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Abstract. Affect dynamics, the study of how affect develops and manifests over 
the course of learning, has become a popular area of research in learning analyt-
ics. Despite some shared metrics and research questions, researchers in this area 
have some differences in how they pre-process the data for analysis [17]. Specif-
ically, researchers differ in how they treat cases where a student remains in the 
same affective state in two successive observations, referred to as self-transitions. 
While most researchers include these cases in their data, D’Mello and others have 
argued over the last few years that these cases should be removed prior to analy-
sis. While this choice reflects the intended focus in their research paradigm on 
the transitions out of an affective state, this difference in data preprocessing 
changes the meaning of the metric used. For around a decade, the community has 
used the metric L to evaluate the probability of transitions in affect. L is largely 
believed to have a value of 0 when a transition is at chance, and this is true for 
the original use of the metric. However, this paper provides mathematical evi-
dence that this metric does not have a value of 0 at chance if self-transitions are 
removed. This shift is problematic because previously published statistical anal-
yses comparing L values to the value at chance have used the wrong value, in-
correctly producing lowered p values and in many cases reporting transitions as 
significantly more likely than chance when they are actually less frequent. 

Keywords: Affect dynamics, L statistics, Student affect, Engagement, Self-
transitions, Data preprocessing. 

1 Introduction 

In a data mining pipeline, data preprocessing is often considered a step separate from 
analysis. Data preprocessing steps like cleaning, sampling, normalization/standardiza-
tion, and imputation are performed to clean and consolidate the collected data into a 
format ready for input into an analytical technique. The choices made during pre-pro-
cessing may, in many cases, have relatively minor implications on the analysis to fol-
low. But in some cases, a seemingly small, theoretically-justified preprocessing step 
can change the meaning of the metric used in the analysis. In this paper, we present one 
such example of a misinterpreted metric, D’Mello, Taylor, and Graesser’s [2007] L, 
that was used in affect dynamics research for over ten years, in over a dozen published 
studies [1-5,8-11,13,14,17,19-21,23-25]. However, a closer look at the way data is pre-
processed in some of these studies reveals how it changes the meaning of the metric. 
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We discuss the implication of this new finding on the results of these studies, some of 
which appear to have reported results in the wrong direction due to this shift.  

As mentioned, this work occurs in the domain of affect dynamics [18] - an area of 
research that studies how students transition between different emotional states, in this 
case in a learning setting. Based on increasing evidence that student affect is associated 
with learning and long-term outcomes [7,22], affect has been used to understand the 
design of a learning environment [16] and affect-sensitive interventions have been de-
signed and tested in some systems [12,15]. Understanding how affect manifests over 
time is useful when designing real-time educational interventions that work with natural 
patterns and transitions in affect.  

Perhaps the mostly widely used metric in research on affect dynamics is D’Mello, 
Taylor, and Graesser’s [2007] L statistic. It measures whether a transition from one 
affective state to another is more likely than the second state’s base rate.  Approximately 
20 studies have used this statistic to study the transitions between different emotional 
states of interest [17].  

During data preprocessing, one key methodological question is whether self-transi-
tions (when a student remains in the same affective state both before and after) should 
be considered or excluded from calculations, with most of the studies by D’Mello and 
his colleagues excluding self-transitions [3-5,8-11,17] and most of the work by other 
research groups including them [1,2,13,14,19-21,23-25]. A recent review found that the 
exclusion of self-transitions leads to a higher proportion of transitions being found to 
be more likely than chance [17]. If valid, this result would suggest that it is beneficial 
to exclude self-transitions to increase statistical power. However, in one recent paper 
that excluded self-transitions, the researchers reported all the transitions into engaged 
concentration were more likely than chance [5], a mathematically impossible result. 
Further investigation with the original authors of this paper indicated that this result 
was not a typing error, raising questions about the validity and interpretation of this 
widely-used metric. In this paper, we extend prior work by explicitly investigating the 
mathematical basis of the L statistic, both when self-transitions are included and when 
they are excluded, to see how this impossible result was obtained and what its implica-
tions are for the use of this statistic.  

