suggesting
other factors may be playing a role in capturing this information.

To further explore relationships between EQ and grades, Ro-
drigo et al. [24] conducted a mixed-methods study of differences in
the effectiveness of debugging compilation errors between high-,
average-, or low-performing students on a midterm exam. The EQ
was used to define how effective students identified and debugged
the errors. The qualitative analysis showed that high-performing
students on the midterm perceived they had an easier time debug-
ging compilation errors, compared to the average and low perform-
ers. However, the quantitative analysis revealed no differences in
EQ scores between the groups. This result indicated that all the
students struggled equally to debug the errors, regardless of their
midterm grades and perceived abilities. Therefore, while some stu-
dents perform better on exams, it may not reflect their actual ability
to effectively debug the compilation errors in their programs.

These results might be explained by the fact that EQ accounts
only for the frequency of errors that students make, but omits other
aspects such as whether the error reoccurs over time or the error
severity. Thus, some types of errors may have minimal impact on a
student’s performance in programming but could occur frequently,
whereas less frequent errors could have a more detrimental impact
on a students’ knowledge and performance in programming.

In addition, empirical findings suggest that the EQ may vary by
different groups, contexts, and environments. Jadud and Dorn [15]
presented evidence of this property in a large-scale study of 27698
programmers. The EQ score was calculated for each student, and
those who differed by country had significantly different EQ scores.

Finally, EQ cannot fully represent variability in different error
sequences. Consider the following hypothetical scenario with two
learners, A and B. Learner A encounters two successive compila-
tions with the same error, yielding an EQ value of 1. Conversely,
Learner B, who encounters the same error in three consecutive
compilations, also has an EQ of 1. Furthermore, consider a third
student, C, who undergoes two distinct series of two consecutive
compilations with repeated errors. Yet again, the EQ remains at 1.

2.2.2 Repeated Error Density (RED). The RED is a more gener-
alizable measure formulated to capture some of the information
omitted by the EQ [3]. The RED captures differences between stu-
dents’ errors at a more granular level. Specifically, it sums up a
score calculated on each repeated error encountered in a sequence
of consecutive compilation events. This way, RED accounts for not
only the number of repeated errors, but also the number of series
in which those repeated errors emerge and the lengths at which

Comparison of Three Programming Error Measures for Explaining Variability in CS1 Grades ITiCSE 2024, July 8–10, 2024, Milan, Italy

these errors continue to occur until fixed. As a result, Becker [3]
argues that compared to EQ, RED is less influenced by the context.
However, like EQ, RED does not consider the type of error that
students made, which can vary in terms of severity.

RED’s minimum value is 0 if the programming session was with-
out a pair of errors in consecutive compilations. The maximum
value of this measure is not constrained. A higher value denotes a
higher level of struggle with the same error in successive compila-
tions snapshots. Applying the RED measure to the scenario above,
the values for students A, B, and C are 0.5, 3.2, and 1, respectively.

Becker [3] also compared EQ and RED using two data sets of
compiler logs of novice Java programmers. Students were randomly
assigned to one of two conditions: intervention, whose IDE pro-
vided enhanced error messages, whereas students in the control
condition received normal error messages from the IDE. Students
in the intervention group had significantly fewer errors overall at
the group level, and similarly to the EQ, the RED scores were lower
at the student level, providing evidence about validity of RED.

2.2.3 Summary. While EQ is valuable for assessing programming
errors, it cannot differentiate error sequences andmight be sensitive
to context. RED addresses some of these limitations by offering a
more granular analysis of error sequences, but its properties were
not studied as extensively as in the case of EQ.

More research is needed to evaluate the relationships between
EQ/RED scores and student performance, specifically, assessing the
degree to which EQ/RED can explain variability in performance
outcomes. This is crucial for achieving a better understanding of
the strengths and limitations of each measure in capturing relevant
information about students’ debugging processes and programming
KSAs. This understanding, in turn, can serve to inform instructional
strategies, curriculum development, and improve the effectiveness
of programming education.

2.3 Our Research Contributions
The review of related work shows that different error measures
work better in different contexts. The empirical results were mixed
across the different studies, as to how each score related to perfor-
mance. Therefore, this study brings the following contributions to
computing education research:

• We compared three error measures (EQ, RED, and a base-
line Error Count measure) to determine which best predicts
grades. Previous work mostly used only one measure; com-
parative studies of multiple measures are rare [3, 21, 27].

