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ABSTRACT. Csikszentmihalyi’s Flow theory states that a balance between 

challenge and skill leads to high engagement, overwhelming challenge leads to 

anxiety or frustration, and insufficient challenge leads to boredom. In this p a-

per, we test this theory within the context of student interaction with an intelli-

gent tutoring system. Automated detectors of student affect and knowledge 

were developed, validated, and applied to a large data set. The results did not 

match Flow theory: boredom was more common for poorly -known material, 

and frustration was common both for very difficult material and very easy ma-

terial. These results suggest that design for optimal engagement within online 

learning may require further study of the factors leading students to become 

bored on difficult material, and frustrated on very well-known material.     

Keywords: Affect Modeling, Prior Knowledge, Intelligent Tutoring System, 

Boredom, Frustration, Engaged Concentration. 

1 Introduction 

In recent years, substantial work has gone into increasing the sensitivity and respon-

siveness of intelligent tutoring systems (ITSs) to differences in student affect [10, 11]. 

One theory that has inspired design in education [cf. 28] is Csikszentmihalyi’s Flow 

theory [8]. This theory details the attributes of optimal experience during activity, 

making a number of specific claims that can be investigated, tested, and leveraged 

within design when a person is engaged in an activity with clear goals, with immedi-

ate feedback, and when balance is achieved between the person’s perception of task 

difficulty and perception of one’s own skills to do the task [8]. Empirical work in 

classrooms using traditional approaches (e.g., not ITS) has found that high school 

students experience the highest engagement when students perceive both challenge 

and their skill as high [28]. Csikszentmihalyi [8, 9] also hypothesized that specific 

affective states (emotion in context [cf. 7]) emerge depending on the degree of chal-

lenge and skill that is present for an activity. His theory indicates that when an activi-



ty is perceived to be too easy one becomes bored, and when the task is too difficult 

one gets anxious [8]. An additional hypothesis is that the same conditions that lead to 

anxiety also lead to frustration [13], implying that challenge is higher than skill, lead-

ing some researchers to use frustration rather than anxiety in applying Csikszent-

mihalyi’s theory [cf. 20, 25]. 

Flow theory, when applied to the context of education, asserts that a learning activ-

ity should be perceived as challenging but not too difficult [27]. As such, non-

adaptive learning materials are likely to fail in producing flow for most students, as 

materials at a specific difficulty level are likely to be boring for students with higher 

skill, and frustrating for students with lower skill [cf. 26]. However, a learning system 

that accurately infers student skill – as modern intelligent tutoring systems do – may 

be able to specifically select problems of appropriate difficulty, in an attempt to bal-

ance challenge with skill level [18].   

However, there is still not sufficient empirical evidence that Flow theory’s account 

of the consequences of failing to achieve a balance between difficulty and skill are as 

predicted. In particular, recent research has suggested that boredom is often character-

istic of the least successful students rather than students who have already achieved 

mastery [1, 7, 19]. This same research finds that frustration does not appear to be 

strongly connected with the poorest students [7, 22, 23].  These studies have the limi-

tation of investigating these issues at a fairly coarse grain-size, looking solely at over-

all prevalence of affective states and long-term measures of learning. By studying 

these issues at a finer grain-size, we can understand these relationships better.  

In this paper, we operationalize boredom, frustration, and engaged concentration 

during online learning in the fashion proposed in [3, 7]. In this paradigm, affective 

states are conceptualized as atomic and distinct from one another.  Of particular im-

portance to Flow theory are boredom [8, 15], frustration [13], and engaged concentra-

tion [cf. 3], which is the affect associated with Csikszentmihalyi’s construct of flow 

but does not  involve the inherent task-related aspects of flow – clear goals, immedi-

ate feedback, and balance between challenge and skill. 

We conduct this research in a data set of 8,454 students learning online for a year 

apiece in the ASSISTment system [21], a free web-based tutoring system for middle 

school mathematics. Within ASSISTments, students complete mathematics problems 

and are formatively assessed – providing detailed information on their knowledge to 

their teachers – while being assisted with scaffolding, help, and feedback. Items in 

ASSISTments are designed to correspond to the skills and concepts taught in relevant 

state standardized examinations. Teachers have the ability to assign students questions 

on a particular skill and typically select the problems or problem sets their students 

receive (though mastery learning can also be activated by the teacher for some pro b-

lem sets). As shown in Figure 1, the ASSISTment system provides feedback on incor-

rect answers. When a student answers a problem incorrectly, they are provided with 

scaffolding questions breaking the problem into its component steps. Hints are pro-

vided at each step and the student can ask for a bottom-out hint that eventually tells 

the answer.  

