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Self-regulated learning (SRL) is a critical component of mathematics problem-solving. Students skilled in 
SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive 
process so that they align their efforts with their objectives. An influential framework for SRL, the SMART 
model (Winne, 2017), proposes that five cognitive operations (i.e., searching, monitoring, assembling, 
rehearsing, and translating) play a key role in SRL. However, these categories encompass a wide range of 
behaviors, making measurement challenging – often involving observing individual students and recording 
their think-aloud activities or asking students to complete labor-intensive tagging activities as they work. In 
the current study, to achieve better scalability, we operationalized indicators of SMART operations and 
developed automated detectors using machine learning. We analyzed students’ textual responses and 
interaction data collected from a mathematical learning platform where students are asked to thoroughly 
explain their solutions and are scaffolded in communicating their problem-solving process. Due to the rarity 
in data for one of the seven SRL indicators operationalized, we built six models to reflect students’ use of 
four SMART operations. These models are found to be reliable and generalizable, with AUC ROCs ranging 
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from .76-.89. When applied to the full test set, these detectors are relatively robust to algorithmic bias, 
performing well across different student populations and with no consistent bias against a specific group of 
students.  

Keywords: self-regulated learning, SMART model, automated detectors 
 

1. INTRODUCTION 
Work over the last two decades has developed automated detectors of a range of behaviors and 
constructs in students’ interaction with computer-based learning environments (Baker and 
Yacef, 2009). These detectors utilize log data collected from learning environments to infer the 
presence or absence of a complex behavior or a construct in student learning. For example, 
detectors have been built to identify student affect (e.g., Baker et al., 2004; Devolder et al., 2012; 
Labuhn et al., 2010), engagement (e.g., Baker et al., 2010; Paquette et al., 2014), and problem-
solving strategies (Sao Pedro et al., 2013). Such detectors can be split into two broad categories: 
detectors for post-hoc analysis and detectors for real-time adaptation. The post-hoc analysis 
allows researchers to detect constructs retrospectively to understand their prevalence (e.g., Lee 
et al., 2011) and conduct further analysis (e.g., Botelho et al., 2018; Richey et al., 2021). 
Detectors designed to be run in real-time facilitate adaptive experiences and real-time feedback 
(Walonoski and Heffernan, 2006), as well as reports to teachers (Aguilar et al., 2021). 

In particular, considerable work has been devoted to detecting and understanding behaviors 
and strategies involved in self-regulated learning (SRL). By examining student behavior 
patterns, automated detectors have been developed for a range of SRL-related constructs, 
including help avoidance (Aleven et al., 2006), gaming the system (Baker et al., 2004), setting 
goals (Azevedo et al., 2011; Biswas et al., 2010), and planning and tracking progress (Biswas 
et al., 2010). However, the specific constructs being modeled often have not been clearly linked 
to any of the growing number of theoretical models of SRL (although Farhana et al., 2021 and 
Hutt et al., 2021 are exceptions to this) and have mostly been operationalized in terms of high-
level strategies that combine several behaviors treated as separate in SRL theories, rather than 
the finer-grained behaviors used in those theories (cf. Boekaerts, 1999; Bosch et al., 2021). 
Capturing fine-grained indicators of key aspects of SRL in terms of these theoretical models 
may yield a better understanding of the process of SRL and help EDM research make more 
direct theoretical contributions. 

Self-regulation is a critical component of learning and has been positively associated with 
learning outcomes (Cleary and Chen, 2009; Nota et al., 2004; Zimmerman, 1990). In 
mathematics problem-solving, students who are skilled in SRL are able to effectively set goals, 
search for information, and direct their attention and cognitive resources to align their efforts 
with their objectives (Zimmerman, 2000). As a result, SRL facilitates successful problem-
solving process (Cleary and Chen, 2009; Nota et al., 2004; Zimmerman, 1990) and enables 
students to acquire deep conceptual understanding (Labuhn et al., 2010). Given its benefits, 
theory-based interventions have been developed to promote SRL (Devolder et al., 2012). 
However, current SRL assessments, such as self-reports and think-aloud activities, are not 
sufficient to provide measurement at scale; at the same time, existing scalable SRL assessments 
based on automated detection in log data are typically not connected back to theory, making it 
difficult to use them in theory-driven interventions. SRL assessments based on automated 
detectors have therefore been used in more ad-hoc, system-specific interventions. These 
interventions have had mixed success, sometimes failing to impact learning outcomes or 
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produce robust changes in student behavior (e.g., Roll et al., 2007). These measures have 
sometimes also correlated to learning outcomes in unexpected ways, often depending on specific 
details of the context of behavior that simpler automated detectors can fail to capture (Aleven et 
al., 2016; Ocumpaugh et al., 2021).  

Therefore, in the current study, we develop automated detectors that identify fine-grained 
evidence of SRL constructs drawn from theory. This study does so in the context of CueThink, 
a digital learning application that focuses on enhancing middle school student mathematics 
problem-solving skills. Through the lens of the SMART model of SRL (Winne, 2017) 
(described in greater detail below), we identify and operationalize the following seven SRL 
indicators: 1) numerical representation, 2) contextual representation, 3) strategy orientation, 4) 
outcome orientation, 5) data transformation, 6) following plans, and 7) incorporating 
information. Due to the rarity of cases where students demonstrated strategy orientation, a 
detector could not be built. Therefore, six detectors were developed. We evaluate their 
performance and check them for algorithmic bias. 

2. BACKGROUND 

2.1. SRL AND THE SMART MODEL 

Self-regulated learning (SRL) describes a series of self-generated thoughts, feelings, and 
behaviors that are systematically produced, orientating learners’ attention and effort toward the 
attainment of goals (Zimmerman and Schunk, 2011). In the last three decades, several SRL 
models have been proposed to examine and explain the process and the enactment of SRL from 
socio-cognitive, motivational, and metacognitive perspectives (Panadero, 2017). For example, 
Zimmerman (2000) describes the process of SRL as three cyclical phases (forethought, 
performance, and self-reflection), in which learners analyze a task, execute the task, and assess 
the performance, respectively. In Pintrich’s SRL model (2000), SRL is compounded by four 
phases (forethought, monitoring, control, and reaction and reflection), with each phase 
containing the regulation of cognition, motivation/affect, behavior, and context. Grounded in 
information processing theory, Winne and Hadwin (1998) characterize the process of SRL as 
four interdependent and recursive stages, in which learners: 1) define the task, 2) set goals and 
form plans, 3) enact the plans, and 4) reflect and adapt strategies when goals are not met. In our 
specific case, the design of the learning platform being studied (CueThink) resembles Winne 
and Hadwin’s four-stage model. Therefore, we situate the current work in the four-stage model 
along with the SMART model (Winne, 2017) that was later developed to explain the cognitive 
operations involved in each stage.  

Along with operations, COPES – a first-letter acronym of conditions, operations, products, 
evaluations, and standards – outlines five facets that are involved when learners accomplish the 
task in each stage of SRL (Winne, 1997). Specifically, within each stage, learners survey the 
conditions (C), elicit cognitive operations (O) to generate a product (P), and then evaluate (E) 
the product against a set of standards (S). Operations as a key facet in SRL describes the 
cognitive and metacognitive process of how learners interact with information, understanding 
the conditions, generating products, and evaluating products against standards. 

In the first stage of SRL, learners define the task by creating a mental representation (Winne, 
2004). By surveying the resources and constraints, learners outline what is known and what 
needs to be known. These resources and constraints can be internal to the learners, or external 
in the learning environment (Winne, 2017). For example, learners may have prior knowledge 
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and/or misconceptions on a topic, and these are internal to the learners. On the other hand, the 
learners have access to external information, which can be found in the task itself or in the 
learning environment that the learners have access to (e.g., internet or peers). Both internal and 
external resources and constraints guide the development of problem representation, facilitating 
or impeding the student in accurately representing the problem (Winne, 2004). Once the 
problem is defined and represented, learners set goals and form plans. As stated in Winne 
(2017), the goals can be oriented toward the process of learning, focusing on the effort and the 
efficiency of the problem-solving process, or the goals can be set in terms of the product, 
emphasizing on the outcome. Goals may be further divided into subgoals, which allows learners 
to metacognitively monitor the progress of the work. When goals are identified, plans are 
typically formed to approach the goals. When the student enacts this plan, feedback may be 
generated, which may originate internally as a result of the learner monitoring the workflow and 
the progress, or externally as a response from a system, peers, or teachers (Winne, 2017). 
Learners can then acknowledge the feedback by updating goals to further the progress or 
correcting plans and strategies to accommodate any discrepancies.   