2 L statistics and Affect Dynamics Analysis 

Given an affect sequence, the L statistic [10] calculates the likelihood that an affective 
state (prev) will transition to a subsequent (next) state, given the base rate of the next 
state occurring.  

𝐿 𝑝𝑟𝑒𝑣 → 𝑛𝑒𝑥𝑡 =
𝑃 𝑛𝑒𝑥𝑡 𝑝𝑟𝑒𝑣 − 	𝑃(𝑛𝑒𝑥𝑡)

1 − 𝑃(𝑛𝑒𝑥𝑡)
 (1) 

 
The expected probability, P(next) for an affective state is the percentage of times 

that the state occurred as a next state. Thus, the first affective state in the sequence of a 
student will be excluded from this calculation since this state cannot take the role of a 
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next state. Similarly, the calculation of the prev state excludes the last state in the se-
quence. The conditional probability, P(next|prev) is given by: 

𝑃 𝑛𝑒𝑥𝑡	|	𝑝𝑟𝑒𝑣 =
𝐶𝑜𝑢𝑛𝑡(𝑝𝑟𝑒𝑣 → 𝑛𝑒𝑥𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑝𝑟𝑒𝑣)
 (2) 

 
where Count(prev → next) is the number of times the prev state transitioned to the 

next state, and Count(prev) is the number of times the state in prev occurred as the 
previous state.   

There are several special cases in the calculation of L where there is no consensus in 
the literature on how to perform the calculation, and [17] has recommended the follow-
ing treatment:  

1. When any affective state (An) being considered in a given study is not present for a 
given student’s observation period: 
a. Transitions to An do not occur for that student. In this case, P(next) = 0 and P(next 

| prev) = 0, and thus, L = 0. 
b. Transitions from An also do not occur. In this case, we do not know what affective 

state would have followed An, and thus, L = undefined. 
2. Following from case 1, if a student remains in a single affective state (As) throughout 

an observation period, all other affective states being considered in the study behave 
as An. However, the calculations differ based on whether or not the self-transitions 
are included. 
a. If self-transitions are included in the analyses: 

(1) Transitions from As to any other affective state (e.g., An) do not occur, and 
therefore, as in 1a, L = 0 for any transition out of As. 

(2) Transitions to As from any other affective state (e.g., An) do not occur, and 
therefore, as in 1b, L = undefined. 

b. If self-transitions are discarded in the analyses, an affect sequence consisting of 
repeated observations of the same affective category is reduced to a single obser-
vation of that affective state. In this case, no transitions occur, and therefore L = 
undefined for all possible sequences being studied. 

It is not always clear how these special cases are treated in past research. In this 
study, we follow [17]’s definition of L as outlined above. 

The value of L varies from -∞ to 1. D’Mello and Graesser [8] state in page 7 that 
“the sign and the magnitude of L is intuitively understandable as the direction and size 
of the association”. As has been expanded in subsequent papers [1,3-
5,8,9,11,13,14,17,19-21,23-25], L = 0 is treated as chance, while L > 0 and L < 0 are 
treated as transitions that are more likely or less likely (respectively) than chance. To 
perform affect dynamics analysis across all students in an experiment, first the L value 
for each affect combination is calculated individually per student. Next, as [8, pg. 7] 
recommends, the researcher runs “one-sample [two-tailed] t-tests to test whether like-
lihoods were significantly greater than or equivalent to zero (no relationship between 
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immediate and next state)”, on the sample of individual student L values for each tran-
sition. Lastly, a Benjamini-Hochberg post-hoc correction procedure is often used 
[1,5,17,21,23-25] to control for false positive results since the set of hypotheses in-
volves multiple comparisons. 

