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Abstract— Classroom observation has been used to obtain training 
labels for affect detection, but is expensive for large representative 
samples. Active Learning (AL) methods have been proposed to 
address this challenge by identifying the specific samples that 
should be labeled to improve detector performance, based on a 
metric of informativeness. While previous work has investigated 
the potential benefits of AL methods in affect detection, they have 
considered scenarios that may not completely reflect reality, 
where an observer can code any student and time window within 
the entire data set. Unfortunately, actual use of such a method can 
only take place in the current time window -- classroom observers 
cannot time travel. This paper explores the potential benefit of AL 
methods in a scenario that more closely mimics the human coder's 
observation process in a real classroom -- where the coder can only 
observe behavior occurring at the current moment. Our 
experimental results show that AL methods slightly improve the 
performance indicators of binary detectors for concentration, 
confusion, and frustration compared to control sampling methods. 
However, there is no benefit for boredom detection. These findings 
have implications for the use of active learning-based data 
collection protocols for developing affect detectors. 

Index Terms— active learning, affect detection, educational data 
mining, learning analytics 

I. INTRODUCTION 

 The use of physical and physiological sensors [1]-[5] and 
interaction log data from student-computer interactions [6]-[9] 
has been proven effective in detecting affective states in the 
classroom. However, the transferability of affect detection 
models across different student populations is not always 
successful [10], [11]. Therefore, researchers need to collect 
large and representative samples to develop trustworthy 
detection models, thereby considerably increasing the 
implementation costs [12].  

 While approaches such as sensor-free detection are highly 
automated and reduce implementation costs, collecting labeled 
data still requires trained human observers [9]-[11] or self-
reports [6]-[8], both of which have limitations. Frequent self-
reports may disrupt students' engagement in their learning 
experience. For instance, the act of self-labeling an emotion has 
been shown to modify the physiological response of the person 
[13]. Moreover, young students may lack the ability to define 
and report on their affective states [14]. On the other hand, 
human observations, while able to mitigate these issues, also 
have a significant drawback due to the process required to code 
students' affective states in real classrooms [15], including 
training, scheduling, and deployment of observers, which 
creates an expensive bottleneck. Thus, while there is a wealth 

of data on student activity, collecting labeled data on affect 
presents a significant challenge. Therefore, exploring 
alternative approaches to develop machine learning models that 
can perform better with less annotated data is crucial. 

 To address the issue of data availability in affect detection, 
researchers have explored the use of semi-supervised learning 
for facial expression recognition, using datasets with mostly 
unlabeled samples [16]. This approach compares detectors 
based on their performance using exclusively labeled data 
versus incorporating labeled and unlabeled data during training. 
Results show that semi-supervised learning outperforms 
supervised methods that do not use unlabeled data. However, 
this approach has a limitation when the unlabeled data cannot 
be appropriately leveraged due to an insufficient number of 
labeled samples. Therefore, there is still a need to determine the 
most informative subset of samples to be labeled before 
applying these methods. 

 Active Learning (AL) [17], a subfield of Machine Learning 
(ML), has emerged as a potential solution to the challenge of 
developing accurate models with fewer labeled data samples. 
By enabling the ML model to choose which data to train on, AL 
methods select a smaller subset of carefully chosen data 
samples that can potentially lead to better detector performance 
at lower cost. This approach allows for a more targeted labeling 
effort, focused on the data samples that can be most helpful for 
the model, instead of coding all the students employing a 
predetermined order [15], which does not necessarily provide 
the most informative samples for the model. Ideally, this 
approach is conducted in real-time, when the samples are being 
collected, to make better observation decisions. 

 Previous studies have shown that using AL methods to sample 
data can improve the performance of affect detectors [11], [18]. 
However, these studies are based on an unrealistic assumption, 
that observations can be chosen across all available data, which 
consist of multiple classroom sessions, occurring across 
multiple days, in several schools. In reality, a coder cannot rely 
on future information or visit other classrooms or schools to 
decide which student to observe next. The coder must choose 
between the students in their current classroom, observing their 
affective state at the current moment. Thus, while these studies 
provide a promising starting point for exploring the use of AL 
for affect detection, their assumptions do not reflect the core 
challenges and limitations to what data the observer can collect 
at any given time. For these reasons, [18] acknowledged that 
the benefits of AL methods in real-world scenarios might be 
lower than the potential impact suggested by experimental 
results. Our goal is therefore to analyze the effectiveness of AL 



methods in a more realistic scenario that takes into account the 
temporal nature of the sampling process. 