The SMART model of SRL (Winne, 2017) was later proposed to further elucidate the 
cognitive processes involved. Specifically, the SMART model separates the “cognitive and 
behavioral actions applied to perform the task” into five categories: searching, monitoring, 
assembling, rehearsing, and translating. Each operation describes a way that learners 
cognitively engage and interact with information. For example, when working on a task, learners 
direct their attention to particular information (searching) and compare the information with a 
standard (monitoring), evaluating its relevance or importance. When relevant information is 
identified, students relate pieces of information to one another (assembling), in order to create 
a comprehensive understanding of the problem. When information does not fit into the current 
problem representation, learners manipulate how it is represented to find a solution (translating). 
Throughout the process, working memory is used to actively maintain and reinstate information 
(rehearsing). 

These cognitive operations are an integral aspect of self-regulation: they help determine 
student success at completing each of the four SRL tasks, which, in turn, influences the 
progression of the problem-solving process (Winne, 2005). However, despite the SMART 
categories' importance for SRL, they are often difficult to observe or measure, as most learning 
activities (whether online or offline) do not fully reify the cognitive process involved in their 
learning tasks. Further, these operations may occur non-linearly, and multiple operations can be 
employed when completing the same task– making the measurement of these constructs 
challenging. 

2.2.  CHALLENGES IN SRL MEASUREMENTS 

SRL has typically been measured using three approaches: self-reports, think-aloud activities, 
and log data collected in computer-based learning environments (Greene et al., 2013; Winne, 
2010b). With traditional self-report studies, students are asked about their SRL process either 
outside of a task (i.e., before or after completing a task) or while working on a task. In 
decontextualized self-report (outside of a task), students report on the SRL strategies they plan 
to use or recall the strategies they used, using a pre- or post-task survey, respectively. The 
Learning and Strategies Study Inventory (LSSI) (Weinstein et al., 1987) and the Motivated 
Strategies for Learning Questionnaire (MSLQ) (Pintrich et al., 1991) are two self-report 
inventories that have frequently been adopted in studies. The instruments are administered 
outside of a task (e.g., Cho and Yoo, 2017; Roth et al., 2016)). Even though this approach is 
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widely used, the nature of surveying cognitive processes outside of the task may lead to 
inaccuracies in the representation of cognition (Greene et al., 2013; Winne and Perry, 2000). 
For example, when recalling a cognitive process retrospectively, students may aggregate the 
out-of-context, self-reported experience across numerous tasks, failing to demonstrate the 
relationship between the task and the corresponding SRL strategies. For this reason, several 
studies have adopted in-context self-report (e.g., Sabourin et al., 2012; Taub et al., 2014; Winne 
et al., 2019) in which students are asked to tag their SRL strategies as they occur. However, in 
addition to disrupting the process of problem-solving, the surveys used for in-context tagging 
often only have a finite set of closed-ended responses, which makes it challenging to capture 
students’ experience if it falls outside of the range and types of responses presented (Greene et 
al., 2013).   

Other research has leveraged think-aloud activities that ask students to verbalize their 
cognitive processes when solving a problem (Greene et al., 2017). As with in-context self-
reports, think-alouds give researchers an opportunity to identify processes that are 
contextualized in the problem-solving activity and are approximately concurrent with their 
occurrences. However, this process can suffer from an observation effect. Students being 
prompted to discuss their thinking process in real-time may alter that process and not provide 
an accurate representation of the processes they would engage in naturally (Bosch et al., 2021; 
Schooler et al., 1993). This, in turn, calls into question the validity of findings obtained using 
this type of measurement and whether they are generalizable to new students and contexts.   

2.3. USE LOG DATA TO MEASURE SRL IN COMPUTER-BASED LEARNING 
ENVIRONMENTS 

In addition to the issues identified above, self-report and think-aloud approaches are labor-
intensive and time-consuming (Winne, 2010a), which make them difficult to scale. As such, a 
third approach, analyzing log data collected from computer-based learning environments, has 
emerged as a promising way to measure SRL. 

Aleven and colleagues (2006) designed an exhaustive set of production rules to represent 
help-seeking behaviors within a geometry learning system and then compared these rules to 
student problem-solving steps to determine whether those steps were warranted by the current 
situation. Using a more bottom-up approach, Biswas et al. (2010) examined the sequences of 
student behaviors and modeled a range of SRL behaviors, including monitoring through 
explanation, self-assessment, tracking progress, and setting learning goals. Additionally, Segedy 
et al. (2015) utilized log data and coherence analysis to assess students’ ability to seek out, 
interpret, and apply information in an open-ended learning environment, examining if a 
student’s subsequent action is coherent based on the information presented. 

Researchers have also used textual responses within dialogue-based learning systems to 
measure SRL. Graesser and colleagues (2007) used latent semantic analysis to study student 
conversations with animated pedagogical agents to assess and support SRL. Students who 
frequently use questions in a conversation can be interpreted as showing initiative, and 
engagement in monitoring can be inferred when students demonstrate in their responses that 
they feel they know the answer (Graesser and McNamara, 2010). 

However, often the log data collected does not directly and straightforwardly relate to an 
SRL construct (Azevedo et al., 2017). Researchers must decide what data to use, what constructs 
to measure, and how to operationalize the constructs with the existing data (Kovanovic et al., 
2016). SRL, as a process, covers a range of behaviors and strategies, so the constructs can vary 
depending on how SRL is conceptualized and also based on the design of the activity the learner 
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is participating in. To ensure the validity of the operationalization, it is recommended that the 
operationalization should be conceptualized in terms of an SRL model and contextualized in the 
learning environment where the data is generated (Winne, 2010b). 

2.4. APPROACHES TO SCALING UP SRL MEASUREMENTS 

In previous studies, machine learning (ML), knowledge engineering (KE), and several bottom-
up approaches have been used to leverage log data to build automated detectors that measure 
SRL constructs. For example, San Pedro et al. (2013) leveraged ML to detect students' 
systematic inquiry behavior in a science learning platform. Using KE, Aleven and colleagues 
(2006) developed a rule-based model that detects effective and ineffective help-seeking 
behaviors. Bottom-up approaches that utilize sequence mining or cluster analysis have also been 
adopted in previous research that first examine student behaviors, interpreting the sequence or 
the commonalities of these behaviors in the context of problem-solving, and then identify and 
extrapolate behavioral patterns that resemble various SRL constructs (e.g., Biswas et al., 2010; 
Segedy et al., 2015).  

When using machine learning, specifically supervised learning, detectors are built by training 
models that make binary classification predicting the presence or the absence of a behavior 
(Baker and Ocumpaugh, 2016). When training supervised ML models, two components are 
required: data that indicate the positive and negative examples of a behavior, referred to as the 
“ground truth”; and a set of features extracted from these examples. A machine learning 
algorithm will then be applied to learn the differences in the features between the positive and 
negative examples and find the relationships that are indicative of the behavior. With the 
relationships learned, the model makes predictions based on the features provided.  

As the process mainly relies on data and algorithms, the time spent in developing ML models 
focuses more on the process of labeling ground truth, feature engineering, and choosing the right 
algorithms. The algorithms identify the relationships between features of the data and labels, 
saving the researcher the manual work of identifying the relationships between observable 
behaviors and targeted constructs, which is emphasized in knowledge engineering approaches. 
This automation means that ML models have the potential of finding underlying relationships 
that are less explicit or may be overlooked by domain experts (see discussion in Paquette and 
Baker, 2019), and may also be less susceptible to human biases when encoding the relationships. 
However, machine learning can be impacted by human biases in the training labels. For 
example, Okur et al., (2018) shows that using video coding to label affect can result in culturally 
biased data.  