• We extended prior work by including measures of both com-
piler and runtime errors. Previous work employed mostly
measures of compiler errors. Runtime errors were not used
much [6, 7], but may indicate deeper insights about students’
problem-solving abilities since compiler errors typically stem
from syntax errors that are relatively simple to fix.

• We replicated the findings of previous research on error
measures in a different teaching context.

3 RESEARCH METHODS
Figure 1 represents the study design. Novice programming students
(𝑛 = 280) completed 8 homework assignments (6 of which were
used in the study, see Section 3.1) and 2 exams in an introductory

2 exams

Error Count

280 students

6 homework
assignments

Compiler
error data

Runtime
error data

Jadud's Error
Quotient

Repeated Error
Density

EC(c)

EC(r)

EQ(c)

EQ(r)

RED(c)

RED(r)

Features 1

Features 3

Features 5

Features 2

Features 4

Features 6

explain

Exam 1
grades

Exam 2
grades

Figure 1: High-level overview of the design of this study.

programming course. Data on compiler and runtime errors were col-
lected from the IDE during solving the homework assignments, and
3 error measures were calculated to quantify the degree of student
error. Next, we examined relationships between error measures
and exam grades to determine which error measure was the best
predictor of performance outcomes in the course. The following
sections provide details on the individual aspects of the study.

3.1 Course Design and Content
The students who participated in this study were enrolled in the
CS1 course at University of Pennsylvania (a large, highly selective
U.S. university) during Fall 2020. The course was taught in Java and
spanned a standard 14-week semester, which ran partially online
due to the COVID-19 restrictions at that time.

3.1.1 Taught Topics. The first part of the course covered procedural
programming and introductory concepts, such as variables and data
types, conditionals and loops, functions, arrays, and recursion. The
second part of the course focused on object-oriented programming,
unit testing, and abstract data types.

3.1.2 Programming Assignments. Throughout the semester, stu-
dents had to complete eight programming homework (HW) assign-
ments. All assignment grades were aggregated equally to account
for a total of 60% of the final course grade. The assignments were
labeled from 1 to 8, and six of them (3–8) were considered in this
study. HW 1 could not be anonymized since students were asked
to include identifiable information in their program and it involved
the graphical user interface; and HW 2 was not autograded; so
these two were excluded from the analysis.

For each analyzed assignment, students had an unlimited number
of submissions. With each submission, they received immediate
feedback based on the results of unit tests, which reported the name
of the test and a pass/fail outcome. The unit tests were created by
the teaching staff, and students did not see the unit test definitions.

3.1.3 Exams. Students also had to complete 2 timed exams (22%
of the grade). The first exam was administered towards the middle
of the term after HW 4. The second exam (non-cumulative final)

ITiCSE 2024, July 8–10, 2024, Milan, Italy Valdemar Švábenský, Maciej Pankiewicz, Jiayi Zhang, Elizabeth B. Cloude, Ryan S. Baker, and Eric Fouh

took place near the end of the term after all HW assignments were
completed. Exam 1 focused only on the introductory programming
topics covered in HW 1–4. Exam 2 focused more acutely on the
topics in HW 5–8 but also built on KSAs from HW 1–4. In this
paper, we used data about student errors in the autograded HW
3–8 to explain their grades from exams 1 and 2.

3.1.4 Other Parts of the Grading Scheme. The remaining 18% of the
grade was based on attendance, code reviews, and online quizzes.
These datawere not used in this paper since our goal was tomeasure
learning outcomes (expressed by grades) using predictor variables
based on programming assignments.

3.1.5 Tools Used in the Course. Students completed programming
assignments in Codio [8], an online IDE. Codio also housed the
course’s lecture notes, which served as a textbook. Programming as-
signments were submitted to Gradescope [28], an online automatic
grading platform that also delivered the reading quizzes.

3.2 Student Population and Research Ethics
During the Fall 2020 semester, 301 students were enrolled in the
CS1 course, out of which 280 completed both exams. Only these
students were included in our analysis.

Students in the course did not have prior computing experience
and were predominantly in their first semester of undergraduate
studies, with undeclared major. We neither collected nor had access
to demographic data due to the university’s data protection policy.

Before running the study, the institutional review board (IRB)
determined the study to be exempt. All data were anonymized to
maintain students’ confidentiality and privacy.

