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Abstract—This paper examines the effect of different linguistic 
features (as identified through Natural Language Processing 
tools) on affective measures of student engagement using a 
discovery with models approach. We build on previous 
literature, using automated detectors that identify when a 
middle-school student using an online mathematics tutor is 
experiencing boredom, confusion, frustration, or engaged 
concentration, to identify which problems are most engaging (or 
not) at scale.  We then apply previously validated NLP tools to 
determine the degree to which engagement findings may be 
related to the linguistic properties of word problems, 
contributing to a growing literature on the effects of language on 
mathematics learning. 
 

1.  Introduction  
Affective research in education has often focused on 

constructs that are thought to increase or inhibit learning, 
such as boredom, confusion, engaged concentration, and 
frustration [2; 15]. Researchers have proposed theoretical 
models of the transitions between these constructs, such as 
[7]’s model, which predicts that when students reach an 
impasse in problem solving they are likely to alternate 
between episodes of confusion and concentration.  
Comparatively less work, however, has focused on aspects of 
the learning experience that may lead to these differences in 
affect.   

Much of the fine-grained focus on the impact of specific 
educational content/design has focused on the impact these 
details have on fairly direct measures of learning, including 
work examining the effectiveness of hints [11] and the 

learning associated with specific problems [9]. Other work 
has investigated the relationship between design features of 
learning systems and engagement [3] or affect [8]. However, 
the types of features found in that work – such as evidence 
that equation-solving problems lead to better affect and 
engagement than brief word problems – do not provide much 
scope for enhancing mathematics problems, since word 
problems are an established part of education.  

In this study, we seek to better understand how finer-
grained aspects of the design of learning content influence 
student affect during learning by utilizing two recent 
advances in computing research, natural language processing 
(NLP) [5] and interaction-based affect detection [4]. Namely, 
we extend recent research [23] which used NLP to examine 
the relationship between semantic categories and student 
affect while working on mathematics problems in the online 
tutor ASSISTments [10; 21], to look at these relationships in 
closer detail. In this study, we combine the semantic features 
studied in [23] with more sophisticated linguistic measures 
to develop multi-feature models of linguistic predictions of 
student affect, creating the potential for understanding how 
linguistic features may influence and moderate one another 
and how these relationships are associated with differences 
in student engagement. 
 

2.  Previous Research 
One potential area for understanding and evaluating how 

the fine-grained aspects of learning content is related to 
affective responses is through natural language processing, 
or NLP. Languages are highly complex, and often exhibit 
non-compositional patterns such as idioms and metaphors. 



Comprehensibility and structure of textual content may 
underlie differences in student engagement and learning, but 
relationships between the features of the language in learning 
content can be difficult to study at scale. 

As linguistic tools have become more powerful and more 
sophisticated, researchers have used them to better 
understand the role of language in mathematics education.  
For example, [24] found that correct answers and fewer hint 
requests are associated with word problems using third-
person singular pronouns (e.g., he, she). They also found 
relationships between specific semantic categories in 
problem content and learning. 

Although there is a growing literature on the 
relationships between language and mathematics learning, 
there are fewer studies that examine the relationship between 
the language of the learning context and student engagement. 
At the same time, interest in the complex relationships 
between student engagement and learning continues to grow 
[19]. Research by [23] examined the correlations between 
442 semantic tags from the linguistic analysis tool Wmatrix 
[20] towards understanding the relationship between word 
choice and student affect and behavior in the mathematics 
tutor ASSISTments. However, this correlation mining 
approach suffered from the inability to investigate the effects 
of multiple features used in tandem.  It was also limited in 
the kinds of linguistic features it investigated (semantic 
categories), and other factors, including those related to 
readability, are likely to show relationships with student 
engagement. 

 

3.  Data 
3.1.  ASSISTments Math Problems 

We used data from the ASSISTments intelligent tutoring 
system for this study. ASSISTments is designed to assess 
students’ mathematics knowledge while using automated 
scaffolding and hint messages to assist in learning [10]. The 
ASSISTments ITS is used by tens of thousands of students 
nationally each year, concentrated mostly in the northeastern 
US. One important feature of the design of ASSISTments 
that makes it particularly well-suited for the analysis 
conducted here is that ASSISTments contains a large variety 
of mathematics problems, as it allows teachers to author their 
own mathematics problems and share them with other 
teachers [21]. As such, ASSISTments content has a much 
broader variation in design than most other online learning 
systems.  