Although building ML models does not require extensive manual work at the model-building 
stage, a substantial amount of data is needed for the algorithms to learn from, in order for the 
models to be successful. Considerable effort often also goes into feature engineering when 
working with learning system data (Paquette et al., 2014). Additionally, despite the potential 
accuracy of ML models, they are generally hard to interpret (Paquette and Baker, 2019). ML 
models often do not provide a straightforward explanation of how predictions are made, which 
can impede the translations between model predictions and theoretical insights. This problem is 
worsening with the increasing adoption of highly-complex neural network algorithms (Webb et 
al., 2021). This difficulty in explaining the model or its predictions makes this approach hard to 
adopt in situations where interpretability is prioritized. Understanding what factors contribute 
to the presence of a learning behavior could provide valuable insight when designing learning 
environments or interventions that support learning. With the recent emphasis on building 
explainable and interpretable models (e.g., Conati et al., 2018; Mu et al., 2020; Webb et al., 
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2021), methods such as SHapley Additive exPlanations (SHAP) (Lundberg et al., 2019) value, 
have been developed to interpret ML models. However, a critical issue is raised in Swamy et al. 
(2022), in which they found that the results derived from various explainers (methods used to 
explain predictive models) do not agree on feature importance. Therefore, they suggest a careful 
evaluation when using the explainers and call for further examination of the topic. Nonetheless, 
the recent trend of developing and improving methods that can be used to interpret ML models, 
makes ML a promising approach in building automated detectors that can be better inspected 
by developers and stakeholders. 

On the other hand, detectors created using the KE approach rely on domain experts who 
develop a set of rules that capture the knowledge required to identify the behavior (Muldner et 
al., 2011; Paquette and Baker, 2019). A KE model of a behavior is based on existing literature 
(if it exists) and generally accepted definitions of that behavior, as well as on domain experts 
who identify and interpret action patterns that are its indicators.  

As the knowledge engineering model is manually developed and directly drawn from the 
expert’s knowledge of the specified behavior (Paquette et al., 2014), a major advantage of this 
method is that it doesn’t require large amounts of labeled data of the behavior, unlike ML 
models. The process of knowledge engineering also offers a more transparent and interpretable 
model that gives insights into how a model is developed, what the action patterns comprising 
the model mean, and how learner behaviors are associated with the model (Paquette and Baker 
2019). KE models also can be more generalizable than machine-learned models (as seen in 
Paquette et al., 2014) which can be attributed to the experts’ abilities to capture deeper 
underlying features of the behavior, whereas an ML model may capture correlations that are 
limited to the current dataset in use. However, KE models run a risk of encoding the biases of 
domain experts as they develop the detectors. Additionally, KE models are sensitive to even 
slight differences in the rules, as it can lead to significant differences in the inferences drawn 
from the model (Kovanovic et al., 2016). In addition, some behaviors are difficult for a human 
knowledge engineer to precisely characterize. For instance, when a behavior cannot be easily 
described and distilled into action patterns by the researchers, it may be better to use ML models. 
A specific case of this is when an exact numerical threshold has to be selected, or implicit 
correlations between behaviors and target constructs (not even known to the human expert 
themselves) have to be identified.   

In addition to ML and KE, Biswas et al. (2017) outlines several other approaches, such as 
sequence mining and cluster analysis, that have been used in previous studies to discover and 
interpret behavioral patterns that reflect the use of self-regulation (e.g., Biswas et al., 2010; 
Dever et al., 2022; Kinnebrew et al., 2013; Segedy et al., 2015). These bottom-up approaches 
first examine student behaviors over time or at a given circumstance, interpreting the sequence 
and/or the commonalities of these behaviors in the context of problem-solving. For instance, by 
leveraging a novel sequential mining technique, analyzing how students interact with an 
interactive virtual agent, Kinnebrew and colleges (2013) discovered that low- and high-
performing students produce different sequences of actions during learning, and that some of 
these patterns can be meaningfully linked to SRL. 

As opposed to KE, in which domain experts develop a set of production rules that capture 
the knowledge required to identify a self-regulated behavior, bottom-up methods focus more on 
discovering and identifying these behaviors, interpreting them, situating them in the problem-
solving process, and relating them to the use or the lack of use of SRL strategies. However, 
because of the bottom-up nature of these approaches, the patterns identified using these methods 
sometimes may not be interesting or informative to investigate, or these approaches may identify 
behaviors that are already known (Biswas et al., 2017). For example, Kock and Paramythis 
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(2011) used cluster analysis to analyze the sequence of help usage over time, but primarily 
discovered patterns that resembled the behaviors already documented in Aleven et al. (2006).  

2.5. ALGORITHMIC BIAS 

In order to use detectors at scale, we must ensure that they will be valid for the entire populations 
they are scaled to rather than only subgroups of students. Recent evidence suggests that many 
published detectors are prone to algorithmic bias, functioning better for some populations of 
learners than others (Baker and Hawn, 2022). However, there has been limited attention to 
algorithmic bias within the field of educational data mining, where analyses of algorithmic bias 
are rare and even overall population demographics are only reported in 15% of publications 
(Paquette et al., 2020). Verifying algorithmic bias is important any time when detectors will be 
deployed onto a learning platform and used to support a diverse population of learners. It would 
be highly problematic for many reasons to deploy a detector that functions significantly less 
well for some learners than others. Thus, it is important to evaluate detector effectiveness across 
demographic groups before deploying and using the detectors at scale. 

As defined in Kizilcec and Lee (2020), algorithmic bias describes the problem where a data-
driven predictive model functions better for some populations than others, producing disparate 
and poorer impact for historically underrepresented or protected groups. As the predictions are 
often used to inform decisions and actions, algorithmic bias in a model can cause unfairness in 
the allocation of resources and misplacement of treatment (Kizilcec and Lee, 2020). To 
understand the cause of the issue, Kizilcec and Lee (2020) examined the development of 
algorithmic systems and outlined a number of factors that can potentially contribute to the issue, 
categorizing them in the three phases of algorithmic development – measurement, model 
learning, and action.  

In the process of measurement, selecting a suitable target variable and collecting 
representative data are two rudiments in developing a fair algorithmic system. More specifically, 
careful consideration is needed when choosing the target variable in predictive modeling, as 
target variables may encode biases inherited from historical patterns, prejudice, or 
discrimination (Karumbaiah and Brooks, 2021). Additionally, when building a predictive 
model, the training data should be representative for whom the model is built for. For instance, 
Ocumpaugh et al., (2014) show that affect detectors’ performance degrades if they are applied 
to student groups whose data were not represented in the training set. Specifically, they found 
that the detectors demonstrated better accuracy for students from rural, suburban, and urban 
regions if the detectors rely on data drawn primarily from the same demographic grouping. 
Similarly, differences in model reliability are also found in Gardner et al., (2019), which 
evaluated the performance of a model that predicted students’ dropout rate based on gender. 
Models trained in courses with student populations where males were better represented than 
females were less successful at predicting outcomes for female students. These findings 
highlight the need for a close examination of the data and measurements, and careful 
consideration of the generalizability and the validity of models to ensure their fairness. 

One avenue to evaluate the fairness of predictive methods is through slicing analysis. Slicing 
analysis evaluates a predictive model’s performance by slicing the results of that model across 
different dimensions or categories in the test set (Sculley et al., 2018). As such, slicing analysis 
provides a more granular examination of a predictive model and makes it possible to evaluate 
the relative performance or fairness of the model across subgroups. 

83 Journal of Educational Data Mining, Volume 14, No 3, 2022



 

3. CURRENT STUDY 
In the current study, using machine learning, we build automated detectors of SRL constructs 
from a theory-driven lens. Using a dataset of 79 students as they interacted with the online math 
learning platform CueThink, we first examine the learning environment, understanding how 
students interact with the platform and the context of how the log data is generated. Based on 
the context and the log data available, we identify relevant theoretical constructs grounded in 
the SMART model. In particular, the following seven SRL indicators relating to four cognitive 
operations in the SMART model are identified for investigation: 1) numerical representation, 2) 
contextual representation, 3) strategy orientation, 4) outcome orientation, 5) data 
transformation, 6) following plans, and 7) incorporating information. 