3.3 Data Collection and Preprocessing
An internal script was used to enable the collection of data on
students’ programs in the Codio IDE. As students completed the
homework assignments, the script collected a snapshot of each stu-
dent’s code in Codio after every period of inactivity. Inactivity was
defined as not interacting with the IDE for more than 10 minutes.

After raw snapshot data were collected, each snapshot was
checked to determine whether it satisfied all the requirements of
an assignment (e.g., all required files were present with correct file
names). Although some invalid snapshots were occurring at the
beginning of a student’s work on an assignment, the vast majority
of the snapshots satisfied the requirements.

Each valid snapshot was then evaluated by an autograder. First,
it was compiled to identify compiler errors. If the snapshot compiled
successfully, then the code was executed against a suite of unit tests
to identify runtime errors, which are Java exceptions thrown while
running a test (not an outcome of a test). As a result, each snapshot
ended up in one of three possible states:

• Did not compile (had one or more compiler errors). If multi-
ple compiler errors occurred, all these errors were reported
to the student as well as counted for our analysis.

• Compiled successfully but had one or more runtime errors.
For some HW assignments, testing stopped when the first
runtime error was thrown, while for other assignments, the
test suite executed the tests in parallel.

• Compiled successfully and finished without a runtime error.

The compiler and runtime error data from valid snapshots were
included in our analysis. Table 1 reports the totals of collected data
types from all students. All data used in this research, along with
more detailed descriptive statistics, are available (see Section 5.2).

Table 1: Counts of the individual types of the collected data.
(HW 6 had much more snapshots since it was newly intro-
duced that semester, so students made more attempts.)

HW # Snap- Compiler Runtime Failed Passed
(students) shots errors errors tests tests
#3 (295) 5763 1969 1511 28160 40123
#4 (281) 2898 1074 863 24057 26919
#5 (281) 6778 1314 18763 96933 132513
#6 (279) 22450 2424 27525 55523 765543
#7 (280) 5192 1351 8549 49897 71376
#8 (278) 8014 2551 8192 21999 204741
Total 51095 10683 65403 276569 1241215

3.4 Three Chosen Error Measures
This section details the error measures, which are summarized in
Table 2. We chose these measures because they gradually increase
in complexity, building on top of each other. Then, we describe
computing the values of each measure for further analysis.

Table 2: Summary of the three error measures. For all of
them, a higher value indicates a higher rate of student error.

Measure Value type Range Used in
EC integer (N0) 0, 1, . . . ,∞ —
EQ decimal (R+0) [0, 1] [14, 15, 21, 24, 27]
RED decimal (R+0) [0,∞) [3, 27]

3.4.1 Error Count (EC). Error Count is simply the total number of
either compiler or runtime errors a student made in all snapshots. It
is a non-negative integer, i.e., it ranges from 0 to potentially infinity.
We use EC as the simplest error measure to obtain a baseline for
further comparison with two other error measures: EQ and RED.

3.4.2 Jadud’s Error Quotient (EQ). The EQ was introduced in Sec-
tion 2.2. To obtain EQ values for our compiler error data, we wrote
a Python script that implemented the published algorithm for com-
puting the EQ [14]. Although EQ was originally defined only for
compiler errors, we extended this approach to also process runtime
errors to obtain a comparison to values for compiler errors.

3.4.3 Repeated Error Density (RED). The RED was also introduced
in Section 2.2. To obtain the RED value for each student [3], we
created a data processing script using RapidMiner and Python. The
process to obtain the RED values was analogous to EQ.

Comparison of Three Programming Error Measures for Explaining Variability in CS1 Grades ITiCSE 2024, July 8–10, 2024, Milan, Italy

3.5 Regression Statistical Analysis
Our research goal was to understand and compare relationships
between error measures (computed on compiler and runtime errors)
and students’ performance outcomes (expressed by grades from
exams 1–2), to identify a measure that best determines performance.
To achieve this goal, a series of regression analyses were performed.

3.5.1 Choice of the Regression Method. Grades from the two ex-
ams were left-skewed, with the median grades being 84% and 83%.
Because of this non-normal data distribution, a non-parametric
rank-based regression [16] was used to explain exam grades.

3.5.2 Choice of Feature Variables. Figure 1 shows the six types of
feature variables used in our models. The variables define values
from the corresponding homework assignments assigned up to the
date of the exam: HW 3–4 for exam 1, and HW 3–8 for exam 2.