3.2.  Learners 

Data for this study was generated from the 22,225 unique 
students nationwide who completed mathematics problems 
through the ASSISTments system as part of their regular 
instruction during the 2012-2013 school year.  

4.  Methods 
4.1.  Data Selection/Aggregation Across Word 

Problems 

Learners in this study completed 179,908 different 
mathematics problems within ASSISTments, however, 
problems were filtered based on their appropriateness for 
analysis. Exclusion criteria included problems with fewer 
than 10 words or which were completed by fewer than 50 
students. This resulted in 114,893 different problems in the 
final dataset. Data were aggregated at the problem-level, 
such that an average value for each outcome measure was 
produced for each problem. 

4.2.  Measures of Engagement 

Models constructed from in situ classroom observations 
of student engagement, developed using the Baker Rodrigo 
Ocumpaugh Monitoring Protocol (BROMP 2.0), were 
applied to student log files to allow a for retrospective 
analysis. In this method, which has been used to study 
student engagement in over a dozen different learning 
systems, a BROMP-certified coder records observations on a 
handheld app [HART; 18]. The data are then synchronized 
with the log files of the students who were observed, 
allowing researchers to examine how patterns of student 
interactions with the software vary depending on the 
observed indicators of student engagement [4]. Models 
developed for ASSISTments and cross-validated for 
differences in subpopulations [17] were used in the present 
study. 

TABLE I.  MODEL-FIT PERFORMANCE OF AFFECT MODELS 
[17] 

Affect Model Kappa  A' 

Boredom 0.19 0.67 

Confusion 0.38 0.74 

Engaged Concentration 0.27 0.63 

Frustration 0.17 0.59 

 

4.3.  Tools for Linguistic Analysis 

To generate features for use in linguistic analyses, we used 
Wmatrix [20] and the Tool for the Automatic Analysis of 
Lexical Sophistication (TAALES)  [13]. Wmatrix has been 
used in previous research on the language of ASSISTments 
word problems, which demonstrated that semantic features 
of mathematics problems correlated individually to 
engagement [23]. While TAALES has not yet been applied 
to ITS and other online learning contexts, it has been used to 
assess written essay quality on the Michigan English 
Language Assessment Battery (MELAB; [12]) and to model 
students’ vocabulary knowledge [1].  



Wmatrix is a linguistic analysis tool that provides tags 
and identifiers for semantic domains (e.g. words that share 
similar meanings, such as ‘sailboat’ and ‘yacht’) and 
grammatical categories (e.g. first-person and second-person 
pronouns). The tagger matches individual words to a bank of 
42,300 single word entries and 18,400 multi-word 
expressions, and also classifies individual words to a 
hierarchical structure of 21 lexical fields, with 234 base tags. 
Additionally, words can be tagged as antonyms, 
comparatives, superlatives, gender, and anaphorics. Our 
analyses identified 442 distinct Wmatrix tags within the set 
of problems we examined in ASSISTments, and full 
documentation for Wmatrix tags is available through the 
UCREL Semantic Analysis System (USAS) website at 
http://ucrel.lancs.ac.uk/usas/usas_guide.pdf. 

TAALES is a tool for the evaluation of linguistic 
sophistication. It provides information about word 
frequency, range, bigram and trigram frequency, academic 
language, age of exposure, and updated psycholinguistic 
norms, which were not included in other current linguistic 
tools such as Cohmetrix [14]. Previous studies have used 
TAALES to predict second language acquisition and 
assessment [13] and math performance in standardized tests 
[6]. In the ASSISTments data, we calculated 137 of 485 
TAALES indices for each word problem in our corpus, and 
full documentation for all 485 TAALES indices is available 
by downloading the Index Description Spreadsheet at 
http://www.kristopherkyle.com/taales.html. 