 In this paper, we investigate the potential of AL methods to 
improve affect detection by using a sequence of samples that 
mimics the observation process of a human observer in a real 
classroom. We analyze our results both in terms of future 
prediction within the current school, and for prediction of new 
students in unseen schools, examining the findings’ degree of 
robustness across different schools. Going beyond previous 
studies that exclusively used Logistic Regression for detection 
with AL methods [11], [18], we also explore the use of Support 
Vector Machine (SVM), Random Forest (RF), and Multi-Layer 
Perceptron (MLP) classifiers. Our experimental results 
demonstrate that AL methods slightly improve the performance 
of binary detectors for three affective states in this more 
realistic scenario compared to control sampling methods. 
However, for boredom, AL methods do not appear to provide 
benefit to more straightforward sampling approaches.  

II. RELATED WORK 

 In this section, we will briefly introduce active learning 
methods and their previous applications in the context of affect 
detection. We will also review previous research on the 
generalizability of detectors across populations. 

A. Active Learning in Student Affect Detection 

 Collecting labeled data for affect detection is generally 
expensive or disruptive to students . One solution is to attempt 
to collect the labels that are most informative for the model 
rather than trying to label all available/possible data. Active 
Learning (AL) provides a set of methods that determine which 
samples are likely to be most informative, based on metrics 
such as observation uncertainty, expected error reduction, 
expected variance reduction, and model change [19]. 

 In the context of student affect detection, active learning has 
been used to study whether it is possible to  improve detectors' 
performance without increasing resource use [11], [18]. 
According to Yang et al. [18], the most promising AL method 
is Linear Minimum Mean Squared Error (LMMSE), which 
identifies the data point least similar to the previously sampled 
points to achieve maximum reduction of the MSE. Another 
method is Uncertainty Sampling (UncS) [11], [18], which uses 
a detector trained by the previously sampled data to identify the 
following observation that has the highest level of uncertainty 
for the detector. Both LMMSE and UncS have shown a higher 
improvement in classifier performance than other more 
sophisticated AL methods for real-world benchmark datasets 
[19]-[21]. In this work, we employ both LMMSE and UncS. 

 A major challenge for AL methods is the cold start problem; 
when the number of previous observations is low (i.e. at the 
beginning of the AL process), the algorithm is less able to 
determine which observations would be informative. This issue 
may lead to the model sampling non-informative data, 
negatively impacting subsequent sampling decisions. One 
possible solution to cold start is to only start the AL process 
once sufficient initial observations have been collected. This, 
however, depends on determining the initial batch size required 
by AL methods to define informativeness accurately. Yang et 

al. [18] found that an initial batch of 20 observations is 
sufficient for AL methods to outperform random sampling. In 
this work, we use the same initial batch size of 20 observations. 

 An alternative approach to address the cold start issue is to 
incorporate data collected from other related models to provide 
additional observations at the beginning of the AL process. This 
approach, known as warm start [22], was investigated by [11] 
for engaged concentration detection and showed mixed results. 
Engaged concentration refers to the affective state associated 
with flow [23]. Karumbaiah and her colleagues developed 
models of affective states for new schools, building off of 
models previously developed for other schools. They found that 
when developing detectors for suburban schools, UncS and 
random sampling showed better results when warm start was 
incorporated, regardless of whether the warm start was 
conducted using data from a suburban school or urban school. 
However, the performance difference (AUC ROC) between 
LMMSE detectors with and without warm start was less than 
0.02 points. This could have occurred because the data 
observed in previous schools was not informative enough to be 
used as the initial batch for warm starting detectors in a new 
target school. To address this limitation, we propose exploring 
the use of AL methods to sample a better initial batch for warm 
starting. 