To understand the differences between individual error measures
and find the best one, we built separate models with predictors for
eachmeasure alone: either EC, EQ, or RED. As such, we did not build
models that included a combination of predictors from different
error measures since all the variables relied on a measure of error.

In addition, we compared the usage of compiler errors alone
with the additional inclusion of runtime errors. We did not build
models employing runtime errors alone, because runtime errors
appear less frequently in general (if the code compilation fails on a
compiler error, there is no possibility for a runtime error to occur).

To summarize, this resulted in 12 regression models altogether
(2 exams × explained by 3 error measures × using 2 types of errors).

For example, the first model in Table 3 predicted exam 1 grades
using EC for compiler errors. This means that we collected the
counts of compiler errors students made in HW 3 and HW 4, and
used these two values to predict students’ performance on exam 1.

Lastly, as a “benchmark” comparison, homework grades were
used as feature variables to predict students’ grades on the two
exams. We did not build models combining both homework grades
and error measures as predictor variables, because we aimed to
explore and compare the utility of the error measures alone.

3.5.3 Implementation. All steps of the regression analysis were
implemented in R using the Rfit package (latest available version
0.24.2). The code used in this research is available (see Section 5.2).

3.5.4 Model Evaluation. Each of the 12models was evaluated based
on the standard metrics listed in Table 3. We also used the Bayesian
information criterion, BIC’ [23, Equation 26], which is adjusted with
respect to the number of predictor variables. The more negative
the BIC’ value, the better. Moreover, if the difference between BIC’
of two models is greater than 6, it is strong evidence that a model
with the lower BIC’ is significantly better [23, Table 6].

4 RESULTS AND DISCUSSION
4.1 Explanation of Exam Grades
Table 3 reports the rank-based regression models with each of the
three measures, predicting students’ grades for both exams. It also
lists statistically significant predictors, as well as the models’ 𝑅2
and BIC’ values. All significant predictors in the error-based models
have a negative coefficient in the models, meaning that with lower
error measure values, the exam grade improved, which is expected.

4.1.1 Overall Best Error Measure. Based on both the values of 𝑅2
and BIC’, the EQ was the best for explaining variability in students’
grades from both exams. This result held regardless of whether
compiler or runtime error data were used. For exam 1, EQwas better
than RED, which was better than EC. For exam 2, EQ was better
than EC, which was better than RED. Still, the benchmark predictor
(homework grades) outperformed all three error measures.

4.1.2 Compiler vs. Runtime Errors. When using compiler errors
only, the best models reached 𝑅2 = 0.181 for exam 1 and 𝑅2 = 0.190
for exam 2. When adding the information about runtime errors too,
both models improved: 𝑅2 = 0.185 for exam 1 and 𝑅2 = 0.264 for
exam 2. However, this could be attributed to the fact that the model
simply used more predictors. Regardless, both models were rather
close to the benchmark prediction using homework grades.

4.1.3 Exam 1 Grade. Regarding exam 1 grades (covers HW 3–4),
the significant predictors for all three error measures were 𝑐3 and
𝑐4, i.e., the variables based on compiler errors. Runtime errors were
not a significant predictor in any model. Moreover, BIC’ became
worse when runtime errors were added for all three error measures.

We argue that this result is expected, since in the first part of
the semester, the novice students struggled with syntax and were
expected to make a lot of compiler errors. Therefore, it is not sur-
prising that runtime errors do not make a big difference in the
models on the first exam in the first part of the semester.

4.1.4 Exam 2 Grade. When predicting exam 2 grades (covers HW
3–8), variables based on runtime errors start appearing as significant
predictors in all models. Unlike in exam 1, BIC’ improved when
runtime errors were added for two error measures (EC and RED).
Compiler errors still remain relevant, but this is also because we
again include data from HW 3–4 in the first part of the semester.

A possible explanation for this result is that as the semester
progressed, most students became more familiar with Java syntax.
Also, with the increased complexity of assignments and topics
covered over the semester, runtime errors were more likely to occur
and became more important in predicting students’ performance.
Arguably, runtime errors indicate higher-level misconceptions of
students, which manifest later in the semester more strongly, unlike
compiler errors that may occur due to trivial reasons such as typos.