When developing the detectors, we use text replay to code student interactions for each 
indicator. These labels are then used as ground truth for machine learning. We distill a variety 
of features from the log data to represent multiple aspects of a student’s interaction, including 
the number of responses and the content in the responses. The ground truth and the features are 
then input into a machine learning process, training a model to emulate human coders’ judgment 
and making predictions on the presence or absence of an SRL indicator. We demonstrate that 
trained detectors provide accurate detection, suitable for real-time use. Then, through slicing 
analysis, we evaluate the performance of our models across different demographic groups and 
demonstrate that the detectors are fair overall and are not consistently biased against any specific 
student groups. 

4. DATA 

4.1. LEARNING ENVIRONMENT 

CueThink is a digital learning application that focuses on enhancing middle school student math 
problem-solving skills by encouraging students to engage in self-regulated learning and develop 
math language to communicate problem-solving processes. CueThink asks students both to 
solve a math problem and to create a shareable screencast video that provides the student’s 
answer and also demonstrates their problem-solving process. As Figure 1 shows, CueThink 
structures a problem into a Thinklet, a process that includes four phases—Understand, Plan, 
Solve, and Review—that closely align with Winne and Hadwin’s model of SRL (1998). 

 
Figure 1: Screenshots of CueThink’s 4 Phase Approach. 
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Each phase of the Thinklet (outlined in Table 1 and described in more detail below), asks 
students to focus on a different part of the problem-solving process. While working on a 
Thinklet, students can move freely across the four phases, including going back to a previous 
phase or skipping phases. 

Starting with the Understand phase, students read a problem and provide text-based 
responses to three questions: (1) “What do you notice?” (2) “What do you wonder?” and (3) 
“What is your estimated answer to the problem?” This phase encourages students to actively 
look for information in the problem and create a representation of the problem space. Thus, 
students demonstrate their understanding of what they know and what they need to know at this 
phase. 

In the Plan phase, students build on what they have established in the Understand phase by 
planning how they will solve the problem. Students are first prompted to select what strategies 
they will use to solve the problem. They may choose from a predefined strategy list (i.e., draw 
a picture, model with an equation, work backwards, etc.) or define their own strategies. Once 
the student has selected which strategies they will use, the student is prompted to write a plan 
on how they will use the strategies to solve the problem. 

In the Solve phase, students explain and present their answers. Specifically, they create a 
screencast video using an interface that provides them with a whiteboard and mathematical tools 
(i.e., number lines, ruler, etc.). 

In the Review phase, students provide the final answer to the math problem and reflect on 
whether the answer makes sense and whether their communication is clear, using checklists to 
scaffold their reflection. 

Once students have completed the problem, they share their screencast explanation for Peer 
Review. In this phase, teachers and peers annotate both the textual responses and video, often 
asking the student for their underlying reasoning or why the student picked specific methods. 
These annotations are then sent back to the video’s author for possible revision. 

Table 1: Summary of Tasks by Thinklet Phase. 

Phase Tasks Description & Data Types 

Understand What I notice is (textual response) 
What I wonder is (textual response) 
Estimate your answer (textual response) 

Plan Choose your strategies (select all that apply, 
textual response) 
Planning journal (textual response) 

Solve* Video creation tools (Whiteboard, math tools, and 
recording tools) 

Review Check your math (select all that apply) 
Check your recoding (select all that apply) 
Review your estimate (textual response) 
Final answer (textual response) 

* Student activity in the Solve phase is not used in this paper’s analyses 
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4.2. STUDENTS DEMOGRAPHICS 

In this study, 79 students in grades 6 and 7 at a suburban school in the southwestern U.S. used 
CueThink during the 2020-21 school year. The school contains a diverse student population, 
with around 40% Hispanic or Latino, 40% White, 15% African American, and 5% Asian 
students. Students’ self-reported demographic information on gender and race/ethnicity was 
collected. For gender, students could choose to identify as male, female, non-binary, or leave 
the question blank. For race/ethnicity, options included African American, Hispanic/Latinx, 
White, Asian, Native American, two or more races, other, or prefer not to say. Students reporting 
“other” for their race/ethnicity were provided the option to give detail. 

4.3. LOG DATA 

CueThink was used in six classrooms over multiple weeks, with teachers assigning problems 
for students to complete in the application. We collected log files that reflect how students use 
the application and their problem-solving process. On average, students spent 5.2 hours in 
CueThink and 1.8 hours working on each Thinklet, with each Thinklet containing one math 
problem. For each Thinklet, we collected the questions students answered and their textual 
responses at each phase. In this study, we analyzed textual and click-stream data but did not 
analyze data from the videos. In total, we collected 349 Thinklets from 79 students working on 
24 different problems. Of those 349 Thinklets, not all were first attempts. Students have the 
opportunity to revise their work, which creates another Thinklet. In those cases, it is possible 
that a student would not have gone through the entire problem-solving process. Of the total 
number of Thinklets, 146 were duplicate attempts. 

5. BUILDING AUTOMATED DETECTORS 
In this section, we described a multi-step process of using machine learning to build automated 
detectors of self-regulated behaviors. When building these detectors, we first distilled human-
readable text replays from log data (Baker et al., 2006). Using these text replays, we identified 
and operationalized qualitative categories that corresponded with SRL constructs, grounding the 
operationalization in Winne’s SMART model. We then labeled the self-regulated behaviors, 
generating ground truth data. Feature engineering and feature distillation were then conducted. 
Using the ground truth data and features distilled, we trained models using XGBoost to predict 
the presence or absence of the SRL constructs1.  

5.1. TEXT REPLAYS OF INTERACTION LOGS 

To facilitate the inspection and exploration of the data, we used text replays (Baker et al., 2006). 
This method presents segments of interaction data (referred to as clips) in a human-readable 
presentation. This process facilitates both the initial exploration of the data (such as in section 
5.2) along with the final coding process (section 5.3). Clips are then viewed by human coders 
who label them accordingly (Baker et al., 2006). Previous studies have used text replay coding 
to label student affect, disengagement, and learning strategies, such as gaming the system (Baker 
and Carvalho, 2008), confrustion (Lee et al., 2011), player goals (DiCerbo and Kidwai, 2013), 

 
 
1XGBoost Models: https://github.com/JZ2655/EFMATH_JEDM2022.git 
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and SRL strategies such as whether a student is using a table to plan their analyses (Sao Pedro 
et al., 2013). This approach achieves a level of reliability similar to classroom observations and 
is 2-6 times faster compared to other methods of generating labels, such as classroom 
observations, screen replay, and retrospective think/emote-aloud protocols (Baker et al., 2006). 

The length and the grain-size of text replay clips can vary depending on the granularity of 
the predictions the researcher intends to make. Because this study seeks to detect cognitive SRL 
operations in the problem-solving process, which requires a comprehensive examination across 
questions and phases, the log files were delineated into clips on the level of entire Thinklets. 
Each clip contains a student's actions and text-based responses that were submitted as that 
student worked through the four phases to produce a single Thinklet. The clips were distilled 
from log files and presented using a Python window, shown in Figure 2. As the indicators 
operationalized in the current study mainly reflect SRL constructs that are likely to be observed 
in the first two stages in the problem-solving process, where learners define tasks and form 
plans, video data from the Solve phase was not converted and was not included in the text 
replays.  

5.2. CONSTRUCT OPERATIONALIZATIONS 

To identify constructs to detect, we first examined the clips containing student responses in 
Thinklets and coded student responses for indicators of SRL – qualitative categories that 
correspond with SRL constructs (we discuss the details of exactly how the data was coded in 
section 5.3). The definitions of the indicators we coded were developed through dialogue 
between the research team and system developers. This process followed the recursive, iterative 
process used in (Weston et al., 2001) that includes seven stages: conceptualization of codes, 
generation of codes, refinement of the first coding system, generation of the first codebook, 
continued revision and feedback, coding implementation, and continued revision of the codes 
(Weston et al., 2001). The conceptualization of codes included a review of related literature, 
including several theoretical frameworks and perspectives (Bandura, 1986; Boekaerts, 1999; 
Efklides, 2011), primarily focusing on the SMART model (Winne, 2017). Using grounded 
theory (Charmaz 1983), we identified common behaviors that were (1) indicative of SRL as 
characterized by Winne’s SMART model (Winne, 2017) and (2) salient in the log files. A draft 
lexicon and multiple criteria were generated for a coding system to help identify these 
constructs. 