Together, Wmatrix and TAALES comprise a broad set of 
English-language features, but working with mathematics 
tutor data involves the identification of mathematics-specific 
language such as equations, symbols, and numeric 
expressions. To identify these features we used HTML data 
in the ASSISTments problems to identify common 
mathematical features, such as the symbol for degrees 
(&deg;) and square roots (&sqrt;). We also included multiple 
design features that have been previously highlighted in 
research on affect in online learning [17] – this included 
descriptive information about the number of hints and 
scaffolds associated with a problem, the type of answer 
expected by the system (e.g. multiple choice, fill in the 
blank), as well as averaged performance data on the 
problems such as the number of successful and failed 
attempts. These features allowed us to account for 
differences in non-linguistic problem construction, 
differences in the degree of support provided to students, and 
differences in general problem ease or difficulty. 

4.4.  Model Development 

We constructed a set of four linear regression models 
predicting affect from problem design features, one for each 
affective state, using the machine learning software 
RapidMiner [16]. RapidMiner is a machine learning package 
that fits and validates a variety of models. For this research, 
we used forward feature selection processes to determine 
which features contributed most strongly to the prediction of 
our outcome variables. In forward feature selection, an 

algorithm chooses the one feature that makes the greatest 
contribution to the outcome, and adds this feature to the 
model. It then adds the feature that makes the second-
greatest contribution, after taking the first feature into 
account, and tests the model improvement. We continued 
this iterative process until we failed to significantly improve 
the regression model, or we had included eight features, 
whichever happened first.  

Three-fold student level cross validation was used to 
split training and testing sets for model validation. Forward 
feature selection was only conducted using the training set; 
each testing set was entirely held out from analysis.  

5.  Results 
5.1.  Overview of Model Performance  

We inspect the model-fit of our regression models 
based on the following goodness metrics: RMSE, Squared 
Error, and Spearman ρ. Table II shows the performance of 
each of our affect models. In general, we find that the 
confusion model performed the best, with the highest 
correlation and lowest RMSE and squared error values. 
When considering the strength of the correlations, the next 
best performing model is that of boredom, followed by 
frustration. The concentration model performs the worst, 
with a considerably weaker correlation and higher error 
values relative to the other affect models. 

TABLE II.  CROSS-VALIDATED MODEL-FIT PERFORMANCE OF 
NLP-BASED AFFECT MODELS 

Affect Models 
Goodness Metrics 

RMSE Squared 
Error Ρ 

Confusion  0.042 0.002 0.238 

Boredom  0.138 0.019 0.203 

Frustration  0.078 0.006 0.165 

Concentration 0.441 0.195 0.079 

 

To better understand how the linguistic content, semantic 
content, and mathematics-specific language relate to affect, 
we examine the features of each of our affect models. 
Because of the size of the dataset we will primarily be 
examining the features with the highest β value and 
coefficients, rather than those with the lowest p values. 

5.2.  Linguistic Features of Confusion  
 Table III shows the list of features for our confusion 
model, which drew from all three feature types. BNC Written 
Trigram Frequency Normed (word) was found to be the 
strongest predictor of confusion, when controlling for other 
features, β = -1.503, p < 0.0001. In particular, commonly 
written trigrams were associated with less confusion whereas 
commonly spoken bigrams were associated with more 
confusion. These findings are somewhat surprising as we 



would have expected the opposite pattern of results, with 
students experiencing less confusion during problems that 
using words more typical of spoken (rather than written) 
language. Other features associated with more confusion 
included the Wmatrix feature X9.2- (words associated with 
failure, e.g. incorrect) and whether the problem had a single 
hint associated with it. 

TABLE III.  FEATURES OF THE CONFUSION MODEL 

Features  Coeff. SE 
Coeff.  β p 

KF Ncats Content Words  0.001 0.0000 0.000 <0.0001 
BNC Spoken Bigram 
Normed (bi) Freq 0.010 0.0004 0.007 <0.0001 

One hint  0.009 0.0003 0.014 <0.0001 

BNC Spoken Bigram 
Normed (bi) Freq Log 0.003 0.0002 0.001 <0.0001 

 
Average failed attempts 
over the year  

0.010 0.0002 0.017 <0.0001 

X9.2- (terms about 
success or failure)  0.022 0.0006 0.088 <0.0001 

BNC Spoken Trigram 
Normed (word) Freq 0.036 0.0011 0.018 <0.0001 

 
BNC Written Trigram 
Frequency Normed 
(word) 

-1.378 0.0340 -1.503 <0.0001 

 

5.3.  Linguistic Features of Boredom  

Table IV summarizes the list of features predicting 
boredom. Unlike the findings from the confusion model, 
written and spoken trigrams, as well as written bigrams, 
were positively associated with boredom. In other words, 
students were more bored when common combinations of 
words were present in the problems. Students were less 
bored, however, when problems used language from the 
Academic Formulas List (AFL; [22]), which contains 
linguistic sequences that appear more frequently in academic 
writing (e.g. “such as” and “an example of”). Taken 
together, these two findings suggest that academic wordings 
may be more interesting to students than simpler, more 
colloquial phrasings.  