4.2 Comparison to the Related Research
By splitting our target performance variable into two exams (one
focused on basic topics, and the other on slightly more advanced
topics within introductory programming) and collecting process
measures on the errors made during programming, students’ KSAs
were captured at a granular level.

The explained variability in exam 1 grades was comparable to
prior studies. EQ was the most suitable measure when used on
compiler error data from introductory programming, despite some
of the measure’s limitations listed in Section 2.2. For EQ, our 𝑅2
was between 18% and 26%, which was similar to or better than prior
work: Jadud [14] achieved 11% on assignment grades and 25% on
final course grades, and Tablatin and Rodrigo [27] achieved 20%
on midterm exam grades. In addition, Tablatin and Rodrigo [27]
achieved an 𝑅2 of 12% using RED, while our 𝑅2 results for using
RED ranged from 7% to 19%. Lower performance of RED is not

ITiCSE 2024, July 8–10, 2024, Milan, Italy Valdemar Švábenský, Maciej Pankiewicz, Jiayi Zhang, Elizabeth B. Cloude, Ryan S. Baker, and Eric Fouh

Table 3: Regression analysis results. Measure: EC = Error Count, EQ = Jadud’s Error Quotient, RED = Repeated Error Density.
Predictors: 𝑐𝑘 or 𝑟𝑘 = value of the error measure for compiler or runtime errors for homework 𝑘; ℎ𝑤𝑘 = number of points for
homework 𝑘 . Statistical significance (p-value for the predictor variables and models): (***) < 0.001 < (**) < 0.01 < (*) < 0.05.

Value: Exam 1 (HW 3–4), 𝑛 = 280 students Exam 2 (HW 3–8), 𝑛 = 280 students
Predicted by: Sig. predictors Model F 𝑅2 BIC’ Sig. predictors Model F 𝑅2 BIC’

EC (compiler) 𝑐3 (**), 𝑐4 (*) 9.81 (***) 0.086 −6.02 none 2.50 (**) 0.099 2.07
EC (compiler + runtime) 𝑐3 (**), 𝑐4 (*) 5.63 (***) 0.098 −2.78 𝑐6 (*), 𝑟5 (***), 𝑟8 (**) 3.35 (***) 0.235 −3.15
EQ (compiler) 𝑐3 (***) 30.38 (***) 0.181 −19.39 𝑐3 (***), 𝑐6 (*) 10.40 (***) 0.190 −10.95
EQ (compiler + runtime) 𝑐3 (***) 15.46 (***) 0.185 −15.04 𝑐3 (***), 𝑐6 (*), 𝑟8 (***) 7.73 (***) 0.264 −7.83
RED (compiler) 𝑐3 (***), 𝑐4 (*) 15.91 (***) 0.105 −8.65 𝑐4 (*) 3.44 (**) 0.072 5.59
RED (compiler + runtime) 𝑐3 (***), 𝑐4 (*) 8.61 (***) 0.114 −4.91 𝑟5 (***), 𝑟8 (***) 5.09 (***) 0.190 3.69
HW grades (benchmark) ℎ𝑤3 (***) 46.79 (***) 0.257 −31.23 ℎ𝑤3 (***), ℎ𝑤5 (*), ℎ𝑤6 (***) 21.91 (***) 0.330 −34.02

surprising as it has been demonstrated to be effective particularly
for short sequences of compilation events [3].

The error measures did not work very well when compiler error
datawere used from intermediate-level topics (as in exam 2). Instead,
applying the measures to runtime error data (contrary to their
original use case) improved the models’ explanatory power.

4.3 Limitations and Threats to Validity
The results depend on the data collection method: snapshots were
taken when a student remained idle, and the length of that pause
was an arbitrary decision (we used a 10-minute threshold). An
alternative would be to test various cut-offs or determine it based
on the means and standard deviations of student pauses. Another
common approach is to take snapshots per compilation attempt.

Plagiarism is a serious concern in programming courses and can
compromise any study that uses assignment grades to answer re-
search questions. To detect indicators of plagiarism, students’ code
was analyzed by the MOSS software [1]. We also used Codio’s “code
playback” [9] feature to identify any large code paste indicating
that the student received the code from a third party. Given that
generative AI tools were not yet mature and open to the public at
the time of the data collection, we can say that our rules around
plagiarism remove it as a threat to validity of this study.

Finally, this study used data from a single course in one semester
that ran partially online, so generalizations cannot be reliably made.
However, since many other CS1 courses feature similar content and
format, the findings could transfer beyond the original context.