B. Role of Population in Affect Detection 

Previous research has investigated the generalizability of affect 
detectors across schools in different regions [10], [11]. 
Ocumpaugh et al. [10] demonstrated that detectors are not 
necessarily generalizable among urban, suburban, and rural 
populations through three-fold population-level cross-
validation. The largest decrease in performance occurred when 
detectors trained using data from urban and suburban schools 
were tested in rural schools. Karumbaiah et al. [11], focusing 
on detectors of engaged concentration within the same dataset, 
showed that combining samples from suburban and urban 
schools and ignoring data from rural schools can improve 
detector performance when tested in suburban schools 
compared to using data from suburban populations exclusively. 
However, using a warm start with data acquired from suburban 
schools reduced the performance of detectors when tested in 
urban schools compared to using data from urban students 
exclusively. 
The issue of generalizability in affect detection has also been 
investigated by considering factors such as ethnicity, race, 
gender, and culture. National and cultural differences  have 
been associated with differences in the emergence, expression, 
and patterns of affect [24]-[26]. However, as far as we know, 
there is still a need to investigate the potential impact of 
national and cultural differences on the performance of affect 
detectors. Additionally, the facial expressions correlated with 
learning have been shown to vary between men and women 
[27]. However, Bosch et al. [28] demonstrated that there is not 
a considerable decrease in affect detector performance when 
detectors are applied to learners of different race, ethnicity, or 
gender than they were trained on. By contrast, Whitehill et al. 
[29] found that detectors of engaged concentration decreased in 
performance when transferred to students of a different racial 



group, although performance still remained substantially higher 
than chance. In summary, these results suggest that while 
generalization of affect detectors appears to be impacted by 
differences in urbanicity, it is less clearly affected by 
differences in other demographic variables, within-country. 

III. METHODS 

This section describes the dataset used in this work, the 
methodology employed for sequencing the data to emulate a 
realistic scenario, the sampling processes evaluated, and the 
experiments conducted to address our research questions. 

A. Data 

The dataset used in this study was obtained from past affect 
research involving the ASSISTments platform [30]. This 
platform facilitates the assignment of content by teachers,  
provides automated feedback and support for student 
responses, and provides extensive reports on student 
performance for teachers. This dataset consists of 3111 
affective state observations from 471 students collected in 
mathematics classrooms from six urban, suburban, and rural 
middle schools in the United States. The observations were 
collected using the BROMP protocol [15] for collecting 
observations of student affect and engagement in classrooms. 
Multiple research groups have used this dataset to explore 
affect detection [10], [11], [18], [31]. The dataset is publicly 
available at http://tiny.cc/affectdata. The details of the number 
of students, samples, and urbanicity of each school are shown 
in Table I. The original dataset contains observations from 10 
schools, but for this study, only urban and suburban schools 
were included. Rural schools were excluded due to their poor 
generalizability when used to train models for schools from a 
different population (see literature review above). 

TABLE I.  STUDENTS AND SAMPLES (OBSERVATIONS) BY SCHOOL 

School Id Urbanicity # Students # Samples 

A Urban 216 734 

B Suburban 27 68 

C Suburban 88 1599 

D Suburban 37 97 

 

Table II displays the distribution of affective states for each 
school. The majority of the samples, 82%, represent engaged 
concentration. Some schools have limited samples involving 
confusion and frustration. We excluded affective state/school 
combinations where the target affective state occurred less than 
five times. For example, School B has only one sample of 
confusion and two of frustration. Thus, we excluded School B 
from our tests for detecting confusion and frustration. 
Additionally, we excluded observations labeled with more than 
one affective state (7 observations from school A and 3 
observations from school C). 

TABLE II.  AFFECTIVE STATE  DISTRIBUTION 

School Id # Eng. Conc # Confusion # Boredom # Frustration 

A 420 57 201 68 

School Id # Eng. Conc # Confusion # Boredom # Frustration 

(57.2%) (7.8%) (27.4%) (9.3%) 

B 
54 

(79.4%) 
1 

(1.5%) 
11 

(16.2%) 
2 

(2.9%) 

C 
1536 

(96.1%) 
6 

(0.4%) 
47 

(2.9%) 
13 

(0.8%) 

D 
71 

(73.2%) 
10 

(10.3%) 
11 

(11.3%) 
5 

(5.2%) 