3 Analysis 

This straightforward procedure seems quite logical, but the result seen in [5], where, 
after removing self-transitions, all transitions into the affective state of engaged con-
centration were more likely than chance, suggests that something may be wrong. As 
such, it may be worth examining the mathematical assumptions of this procedure. Spe-
cifically, while calculating the transition likelihood from the affective state of 𝑀7 (prev) 
to 𝑀789 (next), D’Mello explains that, “...if 𝑀789 and 𝑀7 are independent [emphasis 
added], then 𝑃𝑟 𝑀789 𝑀7 = 𝑃𝑟(𝑀789)” [8]. However, removing self-transitions 
breaks the independence between 𝑀789 and 𝑀7as 𝑀789can now only take values other 
than Mt. Hence, when self-transitions are excluded, 𝑃𝑟 𝑀789 𝑀7 ≠ 𝑃𝑟(𝑀789). 

Another sign of potential problems is found in [8], when that paper draws an analogy 
between L statistics and Cohen’s kappa, saying, “The reader may note significant sim-
ilarity to Cohen’s kappa for agreement between raters and indeed the likelihood metric 
can be justified in a similar fashion.” Although this analogy seems compelling, it is 
worth noting that there is a striking difference between the range of values the two 
statistics can take. While the value of L varies from -∞ to 1 [2], the value of Cohen’s 
kappa varies from -1 to 1 [6].  

These raise the question: if a transition occurs at chance, and self-transitions are ex-
cluded, is the value of L still 0?   

3.1 Understanding how removing self-transitions affect L Values  

Differences between a calculation based on a transition pattern (L) and a calculation 
based on a confusion matrix (e.g., Cohen’s k) mean that the chance value takes a dif-
ferent value for L than for Cohen’s k when transitions are altered. To illustrate, let’s 
take an example with three states, A, B, and C, which allows for a total of nine unique 
transitions (AA, AB, AC, BB, BA, BC, CC, CA, and CB). We will consider the hypo-
thetical sequence, ABBCAACCBA. 

First, let us consider the case where we keep self-transitions within our calculations. 
Our hypothetical sequences contain all the 9 possible transitions occurring each occur-
ring exactly once. As Table 1 shows, this makes all the possible transition types equally 
likely (as each occurs at the frequency expected given the base rate of the next state).  

Table 1. L statistics calculation for an example sequence of ABBCAACCBA when self-transitions 
are included  

Transition Count P(next|prev) P(next) L 
A->A 1 0.33 0.33 0 
A->B 1 0.33 0.33 0 
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A->C 1 0.33 0.33 0 
B->A 1 0.33 0.33 0 
B->B 1 0.33 0.33 0 
B->C 1 0.33 0.33 0 
C->A 1 0.33 0.33 0 
C->B 1 0.33 0.33 0 
C->C 1 0.33 0.33 0 

 
Now, consider the transition AB, where A is the prev state and B is the next state. The 
expected probability, P(next), is P(B_next) i.e., the probability of occurrence of B in 
the next state.  

𝑃 𝑛𝑒𝑥𝑡 = 	𝑃 𝐵_𝑛𝑒𝑥𝑡 = 	
2
6
= 0.33  

 
The conditional probability, P(next | prev) , is P(B_next | A_prev). Note that we are 

not including the last instance of A as it cannot take the prev state in any transition. 
Using equation (2), we have 

𝑃 𝑛𝑒𝑥𝑡	|	𝑝𝑟𝑒𝑣 = 	𝑃 𝐵_𝑛𝑒𝑥𝑡	|𝐴_	𝑝𝑟𝑒𝑣 	=
1
3
= 0.33  

 
Substituting in equation (1), we get, 

𝐿 𝐴 → 𝐵 =
0.33 − 	0.33
1 − 0.33

= 0  

 
This holds true for all the transitions. Recall that in Table 1, the conditional proba-

bility, P(next|prev), is equal to the expected probability, P(next). Thus, when self-tran-
sitions are included, all the transition likelihoods in this example take a value of zero, 
in line with the claim made in [D’Mello, p.7]. 

Next, we consider what happens to the L value at chance when we omit self-
transitions. If we consider the same hypothetical sequence (ABBCAACCBA), only six 
unique transitions remain ABCACBA. Though this sequence is different, each affective 
state is equally followed by all affective states. Again, consider the transition AB, where 
A is the prev state and B is the next state. The probability that B is the next state remains 
the same as it did when self-transitions were included. 