4.4 Open Research Challenges
Utilizing information on compiler and runtime errors explained
at most 26% of the variability in students’ exam performance. To
improve this, there may be additional measures that should ac-
company error information. For example, information on strategies
students use to debug different types of errors, their CS background,
or their motivation could be a next step for future studies.

An additional direction for future work is to use fine-grained
student data fromHWassignments earlier in the semester to predict
performance on exams later in the semester. These datamay provide
the diagnostic information to enable intervention and support.

Another research area is to identify topics and problems that
students are struggling with in real-time to provide targeted help.
For example, using item response theory with error measures may
be a better way to determine topic difficulty based on students’ rate
of errors compared to outcome-based measures like grades.

5 CONCLUSION
Programming error measures are partially indicative of students’
KSAs in introductory programming courses, but they do not explain
most of the variability in exam grades. Our study evaluated EQ and
RED, which were originally considered only for compiler errors,
also in the context of runtime errors. The measures based solely
on compiler errors were moderately useful as predictors of grades
in the first part of the semester when students dealt with basic
topics. However, in our course, where more complex topics were
introduced in the second part of the semester, including runtime
errors improved model performance later on. Overall, EQ always
explained more variability in grades than RED or EC.

5.1 Implications for Researchers and Educators
Since the frequency of errors (compiler and runtime) affects stu-
dent performance, it is important to help students understand them.
However, error messages are unhelpful for most students [4]. There-
fore, the CS education community should continue to improve the
pedagogical value of the feedback from error messages [18, 20].

Developers of IDEs for introductory programming can enhance
the IDEs with data collection and analysis of student errors. This
may also support instructors’ teaching practice in determining the
KSAs of their students by predicting the exam outcomes and pro-
viding suitable interventions for students identified as struggling.

5.2 Publicly Available Supplementary Materials
The research data, software for data processing, and full results are
available at https://github.com/SERI-CS/iticse24-error-measures.

ACKNOWLEDGMENTS
This study was supported by the National Science Foundation (NSF;
DUE-1946150). Any conclusions expressed in this material do not
necessarily reflect the views of NSF.

https://github.com/SERI-CS/iticse24-error-measures

Comparison of Three Programming Error Measures for Explaining Variability in CS1 Grades ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Alex Aiken. 2022. Moss: A System for Detecting Software Similarity. Retrieved

April 1, 2024 from https://theory.stanford.edu/~aiken/moss/
[2] David Azcona, I-Han Hsiao, and Alan F. Smeaton. 2019. Detecting students-at-

risk in computer programming classes with learning analytics from students’
digital footprints. User Modeling and User-Adapted Interaction 29 (2019), 759–788.
https://doi.org/10.1007/s11257-019-09234-7

[3] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for
Novice Programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education (Arequipa, Peru) (ITiCSE ’16).
Association for Computing Machinery, New York, NY, USA, 296–301. https:
//doi.org/10.1145/2899415.2899463

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages
Considered Unhelpful: The Landscape of Text-Based Programming Error Mes-
sage Research. In Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education (Aberdeen, Scotland, UK) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[5] Neil C. C. Brown, AmjadAltadmri, Sue Sentance, andMichael Kölling. 2018. Black-
box, Five Years On: An Evaluation of a Large-scale Programming Data Collection
Project. In Proceedings of the 2018 ACM Conference on International Computing
Education Research (Espoo, Finland) (ICER ’18). Association for Computing Ma-
chinery, New York, NY, USA, 196–204. https://doi.org/10.1145/3230977.3230991

[6] Adam Scott Carter and Christopher David Hundhausen. 2017. Using Program-
ming Process Data to Detect Differences in Students’ Patterns of Programming. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Ed-
ucation (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 105–110. https://doi.org/10.1145/3017680.3017785

[7] Adam Scott Carter, Christopher David Hundhausen, and Olusola Adesope. 2015.
The Normalized Programming State Model: Predicting Student Performance
in Computing Courses Based on Programming Behavior. In Proceedings of the
Eleventh Annual International Conference on International Computing Education
Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Ma-
chinery, New York, NY, USA, 141–150. https://doi.org/10.1145/2787622.2787710

[8] Codio. 2024. Codio | The Hands-On Platform for Computing & Tech Skills
Education. Retrieved April 1, 2024 from https://www.codio.com/