B. Data Sequencing 

 As previously mentioned, the affective state of each sample was 
initially coded using BROMP. BROMP codes were collected 
by trained and certified human observers [15], who underwent 
a process of pre-field training, field training, and inter-rater 
reliability testing, and had to achieve inter-rater reliability over 
0.6 with a certified trainer in order to themselves receive 
certification. Observations were made following a specific 
order of students selected based on their location inside their 
classroom. Each student was observed for up to 20 seconds to 
determine the (first) affective state that he or she was 
experiencing; the coder continued to the next student as soon as 
the affective state was clearly observed. Therefore, although 
there is no available information on more than one student at 
the same instant, the sample of two consecutive students is only 
separated by approximately 20 seconds. We assume that 
samples of 2 to 5 consecutive students are comparable because 
their affective state is relatively likely to remain stable within 
this time window (Botelho et al. [32], studying affect duration 
within the same learning system). The data was sequenced to 
reflect the real-time observation process, following the original 
order of observations made by the coders for each school. This 
sequencing approach emulates the temporal nature of a real 
observation scenario and the potential choices a coder could 
face when deciding which student to observe next rather than 
assuming that the observer can select a student who is tens or 
hundreds of positions ahead of the current observation. 

C. Data Sampling for Active Learning 

We employed UncS and LMMSE to conduct the AL processes 
for detecting each affective state. Each AL process starts by 
defining the sequence of schools (not individual samples within 
a school) to be considered. For example, if a detector for school 
B uses data from schools A, C, and D, one valid sequence for 
the AL process could be to observe school A first, followed by 
Schools C and D. Depending on the first school of the sequence, 
the initial batch for selecting the samples of the subsequent 
school will vary. To eliminate any bias due to the order of 
schools, all possible permutations of the sequence of schools 
were considered and averaged. Once the sequence of schools of 
the current epoch is established, the AL process begins with an 
initial batch of 20 samples from the first school. This batch size 
was selected based on results obtained by [18]. For School B, 
due to the limited number of observations, we used an initial 
batch of 10 samples. 

For each iteration of the AL process, the algorithm selects one 
observation from the next five possible samples based on the 
criteria specific to each AL methodology. The sample window 
then shifts to consider the next five samples in the next iteration. 
For example, if the current pool is students 1, 2, 3, 4, and 5, and 
student 4 is selected, the next pool will be students 5, 6, 7, 8, 



and 9. This process continues until the model has acquired 50 
additional observations for the school (or until there is no more 
data). We select this number based on the results of tests using 
20 to 50 additional observations. When reducing the number of 
additional observations, the performance of the models 
decreased. After obtaining the 50 observations of the current 
school, the next school in the sequence is considered. The data 
sampled in the previous school is employed as a warm start for 
sampling observations of the new school. This entire process is 
repeated for each school in the sequence and all the possible 
permutations. 

D. Experiments 

The AL processes described above were employed to separately 
detect concentration, confusion, boredom, and frustration. 
Before conducting the analysis, we established a baseline for 
the performance indicators of the detectors. The baseline was 
determined through a four-fold school-level cross-validation 
that tested the performance of the binary classification model 
for each affective state in each school.  

In this work, we use the Area Under the Receiver Operating 
Characteristic Curve (AUC ROC; AUC for short) as the 
performance indicator. AUC is an appropriate choice, given the 
high imbalance between the proportions of each affective state 
[33]. To establish a reasonably-effective baseline for the 
performance indicators, we identified which affective states 
could be detected in each school using all the available data 
from the three remaining schools. Affective state/school 
combinations where no machine learning (ML) method 
achieved an AUC higher than 0.55 were excluded because the 
detector's performance, regardless of the sampling method 
used, would be close to chance. 

Two control conditions were established. The first control 
condition involves a random selection from the same interval 
we use for the AL methods considering the subsequent five 
available samples. The second control condition consists of 
observing all the available samples in the order defined by the 
observation sequence of each school. It is important to note that 
this second control condition does not involve using all data, as 
that could be expected to achieve the maximum performance 
for the data set (and does not help us analyze the benefits of 
active sampling for the same sample size). This condition uses 
the first 50 available samples after the initial batch following 
the real observation sequence of each school.  