𝑃 𝑛𝑒𝑥𝑡 = 	𝑃 𝐵_𝑛𝑒𝑥𝑡 = 	
2
6
= 0.33 

However, the removal of A->A sequences results in value of P(next | prev) that is dif-
ferent than in the original sequence. 

𝑃 𝑛𝑒𝑥𝑡	|	𝑝𝑟𝑒𝑣 = 	𝑃 𝐵_𝑛𝑒𝑥𝑡	|𝐴_	𝑝𝑟𝑒𝑣 	=
1
2
= 0.5  
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Finally, we obtain. 

𝐿 𝐴 → 𝐵 =
0.5 − 	0.33
1 − 0.33

= 0.25  

Table 2. L statistics calculation for an example sequence of ABBCAACCBA when self-transitions 
are excluded 

Transition Count P(next|prev) P(next) L 
A->B 1 0.5 0.33 0.25 
A->C 1 0.5 0.33 0.25 
B->A 1 0.5 0.33 0.25 
B->C 1 0.5 0.33 0.25 
C->A 1 0.5 0.33 0.25 
C->B 1 0.5 0.33 0.25 

 
This value is obtained for all six possible transitions. As we see in Table 2, when all 
affective states allowed are equally likely as the next state, L = 0.25, not 0. Since self-
transitions are excluded, a given state can only transition to the other two states as op-
posed to the three states in total. This contrasts with the claim that P(next|prev) =
	P(next) [D’Mello, p.7] and increases the conditional probability (i.e, P(next|prev)) to 
one out of two while the expected probability (i.e, P(next)) remains at two out of three. 
Thus, for a state space with three states, the chance value of L is at 0.25 instead of 0. 

3.2 Redefining Chance L Value 

We now generalize our observations above for a state space with n affective states (n	>
	2) and determine what L value would be expected at chance. Such a state space would 
have  𝑛E unique transitions if we include self-transitions, but only has 𝑛E − 𝑛 unique 
transitions if we exclude self-transitions. Thus, at chance, the expected probability is  

𝑃 𝑛𝑒𝑥𝑡 =
𝑛
𝑛E

= 	
1
𝑛

 
if self-transitions are 
included   

𝑃 𝑛𝑒𝑥𝑡 =
𝑛 − 1
𝑛E − 𝑛

= 	
1
𝑛

 
if self-transitions are 
excluded   

 
However, at chance, the conditional probability is 

𝑃 𝑛𝑒𝑥𝑡	|	𝑝𝑟𝑒𝑣 =
1
𝑛

 
if self-transitions are 
included   

𝑃 𝑛𝑒𝑥𝑡	|	𝑝𝑟𝑒𝑣 =
1

𝑛 − 1
 

if self-transitions are 
excluded   
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Plugging these into the original equation of L (equation 1), the value of L at chance 
is 

𝐿 = 0 if self-transitions are 
included   

𝐿 = 	
1

(𝑛 − 1)E
	 if self-transitions are 

excluded   

 
Generally, affect dynamics is studied in terms of the four academic emotions of con-

fusion, frustration, boredom and engaged concentration (emotions like delight and sur-
prise are also sometimes considered, somewhat more rarely). The otherwise unlabeled 
data segment in the timeline, which occurs when the primary states being investigated 
are not found, are sometimes given the label NA and considered in the analyses. In such 
a setup (n = 5), the L value at chance is L=0.0625. For the smallest reasonable state 
space with n = 3, the L value at chance is at its maximum, 0.25. As the number of 
affective states observed increases, the impact of the difference between including and 
excluding self-transitions decreases (Table 3). 