Given the learning environment's design and the available data, our efforts focused on 
defining behaviors related to four categories of cognitive operations (namely, the monitoring, 
assembling, rehearsing, and translating operations from the SMART model) as they are 
frequently employed in the initial stages of SRL as learners define tasks, set goals, and make 
plans. Following the process used in (Weston et al., 2001), two coders coded a set of clips 
together, identified seven SRL indicators, and outlined the criteria for each indicator, and created 
a rubric. These indicators are numerical representation, contextual representation, strategy 
orientation, outcome orientation, data transformation, following plans, and incorporating 
information. The draft coding manual was discussed with all members of the research team and 
developers and designers at CueThink to build a common understanding of the criteria and 
constructs being examined as well as the features of the system to gain feedback for further 
refinement. This process was repeated until the entire team had reached a shared understanding 
of the criteria and constructs being examined by the codebook. The SRL indicators identified, 
the criteria, and alignment with the SMART model are included in Table 2. 
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Numerical and contextual representation consider a learner’s process of creating a problem 
representation, which often occurs in the initial stage in the problem-solving process (i.e., define 
the task), outlined in the four-phase model of SRL (Winne and Hadwin, 1998). In problem 
representation, learners create a problem space by identifying information they know and 
information they need to know. These two SRL indicators encode how learners represent and 
process information in math problems, denoting if numerical components and/or contextual 
details are noted. We consider both of these processes to reflect assembling in the SMART 
model as students are creating their representation of the data from the information provided. 
There may also be overlap with translating in some cases, especially if the question provides a 
different representation to the one the students use. However, as this is not always the case, we 
primarily consider both indicators to reflect assembling actions and tag translating actions in a 
different code (see below). 

Strategy and outcome orientation also reflect student assembling behaviors. Both of these 
indicators concern how students set their goals and form plans for the problem-solving process. 
These two indicators demonstrate a difference in focus (process vs. output). However, these two 
indicators do not have to be mutually exclusive. A comprehensive goal may contain both a 
process component that reflects the strategies the learner plans to adopt to solve the problem as 
well as an estimation of what the learner believes the outcome should be. 

As mentioned above, students may change how information is provided when forming a 
representation. Data transformation reflects behaviors that are associated with the translating 
operation. In data transformation, the learner manipulates the ways information is represented 
to them in the problem to find a solution. 

Following plans as an indicator reflects scenarios where learners incorporate previously 
selected strategies into their plans, documented in the planning journal task in the learning 
platform. This alignment between the strategies selected and strategies incorporated in the plans 
demonstrates learners’ enactment of the monitoring operation, showing that learners are actively 
checking and monitoring the congruence of their responses.   

Lastly, also observed in the planning phase, incorporating information reflects behaviors 
where learners correctly and meaningfully incorporate previously assembled information into 
their plans. These behaviors reflect an engagement with the rehearsing operation, in which the 
learners review information that has been previously noted. 
 

Table 2: SRL Indicators Coded through Text Replays. 

SMART 
Category 

SRL Indicator Working Definition 

Assembling Numerical 
Representation (NR) 

The learner’s representation of the problems 
includes numerical components and 
demonstrates a level of understanding of how 
the numerical values are used in the math 
problem.  

Assembling Contextual 
Representation (CR) 

The learner’s representation of the problem 
includes contextual details relating to the 
setting/characters/situations within the given 
math problem. 
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Assembling Strategy 
Orientation (SO) 

Learners explicitly state a plan for how they will 
find the answer for the given math problem, 
decomposing information into a step-by-step 
process. 

Assembling Outcome 
Orientation (OO) 

The learner provides only a numerical estimate 
of the final answer for the given math problem, 
suggesting that learners are focused on the 
output instead of the process itself. 

Translating Data 
Transformation (DT) 

The learner manipulates the ways information is 
represented to them in the problem to find a 
solution. This suggests active problem-solving. 

Monitoring Following Plans (FP) When making a plan, learners correctly and 
meaningfully incorporate the strategies they 
selected into the plan. 

Rehearsing Incorporating 
Information (II) 

When making a plan, learners correctly and 
meaningfully incorporate information 
previously assembled into the plan. 

 

5.3.  CODING THE DATA 

After constructs were operationalized and defined, we proceeded to code the remainder of the 
data. Two coders (the same as in the previous section) completed the text replay coding in three 
phases: preliminary coding (discussed above), separate coding (two coders per clip; for 
establishing inter-rater reliability), and individual coding (one coder per clip; to code the full set 
of clips used in the detectors). 
 

Table 3: Inter-Rater Reliability in Separate Coding. 

SRL Indicator IRR Kappa 

Numerical Representation (NR) 0.83 

Contextual Representation (CR) 0.63 

Strategy Orientation (SO) 0.74 

Outcome Orientation (OO) 0.78 

Data Transformation (DT) 0.74 

Following Plans (FP) 0.75 

Incorporating Information (II) 0.80 
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The two coders each used the codebook/rubric to code the same set of clips separately. They 

then compared the labels and computed the inter-rater reliability (IRR) kappa. For constructs 
with low kappa, the two coders discussed their differences in labeling and conducted another 
round of coding. This step of separate coding and comparing is repeated until acceptable 
reliability is established. After two rounds of coding, the two coders reached an acceptable IRR 
above 0.60 for all five SRL indicators (M=0.75), shown in Table 3. 

Once reliability was established, the coders moved on to the individual coding where they 
split the rest of the clips and coded them individually. Each construct was considered over the 
entire Thinklet. Thus, in total, the two coders coded 349 clips. However, in order to consistently 
examine the entire problem-solving process, 167 clips that were marked incomplete because 
students stopped before completing the entire problem were excluded. Of the remaining 182 
clips, coding resulted in the following distribution of labels: 64% numerical representation, 77% 
contextual representation, 8% strategy orientation, 72% outcome orientation, 73% data 
transformation, 47% following plans, and 41% incorporating information. These were produced 
by 72 students, who, on average, each contributed 3 clips (max=4, min=1, median=3).    

 

 

Figure 2: Screenshot of Text Replay Coding Window. 

5.4. FEATURE DISTILLATION 

After data coding yielded a set of labels, two sets of features were distilled from the clips that 
had been coded, to be input into the algorithms used to build the detectors. Both sets of features 
consist solely of features that can be extracted and used in real-time. As video data from the 
Solve phase were not included in text replays, we did not extract data from this phase in feature 
distillation.  

The first set of features (N = 10) were distilled at the Thinklet level. These features were 
designed to provide an overview of the completeness of a Thinklet by examining the number of 
responses (as opposed to the content in the responses) in a Thinklet. For example, we distilled 
the number of questions students answered in a Thinklet, a binary indication showing if each 
prompt or question (e.g., “what I notice”) is answered, and the number of responses (text entries) 
in each phase. Additionally, to understand the strategies that students selected in the Plan phase, 
we also created a feature that counts the number of strategies a student selects among the top 
two strategies used by peers for the same problem. 
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The second set of features was designed to examine the content and the linguistic features of 
students’ text-based responses. These features (N = 90) were first extracted at the response level 
and then aggregated to the phase level. These aggregations were calculated for the Understand, 
Plan, and Review phases. 

Specifically, we distilled whether each response: 1) contains a numerical value, 2) consists 
of only numerical values, 3) has mathematical operation signs, 4) contains a question (if it 
contains a question mark or uses keywords such as “wonder”, “why”, etc.), 5) uses language 
that indicates the formation of a plan (e.g., the use of keywords like “plan”, “I will”, “going to”, 
etc.) , and 6) is the exact repetition of a previous answer. These criteria generate a set of binary 
variables for each response. We averaged these binary variables across the responses within a 
phase, creating 18 features for each Thinklet. 