We conducted our analysis by comparing our four experimental 
and control conditions to select the students to observe (UncS, 
LMMSE, Random selection, and taking the first 50 
observations). For each sampling process, all the possible 
permutations of the order of schools were considered. We 
utilized Logistic Regression (LR), Random Forests (RF), 
Multi-Layer Perceptron (MLP), and Support Vector Machine 
(SVM) to train binary classifiers for each affective state. 

We also used the AL methods to sample observations from the 
same school where the detector is implemented, to understand 
the degree to which generalizability across schools impacts the 
results. Studying this also helps us see the degree to which 
negative results may be due to cold start, where the methods do 
not have enough data to determine which sample can be more 

informative. Warm start methods have been proposed to 
mitigate this problem [11]. Therefore, we explored employing 
the four sampling methods (two experimental, two control) as 
an alternative to provide a better warm start for a new sampling 
process in a target school to improve its detectors by using data 
from its students. In practice, of course, it would make sense to 
conduct a warm start for a new category of schools rather than 
attempting to collect data for each new school, unless a 
different data collection method such as self-report or teacher 
observations was used.  

To conduct this experiment, we sampled 100 additional 
observations from the target school. The remaining data, which 
was not used for sampling the 100 additional observations, was 
set aside as the test set. Since only school C had detectors that 
performed better than chance and had sufficient data for both 
the sampling and test sets, we restricted our testing to this 
school. 

IV. RESULTS 

This section presents the results of the experiments that 
compared the two AL methods and the two control conditions 
for sampling. We begin by establishing the baseline 
performance of the detectors and identifying the ML techniques 
with the highest AUC scores for each affective state in each 
school. Then, we compare the AUC scores of the four sampling 
conditions without including data from the target school in the 
training process. Finally, we also compare the four sampling 
processes when data from the target school is considered. 

A. Baseline 

Before employing AL, we start our study by identifying which 
affective states can be successfully detected in each of the four 
schools using models trained on the other schools. Table III 
shows the baseline results (obtained, as discussed above, using 
four-fold school-level cross-validation). The ML technique 
with the highest performance is shown in parentheses. In all 
cases, either SVM or LR classifiers obtained the highest AUC. 
In general, the highest performance was seen for suburban 
school C, where AUC over 0.6 was obtained for all affective 
states. In suburban school D, three of four affective states 
obtained AUC over 0.6 and the fourth still remained over 
chance (0.55).  For suburban school B, better than chance 
performance (AUC > 0.5) was seen for  engaged concentration, 
boredom, and frustration. Finally, model performance was 
close to chance for all affective states for the urban school A. 

Based on these results which suggest an upper bound on 
performance, our analyses on the four sampling alternatives 
below do not test on school A. Also based on these results, 
within school B we only test the concentration and boredom 
detectors. The affective state detector/school cases which are 
tested in the following experiments are shown in bold in Table 
III. 

TABLE III.  SCHOOL-LEVEL CROSS-VALIDATION AUC SCORES USING ALL 

AVAILABLE DATA. DETECTOR/SCHOOL COMBINATIONS THAT ARE TESTED IN 
THE FOLLOWING EXPERIMENTS ARE SHOWN IN BOLD 



Test 
School 

Eng. Conc Confusion Boredom Frustration 

A 0.54 (LR) 0.41 (LR) 0.53 (SVM) 0.52 (SVM) 

B 0.63 (LR) 0.55 (LR) 0.65 (LR) 0.73 (SVM) 

C 0.64 (LR) 0.63 (LR) 0.63 (LR) 0.65 (LR) 

D 0.70 (LR) 0.64 (LR) 0.72 (SVM) 0.56 (LR) 

 
All other schools’ data led to successful model performance in 
each target school in at least some cases. In specific, though 
other schools’ models performed poorly for school A, we 
include the data from school A for training the detectors for the 
remaining schools (B, C, and D), since omitting school A’s data 
led to poorer performance (Mean change in AUC>0.05). 

B. Comparing Sampling Methods in an Unobserved 
School 

 We test the four sampling methods on the selected schools for 
detecting each affective state. Table IV shows the mean and 
standard deviation of the AUC scores at the end of the sampling 
process, calculated among all the possible permutations for the 
order of the schools to observe. We consider 6 permutations, 
which is the number of possible alternatives to organize the 
three training schools, for each test school. Only the ML 
technique with the highest AUC score is reported for each 
detector in Table IV. 