TABLE IV.  FEATURES OF THE BOREDOM MODEL 

Features  Coeff. SE 
Coeff.   β p 

Kuperman AoA Content 
Words  0.002 0.0002 0.001 <0.0001 

Is a base problem 0.01 0.0012 0.005 <0.0001 
BNC Written Bigram 
Freq Normed (word) 
Log 

0.004 0.0014 0.001 0.0131 

 
BNC Spoken Trigram 
Freq Log 

0.001 0.0001 0.001 <0.0001 

Answer is fill in the 
blank  0.002 0.0008 0.002 0.0038 

BNC Written Trigram 
Freq Normed (tri) Log 0.005 0.0012 0.002 <0.0001 

Has hint 0.011 0.001 0.008 <0.0001 
All AFL Normed -0.028 0.0227 -0.074 0.3105  

 

Interestingly, none of the features selected for inclusion 
into the boredom model were drawn from the semantic 
tagger Wmatrix. Instead, 6 of 9 features were drawn from 
TAALES (text complexity) measures, while the remaining 
features had to do with other elements of the problem’s 
design. 
   

5.4.  Linguistic Features of Frustration  
 As shown in Table V, the strongest predictor of frustration 
(WMatrix’s A5.3- label) involves the semantic content of the 
problem text. This feature identifies words which concern the 
evaluation of accuracy, specifically inaccuracies (“wrong”, 
“error”, “mistake”), and is associated with more frustration, β 
= 0.493, p < 0.0001. This feature also appeared in instances of 
meta-text (e.g., instructions about mindset rather than about 
the operations necessary to complete the problem). 
 Semantics also drives the second strongest feature in the 
frustration model, WMatrix’s T3-, terms about relating to age/ 
maturity, β = 0.160, p < 0.0001. However, after these 
semantic categories are entered into the model, all of the other 
features related to confusion are drawn from the TAALES 
measures of lexical sophistication. Features associated with 
word frequency were associated with less frustration in 
students. This finding complements the findings for boredom, 
where the model shows that common function and spoken 
words appeared are associated with higher boredom, 
suggesting that problems written in a simple, non-academic 
vernacular are less frustrating, but also less interesting. 

TABLE V.  FEATURES OF THE FRUSTRATION MODEL 

Features  Coeff. SE 
Coeff.   

β p 

BNC Spoken Bigram 
Normed (bi) Freq Log 0.027 0.0005 0.010 <0.0001 

KF Nsamp All Words  0.000 0.0000 0.000 <0.0001 

A5.3- (terms about 
accuracy)  
 

0.083 0.0014 0.493 <0.0001 

SUBTLEXus Freq 
Content Words Log 0.008 0.0003 0.003 <0.0001 

 
T3- (terms relating to 
age or maturity) 

0.031 0.0009 0.160 <0.0001 

Brown Freq Function 
Words 0.000 0.0000 0.000 <0.0001 

BNC Written Freq 
Function Words Log -0.012 0.0003 -0.006 <0.0001 

 
BNC Spoken Freq All -0.004 0.0001 -0.003 <0.0001 



Words 

 

5.5.  Linguistic Features of Concentration  
 Lastly, Table VI summarizes a list of predictors for 
engaged concentration. As expected, we find that bigrams and 
trigrams are associated with more concentration. The 
frequency of bigrams and trigrams are based on the British 
National Corpus, which has extensively used in prior lexical 
research. Examples of the trigrams from BNC index are as 
follows: “one of the”, “I don’t know”, and “a lot of”. 
Examples of frequently used bigrams from the BNC index 
are: “of the” and “in the”. Interestingly, we also find that 
abstract words related to being (e.g., existence) or effort (e.g., 
trying) are likely to increase concentration, even when 
controlling for other commonly used combinations of words.  