Additionally, in each response, we counted the number of 7) characters, 8) words, 9) 
numerical values, 10) verbs, 11) nouns, and 12) pronouns. Features 10-12 were counted using 
Udpipe, a natural language processing toolkit (Wijffels et al., 2017). We also 13) counted the 
number of keywords used from a predefined list that provides the context of each problem; and 
14) computed how similar each response is to the problem item using the Smith-Waterman 
algorithm (Smith and Waterman 1981). For these continuous variables, we computed the mean, 
standard deviation, and max of the values for each phase, creating 72 features. 

Features distilled from the two sets were combined. In total, 100 features were extracted from 
each Thinklet and were then used to construct the automated detectors. Note that we did not 
extract any features from the video that students make in the current work. Similarly, we did not 
use any of the audio from the video (or transcription thereof) for any features. 

5.5. MACHINE LEARNING ALGORITHMS 

We used the scikit-learn library (Pedregosa et al., 2011) to implement commonly-used classical 
machine learning algorithms, including Logistic Regression, Lasso, Decision Tree, and Random 
Forest, and used the XGBoost library (Chen and Guestrin, 2016) implementation of Extreme 
Gradient Boosting (XGBoost). XGBoost outperformed other algorithms in all cases; we 
therefore only discuss the XGBoost results below. 

XGBoost uses an ensemble technique that trains an initial, weak decision tree and calculates 
its prediction errors. It then iteratively trains subsequent decision trees to predict the error of the 
previous decision tree, with the final prediction representing the sum of the predictions of all 
the trees in the set. We tested the detectors with 10-fold student-level cross-validation, to verify 
generalizability to new students. For this approach, the dataset was split into 10 student-level 
folds, meaning that in cases where students had multiple Thinklets, all of their data would be 
contained within the same fold and at no time could data from a student be included in both the 
training and testing set. Nine folds were used to train the model, and the trained model was used 
to make predictions for the 10th fold. Each fold was used as the test set once.  

Models were evaluated using the area under the Receiver Operating Characteristic curve 
(AUC ROC), which indicates the probability that the model can correctly distinguish between 
an example of each class. An AUC ROC of 0.5 represents chance classification, while an AUC 
ROC of 1 represents perfect classification. Results were calculated for each fold and averaged 
to yield one AUC ROC score per detector. 
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6. RESULTS 
In this section, we report the results of the models developed in the previous section. 
Specifically, we evaluated the ROC AUC of the models using 10-fold student-level cross-
validation, examined the feature importance, understanding how features contribute to the 
performance of a model, and checked for algorithmic bias. 

6.1. MODEL PERFORMANCE 

Due to the rarity of strategy orientation (only 14 clips were labeled with this construct), a 
detector could not be built for this construct. Automated detectors were built for the other six 
constructs. As shown in Table 4, the average AUC ROC derived from 10-fold student-level 
cross-validation for the six detectors ranges from 0.76 to 0.89 with a standard deviation across 
folds around 0.1 for all six constructs. In specific, the average AUC ROC is 0.894 for numerical 
representation (NR), 0.813 for contextual representation (CR), 0.761 for outcome orientation 
(OO), 0.815 for data transformation (DT), 0.808 for following plans (FP), and 0.803 for 
incorporating information (II). These findings suggest that the detectors were generally 
successful at capturing these six SRL constructs. We also calculated the standard deviations 
(SD) of the AUC ROCs across the 10 folds for each detector to investigate the variability across 
folds. 

 

Table 4: Detector Performance Measured by AUC ROC. 

SRL Indicator AUC ROC (SD) 

Numerical Representation 0.894 (.078) 

Contextual Representation 0.813 (.132) 

Outcome Orientation 0.761 (.076) 

Data Transformation 0.815 (.163) 

Following Plans 0.808 (.099) 

Incorporating Information 0.803 (.103) 

 

6.2. FEATURE IMPORTANCE 

To better understand the detectors as well as to inform our understanding of how these features 
relate to the constructs, we calculated the SHapley Additive exPlanations (SHAP) (Lundberg et 
al., 2019) value of each feature. Recent work has found that different explainability methods 
can produce very different estimates of feature importance (Swamy et al., 2022), making it 
essential to choose an appropriate method of assessing feature importance. SHAP has several 
advantages for the current project, given its solid theoretical foundation, its property of being 
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model-agnostic, its ability to produce consistent and locally accurate attribution values, and its 
better alignment with human intuition than other approaches (Lundberg et al., 2019). 

In the current study, SHAP value was computed for each feature within each test set. These 
values were then averaged across the 10 test sets and ranked based on their absolute values. Of 
the 100 features used, Table 5 reports the top five features with the highest absolute SHAP 
values for each detector. To understand the directionality, we examined the average SHAP 
values of the features listed. In the last column in Table 5, the positive and negative signs are 
used to reflect the average SHAP value, denoting the directionality of a feature. A positive 
average value indicates that the feature is a positive predictor of the SRL indicators, suggesting 
that the higher the value, the more likely the model is to infer the presence of an SRL indicator. 
Features denoted with a negative sign indicate a negative average SHAP value, as these features 
positively predict the absence of the SRL indicators.   
 

Table 5: The Top Five Features from each Detector and their Directionality. 

Feature Phase Feature +/- 
Numerical Representation 

 

Understand Mean N of responses that give numerical values + 
Understand Max value of the similarity feature which indicates how parallel a 

student’s response is to the original problem 
+ 

Understand SD of the similarity feature + 
Understand Total N of responses + 
Plan Avg value of the similarity feature + 
Contextual Representation 

 

Understand N of responses to the "what do you notice" question? + 
Understand Avg N of keywords used + 
Understand SD of the N of characters used - 
Thinklet Total N of responses + 
Plan Max value of the N of characters used + 

Outcome Orientation 
 

Review Avg N of keywords used + 
Review Avg N of words used + 
Understand SD of the N of numerical values used + 
Understand Is there a response to the "what is your estimated answer" question? + 
Review Avg N of nouns used + 
Data Transformation 

 

Plan N of strategies selected that were among the most common 
strategies used by peers 

+ 

Understand SD of the similarity feature + 
Plan SD of the N of characters used + 
Understand SD of the N of nouns used + 
Plan Max value of N of words used + 
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Following Plans 
Plan SD of the N of verbs used   - 
Plan SD of the N of pronouns used - 
Review Avg N of pronouns used + 
Plan Avg N of verbs used + 
Review Avg N of verbs used + 
Incorporating Information 
Plan Avg N of characters used - 
Plan Avg N of pronouns used + 
Plan Max value of N pronouns used - 
Plan Max value of N words used - 
Plan SD of N of nouns used - 

 

We note that of the 30 features listed in Table 5, 11 are from the Understand phase, 13 are 
from the Plan phase, and 5 are from the Review phase. In other words, behaviors in the early 
phases contributed more heavily to the predictions. This finding aligns with how the Thinklets 
were initially coded. Specifically, the coders primarily examined student responses in the 
Understand phase for numerical and contextual representation as this phase contains 
information demonstrating how students assemble information and create a problem 
representation; the coders examined the Thinklet more broadly when coding for other SRL 
indicators, as they represent behaviors that span across phases. One can also notice how various 
aspects of a linguistic feature are used in predicting the indicators. As the number, average, and 
max values of a linguistic feature (e.g., words, nouns, or verbs) indicate the frequency of its 
presence, standard deviation reflects the consistency of use of the linguistic feature across 
responses within a phase. These differences in what linguistic features are used and how they 
are used reflect differences in learners’ responses in a Thinklet, representing various behaviors 
and attention when eliciting different SRL strategies. The implications of specific features will 
be discussed in detail in the discussion section.  

To better understand the distribution of these top features in the dataset, we report the mean 
and frequency of the features across Thinklets, in the Appendix. We present the mean for 
features with continuous values (e.g., the total number of responses in the Understand phase) to 
give a sense of a typical value for the feature, and calculate the percentages for features with 
binary values (e.g., is there a response to the "what is your estimated answer" question) to reflect 
the prevalence of the feature.  