 Table IV shows the results of the experiments, indicating that 
LMMSE was the best performing sampling method for 
detecting engaged concentration, confusion, and frustration. In 
the case of engaged concentration, LMMSE outperformed the 
control conditions for all schools, achieving an AUC score 
0.015 higher. The largest differences were seen in the confusion 
detector for school C and the frustration detector for school D, 
where LMMSE achieved an AUC score 0.03 higher than the 
control conditions. However, it is important to note that the 
sample size in both cases was small, with only 6 and 5 data 
points in the test set for confusion and frustration, respectively. 

 No other cases had differences larger than 0.03, and the 
direction of differences was not consistent. For instance, the 
control conditions outperformed the active learning methods 
for boredom detection. Furthermore, when comparing the 
active learning results in Table IV to the baseline shown in 
Table III, it can be observed that concentration and frustration 
detectors achieve similar, and in some cases higher, 
performance using a reduced number of samples. This 
similarity in performance suggests that there is not a substantial 
difference between concentration and frustration detectors 
trained using all available samples and those trained in this 
experiment using a reduced number of observations. On the 
other hand, there is a clear reduction in the performance of the 
boredom detectors for all schools and the confusion detector for 
school D when using a reduced number of samples. 

TABLE IV.  MEAN (SD) OF AUC FOR ALL SAMPLING METHODS 

Affectiv
e State 

School  
LMMSE UncS All  Random 

Eng. 
Conc. 

B (LR) 0.680 
(0.008) 

0.671 
(0.015)  

0.661 
(<0.001) 

0.661 
(0.001)  

C (LR) 0.630 
(0.001) 

0.558 
(0.008) 

0.614 
(<0.001) 

0.612 
(0.001) 

D (LR) 0.724 
(0.016) 

0.717 
(0.008) 

0.705 
(<0.001) 

0.708 
(0.006) 

Conf. 

C (LR) 0.651 
(0.001) 

0.622 
(0.003) 

0.620 
(<0.001) 

0.548 
(0.055) 

D (LR) 0.592 
(0.005) 

0.587 
(0.001) 

0.586 
(<0.001) 

0.586 
(0.002) 

Bore. 

B (LR) 0.610 
(0.003) 

0.614 
(0.022) 

0.617 
(<0.001) 

0.614 
(0.005) 

C (SVM) 0.540 
(0.001) 

0.560 
(0.002) 

0.558 
(<0.001) 

0.556 
(0.003) 

D (SVM) 0.584 
(0.013) 

0.645 
(0.026) 

0.687 
(0.001) 

0.668 
(0.050) 

Frust. 

C (LR) 0.634 
(0.003) 

0.634 
(0.004)  

0.626 
(<0.001) 

0.633 
(0.006) 

D (LR) 0.625 
(0.032) 

0.579 
(0.009) 

0.589 
(<0.001) 

0.590 
(0.003) 

 The best-performing ML techniques remain LR and SVM, 
while RF and MLP did not achieve the highest AUC in any 
cases. In contrast with the results shown in Table III, SVM 
became the ML technique with the highest performance for 
boredom detection in school C when using a reduced number 
of samples. 

 Table IV shows the final performance of each model; however, 
what occurs in cases when less data is available? We show how 
model performance shifts as additional data becomes available 
in Fig 1. For comparing the four sampling methods, we only 
consider the ML technique with the highest performance for 
each school/affective state test set combination, as indicated in 
Table IV. This figure shows as the data available increases, all 
of the sampling methods provide a similar improvement in 
detector performance. Table IV shows that LMMSE performs 
slightly better than the other sampling methods for 
concentration, confusion, and frustration detectors. There are 
no additional differences between sampling methods over time, 
although UncS sampling generally performs slightly worse than 
the control conditions. However, the difference with the other 
sampling methods is no more than ten samples.



 

Fig. 1. Comparing AUC scores of the four sampling methods for detecting engaged concentration, confusion, boredom and frustration.