TABLE VI.  FEATURES OF THE CONCENTRATION MODEL 

Features  Coeff. SE 
Coeff.  β p 

KF Nsamp Content 
Words  0.000 0.0000 0.000 0.0114 

 
BNC Spoken Trigram 
Normed (tri) Freq 

0.018 0.0037 0.019 <0.0001 

BNC Written Freq FW 0.000 0.0001 0.000 0.1723 

A3+ (abstract terms 
related to being) 0.006 0.0015 0.010 <0.0001 

 
X8+ (terms depicting 
effort)  

0.018 0.0042 0.044 <0.0001 

BNC Spoken Bigram 
Normed (bi) Freq 0.005 0.0043 0.004 0.3832 

SUBTLEXus Freq 
Content Words  0.000 0.0000 0.000 1.0000 

 
BNC Written Trigram 
Freq Normed (word) 
Log 

0.016 0.0125 0.008 0.2712 

 

6.  Discussion/Conclusions 
In this study, we investigated the impact of linguistic 

features of mathematics problems on students’ affective 
states during work in an online mathematics tutor. While 
previous research has examined the language of word 
problems, this study expands that work in several 
dimensions, including the kinds of linguistic features that 
were investigated and the outcome measures that were 
considered. We examined these features by developing 
complex models of linguistic features that are associated 
with student affect.  

Our findings show that features related to commonly 
used combination of words are associated with positive 
concentration and negative confusion (and vice versa). These 
findings are aligned with previous research, which suggest 
that concentration and confusion are conceptually related to 
each other. Likewise, there appears to be relationships 

between the linguistic features associated with frustration 
and boredom, which are also theoretically aligned [7].  
        In addition to this, our findings reveal that features 
related to semantic content (i.e., WMatrix) are associated 
with frustration. Of particular interest, terms related to 
accuracy, such as “error” or “make a mistake” are associated 
with increases in student frustration. It is possible that the 
authors of these problems realized their difficulty and 
incorporated meta-instructions geared towards helping 
students to manage such emotions, but further research is 
needed to determine whether such messages are helpful.  
       Lastly, we find that the features most associated with 
boredom are related to the academic formula list (AFL). In 
particular, the use of academic words in math problems 
appears to lead to less boredom in problem solving. Our 
findings suggest that incorporating academic words in math 
problems could help in decreasing the likelihood of students’ 
boredom, as well as help improve their skills in receptive 
language when problem solving. 
     In sum, our findings provide implications for improving 
the design of math problems by focusing on key features 
linked to student’s affective states. It is our goal, going 
forward, to use these findings to help guide teachers to create 
math problems that promote better learning through 
improved student engagement.  
 
 Acknowledgments  
We gratefully acknowledge our funders (NSF, DRL 
#1252297) for financial support on this project.  

We gratefully acknowledge our four anonymous ACII 2017 
reviewers for valuable feedback and insight on an earlier 
version of this paper. 

References 
[1] Allen, L. K., & McNamara, D. S. (2015). You are your words: 

Modeling students’ vocabulary knowledge with natural 
language processing. In Manuscript submitted to the 8th 
International Conference on Educational Data. 

[2] Baker, R. S., D'Mello, S. K., Rodrigo, M. M. T., & Graesser, 
A. C. (2010). Better to be frustrated than bored: The incidence, 
persistence, and impact of learners’ cognitive–affective states 
during interactions with three different computer-based 
learning environments. International Journal of Human-
Computer Studies, 68(4), 223-241. 

[3] Baker, R. S., de Carvalho, A. M. J. A., Raspat, J., Aleven, V., 
Corbett, A. T., & Koedinger, K. R. (2009, June). Educational 
software features that encourage and discourage “gaming the 
system”. In Proceedings of the 14th International Conference 
on Artificial Intelligence in Education, 475-482). 

[4] Baker, R.S.J.d., Ocumpaugh, J. (2014) Interaction-Based 
Affect Detection in Educational Software. In R.A. Calvo, S.K. 
D'Mello, J. Gratch, A. Kappas (Eds.), The Oxford Handbook of 
Affective Computing. Oxford, UK: Oxford University Press. 

[5] Chowdhury, G. G. (2003). Natural language 
processing. Annual review of information science and 
technology, 37(1), 51-89. 