 

6.3. ALGORITHMIC BIAS 

Algorithmic bias describes the problem where a data-driven predictive model functions better 
for some populations than others, producing disparate and poorer impact for historically 
underrepresented or protected groups (Kizilcec and Lee, 2020). To validate our detectors, we 
tested the model performance in different student populations based on gender and 
race/ethnicity using slicing analysis (Gardner et al., 2019). Specifically, utilizing the predictions 
made in the testing sets, AUC was computed for each subgroup of students in the data for which 
we received data on group membership. However, due to sample size, comparisons were not 
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possible for gender non-binary students (N=2), Asian students (N=2), or Native American 
students (N=0). 

As Table 6 shows, the difference in model performance measured by AUC between male 
and female students is small to moderate, ranging from 0.01-0.11 for the six detectors. However, 
though some differences reached 0.11, the directionality was not consistent between male and 
female students. Furthermore, all detectors achieved AUC ROC over 0.7 for both male and 
female students. The detectors for numerical representation, contextual representation, and 
incorporating information performed somewhat better for female students (AUCNR = .93, 
AUCCR = .75, AUCII = .84) than for male students (AUCNR = .82, AUCCR = .74, AUCII = .72), 
while detectors for outcome orientation, data transformation, and following plans performed 
somewhat better for male students (AUCOO = .78, AUCDT = .88, AUCFP = .82) than for female 
students (AUCOO = .74, AUCDT = .87, AUCFP = .76).  

Table 6 also shows the analysis of algorithmic bias in terms of race/ethnicity, comparing the 
AUC between student racial/ethnic subgroups that had more than 5 students in our sample: 
African American, Hispanic/Latinx, and White. Small to moderate differences were observed 
across the three groups, though the differences were not consistent (i.e., no racial/ethnic group 
consistently had the best-performing detectors). Furthermore, performance remained over 0.7 
for all six detectors across all groups, with only two exceptions (discussed below). When 
detecting numerical representation and contextual representations, the detectors performed 
somewhat better for White students (AUCNR = 0.96, AUCCR = 0.80), than for African American 
(AUCNR = 0.92, AUCCR = 0.75) and Hispanic/Latinx (AUCNR = 0.88, AUCCR = 0.72) students. 
However, the outcome orientation detector had somewhat higher performance for 
Hispanic/Latinx students (AUCOO = 0.81), than for White (AUCOO = 0.80) and African 
American (AUCOO = 0.71) students. The data transformation detector performed better for 
African American students (AUCDT = 0.92) than for Hispanic/Latinx (AUCDT = 0.91) and White 
(AUCDT = 0.83) students. The detectors perform similarly across African American (AUCFP = 
0.75, AUCII = 0.85), Hispanic/Latinx (AUCFP = 0.79, AUCII = 0.71), and White students 
(AUCFP = 0.79, AUCII = 0.78) when detecting the behaviors of following plans and 
incorporating information. 
 

Table 6: Detector Performance by Gender and Racial/Ethnic Groups. 

      Gender Race/Ethnicity 

  
All 

Students 
(k-fold) 

All 
Students 
(Pooled) 

Male Female Left 
Blank 

African 
American 

Hispanic/ 
Latinx White Prefer Not 

to Say Other Two or 
more races 

N. 
students 72 72 33 28 9 6 18 8 19 14 5 
N. clips 182 182 81 73 24 20 38 19 50 37 12 

NR 0.89 0.89 0.82 0.93 0.97 0.92 0.88 0.96 0.86 0.85 0.86 
CR 0.81 0.80 0.74 0.75 0.94 0.75 0.72 0.80 0.90 0.65 0.78 
OO 0.78 0.75 0.78 0.74 0.72 0.71 0.81 0.80 0.74 0.78 0.46 
DT 0.82 0.86 0.88 0.87 0.78 0.92 0.91 0.83 0.84 0.82 0.86 
FP 0.81 0.80 0.82 0.76 0.83 0.75 0.79 0.79 0.91 0.73 0.83 
II 0.80 0.80 0.74 0.84 0.77 0.85 0.71 0.78 0.78 0.86 0.91 

 
Two exceptions were found to this generally positive pattern of results. Performance was 

substantially lower for detecting contextual representation for students who identify race as 
other (AUCCR = 0.65) and for detecting outcome orientation for students who identify as 
belonging to two or more races (AUCOO = 0.46). This relatively poor performance may be due 
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to the small sample size of these constructs within these subgroups (i.e., 5 students identified as 
two or more races), or the fact that the other group likely represents a variety of different racial 
groups whose members aren’t necessarily similar to each other. In future work, we hope to 
collect larger samples in order to ensure acceptable performance for these cases and examine 
the open responses for those who choose other. 

Within the data, there were many students who declined to report gender (N = 9) and race (N 
= 19). Both groups who declined to report performed close to the average model performance, 
across groups and contexts. 

To understand if there are any differences in student behaviors in using the platform between 
learners in different demographic groups, we examined whether the top features varied by 
gender and racial/ethnic groups, in terms of either mean or distribution. As shown in the 
Appendix, male and female students demonstrate similar behaviors, with one exception: female 
students on average tend to provide lengthier responses in the Plan phase (e.g., higher maximum 
value of the number of characters used) than male students. Students who did not specify their 
gender tend to have shorter answers and make fewer responses in general. 

When comparing student behaviors across racial/ethnic groups, we found that African 
American students are likely to use more words and characters in their responses than 
Hispanic/Latinx or White students. For example, on average, African American students had a 
higher maximum number of characters used in the Plan phase and a higher average number of 
words used in the Review phase. However, high variation is also observed in this group (e.g., 
higher standard deviation of the number of characters used). 

7. DISCUSSION 

7.1. MAIN FINDINGS 

Given the importance of self-regulation in learning, specifically in the problem-solving process, 
an increasing number of studies have looked into ways to promote self-regulated learning. This 
first requires the ability to accurately measure SRL so that interventions can be introduced to 
encourage and guide students to self-regulate effectively. However, the most common ways of 
measuring SRL in a fine-grained fashion – either through self-report and think-aloud protocols 
–are difficult to automate and scale, and they can also interrupt or interfere with the learning 
task. Log data collected from computer-based learning environments offer an unobtrusive and 
potentially scalable solution to help understand when and how students self-regulate within the 
problem-solving process, in order to inform decisions on intervention (e.g., Aleven et al., 2006). 
However, previous automated detection of SRL constructs using log data has mostly not been 
explicitly connected to SRL theory. In the current work, we explored the possibility of detecting 
SRL constructs at a fine-grained level, focusing on detecting cognitive operations (i.e., 
monitoring, assembling, rehearsing, and translating), outlined in the SMART model (Winne, 
2017). Specifically, we detected the presence of six self-regulation indicators related to four 
categories of operations: 1) numerical representation, 2) contextual representation, 3) outcome 
orientation, 4) data transformation, 5) following plans, and 6) incorporating information. 
Detectors were built using a machine learning approach and were evaluated with a 10-fold 
student-level cross-validation. The detectors were found to be accurate and valid across 
demographic groups, with AUC ROC ranging from .76-.89.  

To understand the detectors, feature importance was examined using SHAP values. The top 
five features with the highest absolute SHAP values were identified for each detector. With the 
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features identified, we find that except for outcome orientation and following plans, the 
detectors primarily rely on features extracted from the Understand and Plan phases of the 
learning activity, the two phases where students assemble information and make plans. In 
particular, the numerical representation detector mainly relies on features that examine the 
numerical values used in the Understand phase as well as features that compare the similarity 
between student responses and the problem item. The numerical value feature makes sense, as 
the detector is operationalized to identify if numerical components are processed and 
represented when students assemble information. 

However, the maximum similarity feature, a feature that takes both numerical values and text 
into account and examines how similar students’ responses are to the problem item, also 
contributes to the NR indicator. This finding suggests that the NR detector not only examines if 
numbers are used in responses, but also how they are used in relation to the problem. As such, 
this finding validates the operationalization of this indicator, showing that the learner 
demonstrates a level of understanding of how numerical values are used in math problems, 
creating a representation of the problem space utilizing numbers.  