C. Warm Start: Including Data of the Target School 

 The results of the experiment in section IV-B suggest that AL, 
specifically LMMSE, promotes a slight improvement in the 
detectors’ performance in entirely new schools. Other work has 
suggested that AL may be promising for warm start 
applications, where limited data from the target school is used 
to fine-tune a model initially trained on other schools [11], [18]. 
To test this, we also incorporate 100 additional observations 
sampled from the sequence of the target school after finishing 
the sampling processes analyzed in the previous experiment. 
This allows us to investigate whether the AL methods can lead 
to a better warm start and improve the performance of the 
detectors. For this experiment, we selected school C as the 
target school as it is the only one with sufficient data. These 100 
additional observations are obtained from the original sequence 
of samples that considers the temporal nature of the data. 
Therefore, all the data considered for sampling and training the 
detectors temporally precedes the samples used for testing. 

 Fig 2 shows the AUC scores of the four sampling conditions. 
The data from the target school are incorporated after 
observation 150. Using AL methods for sampling again does 
not appear to yield a substantial improvement in the detection 
performance. Similarly to the previous results, LMMSE 
showed a slightly better performance for the concentration 
detector when considering data from the target school. The 
largest difference is still observed in the confusion detection, 
although, as mentioned before, the sample size for this affective 
state in school C is small (6 data points). On the other hand, 

LMMSE performed worse than the other sampling methods for 
boredom detection. No substantial differences were observed 
for frustration detection.  

 Additionally, with the exception of boredom, there is no 
substantial improvement in the AUC scores after observation 
150. This result suggests that the observations from the other 
schools can be enough to reach the peak of the detectors’ 
performance in the target school. Adding observations from 
students of the target school only improved the detector’s 
performance for boredom. 

V. DISCUSSION AND CONCLUSION 

This paper investigates the use of AL methods for sampling 
data for affect detectors in a realistic setting. While Yang et al. 
[18] found that AL improved affect detection, they 
acknowledged that in a realistic scenario that considers the 
temporal nature of observations, the impact of these methods 
might be reduced. Our results show that AL methods still lead 
to a slight improvement in the performance of some detectors 
in a realistic scenario. However, there is not substantial 
improvement for any detector, and in some cases, such as 
boredom detection, observing all students is more appropriate. 
These mixed results suggest that further research with a larger 
number of samples and schools is needed to determine if AL 
methods could be beneficial for affect detectors, under realistic  
conditions,  and  whether  the  results  depend  on  the



 

Fig. 2. AL process used as Warm Start for Affect  Detection. Data of the target school is considered after observation 150.

schools being observed and test schools being 
demographically/regionally similar. 

Going forward, studies should be conducted to further examine 
the realistic scenario proposed in this paper, including a larger 
number of urban and rural schools. Given the high imbalance 
between the number of samples of each affective state, studying 
affect in contexts with more frequent boredom, confusion, and 
frustration would allow a better comparison between different 
sampling methods for detecting affective states other than 
engaged concentration. Additionally, AL methods (mainly 
LMMSE) can be implemented in classrooms to collect data in 
real time and compare the performance of detectors trained 
using these data with detectors developed using data acquired 
with current existing protocols such as BROMP. To ensure a 
fair comparison, we suggest using all sampling methods in the 
same school, starting data collection with current protocols, and 
using this data to warm start the AL methods. In this way, all 
sampling methods used for comparison will have collected data 
for the same students, and the cold start issue of AL methods 
will be mitigated. In addition to this comparison, future work 
should also investigate the impact of window size. In this study, 
a window size of 5 was used due to the nature of the original 
dataset. Although this window size may be suitable for real-life 
implementation, it may not be optimal for every situation. 
Therefore, there is still a need to explore how to adjust this 
parameter.  

Finally, further research should be conducted to determine 
which data is best to warm start AL methods in a new target 
school. As we observed, in some cases, adding data from the 
target school does not increase the performance achieved by 
detectors trained exclusively using data from previously 
observed schools. This result suggests that data from other 
schools can be informative for the target one. However, if these 
samples are not informative, using them as a warm start for AL 
would confuse the algorithm, leading to inappropriate data 
collection that would lead to poorer performance. Conducting 
larger-scale research of this nature will help identify when 
additional samples of the target school should be collected 
before employing AL methods. 
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