[6] Crossley, S., Liu, R., & McNamara, D. (2017, March). 
Predicting math performance using natural language 
processing tools. In Proceedings of the 7th international 
conference on learning analytics and knowledge (LAK’17). 

[7] D’Mello, S., & Graesser, A. (2012). Dynamics of affective 
states during complex learning. Learning and 
Instruction, 22(2), 145-157. 

[8] Doddannara, L., Gowda, S., Baker, R.S.J.d., Gowda, S., de 
Carvalho, A.M.J.B (2013) Exploring the relationships between 
design, students’ affective states, and disengaged behaviors 
within an ITS. Proceedings of the 16th International 
Conference on Artificial Intelligence and Education, 31-40. 

[9] Gowda, S., Pardos, Z., & Baker, R. (2012). Content learning 
analysis using the moment-by-moment learning detector. 
In Intelligent Tutoring Systems (pp. 434-443). Springer 
Berlin/Heidelberg. 

[10] Heffernan, N. T., & Heffernan, C. L. (2014). The 
ASSISTments ecosystem: Building a platform that brings 
scientists and teachers together for minimally invasive 
research on human learning and teaching. International 
Journal of Artificial Intelligence in Education, 24(4), 470-497. 

[11] Heiner, C., Beck, J., & Mostow, J. (2004). Improving the help 
selection policy in a Reading Tutor that listens. 
In InSTIL/ICALL Symposium 2004. 

[12] Jung, Y.J., Crossley, S. A., & McNamara, D. S. (2015). 
Linguistic Features in MELAB Writing Task Performances. 
CaMLA Working Papers, 5,1-17. 

[13] Kyle, K. & Crossley, S. A. (2015). Automatically assessing 
lexical sophistication: Indices, tools, findings, and 
application. TESOL Quarterly 49(4), pp. 757-786. doi: 
10.1002/tesq.194 

[14] Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, 
Z. (2004). Coh-Metrix: Analysis of text on cohesion and 
language. Behavior Research Methods, 36(2), 193-202. 

[15] McQuiggan, S., Lee, S., & Lester, J. (2007). Early prediction 
of student frustration. Affective Computing and Intelligent 
Interaction, 698-709. 

[16] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, 
T. (2006). Yale: Rapid prototyping for complex data mining 
tasks. In Proceedings of the 12th ACM SIGKDD International 
Conf. on Knowledge Discovery & Data Mining, 935-940.  

[17] Ocumpaugh, J., Baker, R., Gowda, S., Heffernan, N., 
Heffernan, C. (2014) Population validity for Educational Data 
Mining models: A case study in affect detection. British 
Journal of Educational Technology, 45 (3), 487-501. 

[18] Ocumpaugh, J., Baker, R.S., Rodrigo, M.M.T. (2015) Baker 
Rodrigo Ocumpaugh Monitoring Protocol (BROMP) 2.0 
Technical and Training Manual.. Technical Report. New 
York, NY: Teachers College, Columbia University. Manila, 
Philippines: Ateneo Laboratory for the Learning Sciences. 

[19] Pardos, Z. A., Baker, R. S., San Pedro, M., Gowda, S. M., & 
Gowda, S. M. (2014). Affective states and state tests: 
investigating how affect and engagement during the school 
year predict end-of-year learning outcomes. test, 1(1), 107-
128. 

[20] Rayson, P. (2008). Wmatrix corpus analysis and comparison 
tool. Lancaster University. 

[21] Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, 
M., Heffernan, N. T., & Koedinger, K. R. (2009). The 
Assistment Builder: Supporting the life cycle of tutoring 
system content creation. IEEE Transactions on Learning 
Technologies, 2(2), 157-166. 

[22] Simpson-Vlach, R., & Ellis, N. C. (2010). An academic 
formulas list: New methods in phraseology research. Applied 
linguistics, 31(4), 487-512. 

[23] Slater, S., Baker, R., Ocumpaugh, J., Inventado, P., Scupelli, 
P., & Heffernan, N. (2016). Semantic Features of Math 
Problems: Relationships to Student Learning and Engagement. 

[24] Walkington, C., Clinton, V., Ritter, S. N., & Nathan, M. J. 
(2015). How readability and topic incidence relate to 
performance on mathematics story problems in computerbased 
curricula. Journal of Educational Psychology, 107(4), 1051. 

 