The contextual representation detector looks at the keywords used in students’ responses in 
the Understand phase and the length of the responses in the Plan phase, which indicates the 
relationship that the longer the responses are when a student is forming a plan, the more likely 
it is for the student to contextually represent the problem. When predicting the presence of 
outcome orientation, the model utilizes features extracted in the Understand and the Review 
phases, understanding students’ use of keywords, nouns, and numerical values in these two 
phases. The data transformation detector checks the number of top strategies students select as 
well as the length and the variation in the length of the responses in the Understand and the Plan 
phase.  

The features that predict students' behavior of following plans and incorporating information 
mainly come from the Plan phase, which coincide with the operationalization of the two 
indicators of which we expect to observe when students form plans. In specific, we find that the 
standard deviation of the number of verbs used in the Plan phase negatively predicts the 
following-plans behavior. Since the strategies selected (part of responses collected in the Plan 
phase) typically involve the use of verbs (e.g. draw a picture, or make a table), the more similar 
the response is in the planning journal (the task that asks students to write down the plan) in 
terms of the verb counts, the more likely it is for students to incorporate selected strategies into 
their plans, hence demonstrating the behavior of following-plans.  

The incorporating information detector relies on features that examine the length of the 
responses (i.e., number of characters) and the use of pronouns in the Plan phase. A negative 
relationship is found between the length of the responses and the behavior of incorporating 
information. Though the relationship seems counterintuitive, as it is common to assume an 
extensive plan could be the result of incorporating information, after examining positive cases, 
we find that students who incorporate information tend to have straightforward and succinct 
plans, usually with a bullet list, outlining the steps that they will follow. In these plans, sentences 
often start with a first-person pronoun (e.g., “I will use” or “My plan is”), which possibly explain 
the positive relationship between the use of pronouns and the positive indication of the construct.  

Additionally, we examined model performance on different demographic subgroups of 
students, both in terms of gender and racial/ethnic groups, to verify their fairness and lack of 
algorithmic biases. Relatively small differences were observed in each comparison, and no 
student group (either gender or racial/ethnic group) consistently had the best-performing 
detectors. 
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7.2. APPLICATIONS 

The detectors built in the current study provide two advances over the previous state-of-the-art 
in SRL detection. First, previous SRL detectors generally identified higher-level strategies and 
were not typically linked to theory; in contrast, our detectors were explicitly based on an SRL 
model in order to identify theoretically-grounded SRL constructs at a finer-grain size. Having 
developed these fine-grained models of behavior directly associated with the cognitive 
operations of SMART, we can conduct analyses to further our understanding of the role that 
cognitive operations play in the broader process of SRL. For example, we can investigate 
questions about how often students use these cognitive operations in each of the four tasks 
outlined in the Winne and Hadwin’s four-stage model, and how the engagement and the 
frequency of the engagement in these cognitive operations contribute to the success of 
completing the tasks. Results from future analyses will help expand the current theoretical 
understanding on SRL, adding specificity to the still high-level processes represented in 
contemporary SRL theory. 

Second, given that most previous detectors have not been connected explicitly to constructs 
in SRL theory, it has been difficult to use them with theory-driven interventions. The detectors 
proposed in the current study are developed based on a theoretical model of SRL (Winne, 2017; 
Winne and Hadwin, 1998) and are operationalized to capture key aspects of the cognitive 
operations in the model. These detectors can therefore be used to facilitate the development of 
adaptive learning environments that respond to student SRL, in a fashion connected to theory. 
For instance, a student demonstrating an outcome orientation could be encouraged to reflect 
further on their strategy, or a reminder could be provided when students fail to follow the plans 
they had previously formed. 

Similarly, these detectors could provide teachers with information (e.g., through a dashboard) 
on how students are approaching problems. Such a dashboard could support teachers as they 
adapt their instruction and classroom strategies. For example, this data might allow teachers to 
provide more tailored instruction by grouping students based on their use of SRL strategies. 
Second, by examining aggregate data for a given problem (e.g., data from an entire class), 
teachers can gain insight on the properties of that problem that may inform instructional design. 
Problem items tend to differ in type and complexity, thus a different use of SRL reflected by a 
different pattern of engagement in the six SRL indicators may be expected. For example, 
students may be less likely to use outcome orientation in open-ended questions, or students may 
be more likely to use data transformation when a problem contains components and expressions 
that can be converted to equations. Knowing how students approach and respond to different 
problems, measured by SRL indicators, can aid teachers as they create, curate, or revise the 
items in future assignments. For example, teachers wishing to develop numerical representation 
skills for students, may select a problem that has a proven record of students using numerical 
representation in the past. As with any application of this nature, careful attention will be needed 
in design to ensure that data is presented in the most useful form for teachers and appropriately 
represents the uncertainty in the model (i.e., the degree of false positives or false negatives). 
 

7.3. LIMITATIONS AND FUTURE WORKS 

This work has five principal limitations that should be addressed in future work. First, when 
validating the fairness of the models, the sample size is small (less than five students) for several 
student groups. Reliable comparison of the model performance for these groups of students is 
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therefore not possible. In future work, larger and more representative samples will need to be 
collected in order to validate model performance for a broader range of student groups. This is 
a general challenge in algorithmic bias work -- often the groups most at risk of algorithmic bias 
are insufficiently represented in the data to check for algorithmic bias (Baker and Hawn, 2022). 

Second, although our detectors are based on a theoretical model of SRL, the 
operationalization of our constructs is contextualized in the current learning environment, so 
our detectors may be platform-specific. Future work should study the generalizability of the 
current detectors across platforms and explore how they can be adapted for use in other learning 
environments. To the extent that some of our detectors (such as the data transformation detector) 
apply across learning environments, we can investigate their performance within those contexts 
to evaluate their generalizability (see, for instance, Paquette and Baker, 2017). 

Third, since the detectors are currently trained and modeled on complete Thinklets, they will 
have some limitations in the ways they can be used when being implemented in a learning 
platform. Specifically, the detectors will only be able to make predictions after a student has 
solved a problem, providing an indicator at that point on the student’s use or lack of use of 
monitoring, assembling, rehearsing, and translating, in the problem-solving process. As such, 
these detectors will not provide immediate detection of these strategies when students are 
working through a problem. However, they can still be used to inform teachers and direct their 
feedback after a problem has concluded, in between problems or for the next problem. To enable 
other uses, it may be relevant to examine ways of also making early predictions based on 
incomplete Thinklets in order to provide detection during the problem-solving process, enabling 
real-time interventions. 

Future work should also consider additional methods for ground truth labeling. In this work, 
we used a post-hoc tagging approach (through text replays), to identify indicators of SRL-related 
strategies. This approach has the potential to miss crucial “in-the-moment” events that are not 
evident from the log data alone. Future studies could examine how post-hoc tagging used in the 
current study aligns with in-the-moment tagging, reported either by student themselves or 
external observers/interviewers (e.g., Baker et al., 2004) to examine additional aspects of SRL. 

Finally, future work should consider expanding the scope of this work. In the current study, 
seven constructs were identified and six modeled. SRL, as a process, covers a much broader 
range of behaviors and strategies that elicit the use of various cognitive operations. Future 
studies should model and detect a broader range of cognitive operations throughout the four 
stages of self-regulated learning in the context of problem-solving. 

7.4. CONCLUSIONS 

To better understand and facilitate the use of self-regulation in problem-solving, the current 
study tested the possibility of scaling up SRL measurement by leveraging machine learning to 
automatically detect individual SRL indicators through the lens of the SMART model. We built 
automated detectors that identify six commonly used strategies in math problem-solving, 
indicating four of the five operations outlined in the SMART model (namely, monitoring, 
assembling, rehearsing, and translating). Our detectors were found to be reliable and 
generalizable. These detectors were also tested on different student populations to verify their 
fairness and lack of algorithmic bias. Given these properties, we anticipate implementing the 
detectors in the learning environment to collect more fine-grained data and to leverage the 
detection to inform interventions, creating more positive experiences in mathematical problem-
solving. 
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