[9] Codio. 2024. How to Review Code Using Codio’s Code Playback Tool. Retrieved
April 1, 2024 from https://www.codio.com/features/code-playback

[10] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Er-
rors Are Not Equal. In Proceedings of the 17th ACM Annual Conference on In-
novation and Technology in Computer Science Education (Haifa, Israel) (ITiCSE
’12). Association for Computing Machinery, New York, NY, USA, 75–80. https:
//doi.org/10.1145/2325296.2325318

[11] Deborah A. Fields, Lisa Quirke, Janell Amely, and Jason Maughan. 2016. Com-
bining Big Data and Thick Data Analyses for Understanding Youth Learning
Trajectories in a Summer Coding Camp. In Proceedings of the 47th ACM Tech-
nical Symposium on Computing Science Education (Memphis, Tennessee, USA)
(SIGCSE ’16). Association for ComputingMachinery, New York, NY, USA, 150–155.
https://doi.org/10.1145/2839509.2844631

[12] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In Proceedings of the 2015
ITiCSE on Working Group Reports (Vilnius, Lithuania) (ITICSE-WGR ’15). ACM,
New York, NY, USA, 41–63. https://doi.org/10.1145/2858796.2858798

[13] Matthew C. Jadud. 2006. An Exploration of Novice Compilation Behaviour in BlueJ.
Ph. D. Dissertation. University of Kent. https://kar.kent.ac.uk/86458/

[14] Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compilation
Behaviour. In Proceedings of the Second International Workshop on Computing
Education Research (Canterbury, United Kingdom) (ICER ’06). Association for
Computing Machinery, New York, NY, USA, 73–84. https://doi.org/10.1145/
1151588.1151600

[15] Matthew C. Jadud and Brian Dorn. 2015. Aggregate Compilation Behavior:
Findings and Implications from 27,698 Users. In Proceedings of the Eleventh Annual

International Conference on International Computing Education Research (Omaha,
Nebraska, USA) (ICER ’15). Association for Computing Machinery, New York,
NY, USA, 131–139. https://doi.org/10.1145/2787622.2787718

[16] John D Kloke and Joseph W McKean. 2012. Rfit: Rank-based Estimation for
Linear Models. The R Journal 4, 2 (2012), 57. https://svn.r-project.org/Rjournal/
html/archive/2012/RJ-2012-014/RJ-2012-014.pdf

[17] Amy J. Ko and Brad A. Myers. 2005. A framework and methodology for studying
the causes of software errors in programming systems. Journal of Visual Lan-
guages & Computing 16, 1 (2005), 41–84. https://doi.org/10.1016/j.jvlc.2004.08.003

[18] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A. Becker. 2023. Using Large Language Models to Enhance Program-
ming Error Messages. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2023). Association for Computing Ma-
chinery, New York, NY, USA, 563–569. https://doi.org/10.1145/3545945.3569770

[19] Roy D. Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Pro-
gramming. Journal of Educational Computing Research 2, 1 (1986), 25–36.
https://doi.org/10.2190/689T-1R2A-X4W4-29J2

[20] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. In Proceedings
of the 16th International Conference on Educational Data Mining. International
Educational Data Mining Society, USA, 370–377. https://doi.org/10.5281/zenodo.
8115653

[21] Yizhou Qian and James Lehman. 2020. An Investigation of High School Students’
Errors in Introductory Programming: A Data-Driven Approach. Journal of
Educational Computing Research 58, 5 (2020), 919–945. https://doi.org/10.1177/
0735633119887508

[22] Keith Quille and Susan Bergin. 2019. CS1: how will they do? How can we help?
A decade of research and practice. Computer Science Education 29, 2–3 (2019),
254–282. https://doi.org/10.1080/08993408.2019.1612679

[23] Adrian E. Raftery. 1995. Bayesian Model Selection in Social Research. Sociological
Methodology 25 (1995), 111–163. http://www.jstor.org/stable/271063

[24] Ma. Mercedes T. Rodrigo, Thor Collin S. Andallaza, Francisco Enrique Vicente G.
Castro, Marc Lester V. Armenta, Thomas T. Dy, and Matthew C. Jadud. 2013.
An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syn-
tax Errors among Low-Achieving, Average, and High-Achieving Novice Pro-
grammers. Journal of Educational Computing Research 49, 3 (2013), 293–325.
https://doi.org/10.2190/EC.49.3.b