Table 3. The value of L that represents chance, for varying state space 

n 3 4 5 6 7 8 
chance L 0.25 0.11 0.0625 0.04 0.0277 0.0204 

 

4 Implications 

The primary implication of this new finding is on the interpretation of the L value. If 
an affective dynamics study excludes self-transitions, the threshold to understand the 
direction of the transition must be set based on the number of affective states studied 
(see Table 3). For instance, for a study with four affective states, the transitions with L 
value less than 0.11 should be interpreted as being less likely than chance. Importantly, 
the test for significance of these transitions must set the null hypothesis at the appropri-
ate chance levels and not zero. 

This finding, thus, has implications on past published studies as well. In past studies 
which excluded self-transitions [3-5,8-11,17], we need to reconsider the results in terms 
of what the correct chance value was. Since these papers conducted hypothesis tests 
with L = 0 as the null hypothesis, they are likely to have overstated their possible effects, 
possibly finding positive results where negative results would have been more accurate. 
As such, these results need to be reanalyzed with the appropriate chance values for L 
(given in Table 3) to get the new significance values. For instance, in [5], the transition 
from boredom to frustration is reported to have an L = 0.036 and is significant with p < 
0.001 – indicating that the transition from boredom to frustration is more likely than 
chance. But, with n = 5, the reported L value actually denotes a negative transition as 
the reported L value is less than the L value at chance (0.0625, as shown in Table 3). 



8 

As such, it becomes essential to rerun the t-test on the original data with the null hy-
pothesis of L = 0.0625 to confirm if this transition is actually significantly less likely 
than chance.  

It is important to once again note that not all past publications using L are affected 
by this finding. Over half of the past studies using this metric included self-transitions 
[1,2,13,14,19-21,23-25] and are therefore unchanged by this finding. The choice of 
whether or not one ought to include self-transitions in an affect dynamics analysis de-
pends on the research goals and questions of the study. As [17] suggests, excluding 
self-transitions reveals a larger number of affective patterns that might otherwise be 
suppressed by the presence of persistent affective states. Including self-transitions in 
analysis helps us to better understand each state’s persistence, but dilutes the transitions 
between different affective states. Better understanding transitions is likely important 
in theoretical models, but understanding true persistence might be particularly useful 
for algorithms being used to trigger interventions, for example.  

5 Conclusion 

In this paper, we demonstrate that a commonly-used metric in affect dynamics research 
has been incorrectly interpreted when a common pre-processing step is also taken. The 
past 18 studies in this area can be divided into two groups - 10 studies that includes 
self-transitions [1,2,13,14,19-21,23-25] and 8 that excludes self-transitions [3-5,8-
11,17]. The studies that excluded self-transitions did so in order to concentrate on the 
transitions between states rather than on the persistence of each state [4]. While this 
focus can be justified, this paper demonstrates that doing so changes the interpretation 
of a key metric, and that the previous papers that excluded self-transitions did not ac-
count for this, invalidating many of their results.  

Specifically, we find that when self-transitions are excluded, the value for L that 
represents chance shifts from 0 to 1/(𝑛 − 1)E, where n is the number of affective states 
studied. This is because the exclusion of self-transitions leads to a violation of the as-
sumption of independence in the equations used to calculate L. This new finding has a 
direct impact on the validity of the claims made by the 8 studies that excluded self-
transitions as all the t-tests conducted in these studies have used L = 0 in their null 
hypothesis. As illustrated in section 4, the t-tests in these studies should be re-run and 
re-examined for effects that switch from significantly more likely than chance to null 
effects or even effects that are significantly less likely than chance.   

In conclusion, this paper illustrates the impact of a seemingly subtle data prepro-
cessing step in the interpretation of the results of an analysis. As the use of data mining 
and automation becomes widespread in areas like education, we need to be more cau-
tious about the impact of all the changes we do to the data processing pipeline - however 
independent the stages of the pipeline may look like. In some cases, as illustrated in 
this paper, a simple preprocessing step could potentially imply that you are attempting 
to answer a different research question. It is also necessary to be mindful of the under-
lying reasons and assumptions behind each step in the data mining pipeline. Only by 
carefully considering the validity of our complete processes can we ensure that our 
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findings are valid, and that the adaptive systems we develop using those findings are 
optimally effective for learners. 
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