[25] Jucelio S. Santos, Wilkerson L. Andrade, João Brunet, and Monilly Ramos
Araujo Melo. 2020. A Systematic Literature Review of Methodology of Learning
Evaluation Based on Item Response Theory in the Context of Programming
Teaching. In 2020 IEEE Frontiers in Education Conference (FIE). IEEE, New York,
NY, USA, 1–9. https://doi.org/10.1109/FIE44824.2020.9274068

[26] Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. 2011. Predict-
ing At-Risk Novice Java Programmers through the Analysis of Online Protocols.
In Proceedings of the Seventh International Workshop on Computing Education
Research (Providence, Rhode Island, USA) (ICER ’11). Association for Computing
Machinery, New York, NY, USA, 85–92. https://doi.org/10.1145/2016911.2016930

[27] Christine Lourrine S Tablatin and Ma Mercedes T Rodrigo. 2020. The Relation-
ship of Compilation Behavior Metrics and Student Performance in Introductory
Programming Course. Journal of Engineering, Technology, and Computing Sciences
2, 2 (2020), 8–15. https://www.psurj.org/wp-content/uploads/2021/07/JETCS_
2020_Vol2_Issue2_02.pdf

[28] Turnitin. 2024. Gradescope. RetrievedApril 1, 2024 fromhttps://www.gradescope.
com/

[29] Benjamin Xie, Matthew J. Davidson, Min Li, and Amy J. Ko. 2019. An Item
Response Theory Evaluation of a Language-Independent CS1 Knowledge Assess-
ment. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Ma-
chinery, New York, NY, USA, 699–705. https://doi.org/10.1145/3287324.3287370

[30] Jiayi Zhang, Taylor Cunningham, Rashmi Iyer, Ryan Baker, and Eric Fouh. 2022.
Exploring the Impact of Voluntary Practice and Procrastination in an Introductory
Programming Course. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022).
Association for Computing Machinery, New York, NY, USA, 356–361. https:
//doi.org/10.1145/3478431.3499350

https://theory.stanford.edu/~aiken/moss/
https://doi.org/10.1007/s11257-019-09234-7
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/3017680.3017785
https://doi.org/10.1145/2787622.2787710
https://www.codio.com/
https://www.codio.com/features/code-playback
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/2839509.2844631
https://doi.org/10.1145/2858796.2858798
https://kar.kent.ac.uk/86458/
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/2787622.2787718
https://svn.r-project.org/Rjournal/html/archive/2012/RJ-2012-014/RJ-2012-014.pdf
https://svn.r-project.org/Rjournal/html/archive/2012/RJ-2012-014/RJ-2012-014.pdf
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.5281/zenodo.8115653
https://doi.org/10.5281/zenodo.8115653
https://doi.org/10.1177/0735633119887508
https://doi.org/10.1177/0735633119887508
https://doi.org/10.1080/08993408.2019.1612679
http://www.jstor.org/stable/271063
https://doi.org/10.2190/EC.49.3.b
https://doi.org/10.1109/FIE44824.2020.9274068
https://doi.org/10.1145/2016911.2016930
https://www.psurj.org/wp-content/uploads/2021/07/JETCS_2020_Vol2_Issue2_02.pdf
https://www.psurj.org/wp-content/uploads/2021/07/JETCS_2020_Vol2_Issue2_02.pdf
https://www.gradescope.com/
https://www.gradescope.com/
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1145/3478431.3499350
https://doi.org/10.1145/3478431.3499350

	Abstract
	1 Introduction
	1.1 Outcome-based vs. Behavioral Measures
	1.2 Goals and Scope of This Paper

	2 Review of Related Literature
	2.1 Programming Errors and Performance
	2.2 Error Measures in Programming Education
	2.3 Our Research Contributions

	3 Research Methods
	3.1 Course Design and Content
	3.2 Student Population and Research Ethics
	3.3 Data Collection and Preprocessing
	3.4 Three Chosen Error Measures
	3.5 Regression Statistical Analysis

	4 Results and Discussion
	4.1 Explanation of Exam Grades
	4.2 Comparison to the Related Research
	4.3 Limitations and Threats to Validity
	4.4 Open Research Challenges

	5 Conclusion
	5.1 Implications for Researchers and Educators
	5.2 Publicly Available Supplementary Materials

	Acknowledgments
	References