Within this paper, we use automated detectors of student affect within the AS-

SISTment system (published in previous work [16]) to operationalize student affect 



within the ASSISTment system. These detectors, developed and validated using data 

from 229 students, are then applied to the full data set  of 8,454 students. We combine 

these detectors with data from models of student knowledge in order to an alyze the 

conditions under which each affective state occurs, and whether the relatio nship be-

tween affect and the difficulty of a problem for a specific student accords with Flow 

theory. We conclude with a discussion of potential implications for the design of in-

teractive educational systems.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.    Example of an ASSISTment. a) If a student gets it incorrect, hints and scaffolding 

problems are there to aid the student in eventually getting the correct answer. b) Example of 

Scaffolding and Hints in an ASSISTment. 

2 Measures Used 

2.1 Affect Detectors 

Within this paper, we leverage existing detectors of student affect within the A S-

SISTment system [16], to help us understand student affect across contexts. Detectors 

of three affective states are utilized: engaged concentration, boredom, and frustration. 

The detectors of engaged concentration and boredom used in this paper are identical 

to the detectors used in [16]. After publishing [16], we discovered a minor computa-

tion error in one of the features used in the frustration detector. Hence, a re-computed 

model is used here (the goodness of the detector is almost exactly identical between 

the [16] and this paper). Though anxiety plays a prominent role in Csikszentmihalyi’s 

Theory of Flow, no detector of anxiety in ASSISTments was available, in part be-

cause anxiety has been observed so rarely in classroom use of intelligent tutoring 

systems as to not merit its own coding category [12, 14, 23]. 

These detectors were developed using a two-stage process: first, student affect was 

labeled for a sample of 3,075 field observations [cf. 3] of 229 students conducted by 

two coders using an Android app, and then those labels were used to create automated 

                                  a)                                                b) 



detectors that can be applied to log files at scale. An inter-rater reliability session was 

conducted, where the two coders coded the same student at the same time  (they ob-

served multiple students, but observed each student together). They conducted 51 

simultaneous observations , achieving a Cohen’s Kappa of 0.72, indicating agreement 

72% better than chance. The detectors were created by synchronizing log files gener-

ated by the ASSISTments system with field observations conducted at the same time. 

To enhance scalability, only log data was used as the basis of the detectors , instead of 

using physical sensors (and indeed, the research presented in this paper could not 

have been conducted if physical sensors were used). The detectors were constructed 

using only log data from student actions within the software occurring at the same 

time as or before the observations. By using information only from before and during  

the  observation, our detectors can be used for automated interventions, as well as the 

discovery with models analyses presented in this paper.  

All of the affect detectors performed better than chance. Detector goodness within 

ASSISTments was at the high end of previous reports of published models inferring 

student affect in an ITS solely from log files [cf. 4, 5, 11, 24]. The best detector of 

engaged concentration involved the K* algorithm, achieving an A' of 0.678 and a 

Kappa of 0.358. The best boredom detector was found using the JRip alg orithm, 

achieving an A' of 0.632 and a Kappa of 0.229. The best frustration detector achieved 

an A' of 0.681 and a Kappa of 0.301, using the J48 algorithm.  These levels of detec-

tor goodness indicate models that are clearly informative, though there is still consid-

erable room for improvement.  

Within the original observations, boredom was observed 17.7% of the time, frus-

tration was observed 4.4% of the time, and engaged concentration 53.0% of the time, 

with other affective states representing the remainder of student time.  The detectors 

emerging from the data mining process had some systematic error in prediction, 

where the average confidence of the resultant models was systematically higher or 

lower than the proportion of the affective states in the orig inal data set. This type of 

bias does not affect correlation to other variables since relative order of predictions is 

unaffected, but it can reduce model interpretability. To increase model interpretabil-

ity, model confidences were rescaled to have the same mean as the original distribu-

tion, using linear interpolation. Rescaling the confidences this way does not impact 

model A’ or Kappa, as it does not change the relative ordering of model assessments. 

 

2.2 Prior Knowledge Assessment 

Estimates of student knowledge were used as a proxy for Flow theory’s ―balance 

between challenge and skill.‖ These estimates were computed using Bayesian 

Knowledge Tracing (BKT) [6], a model used in several ITSs to estimate a student’s 

latent knowledge based on his/her observable performance. This model can predict 

how difficult the current problem will be for the current student, based on the skills 

required for that problem. As such, this model can implicitly capture the tradeoff be-

tween difficulty and skill for the current context. This model can inform us whether 

student skill is higher than current difficulty (resulting in a high probability of co r-

rectness), when current difficulty is higher than student skill (resulting in a low pro b-



ability of correctness), and when difficulty and skill are in balance (medium probabili-

ties of correctness). To assess student skill, BKT infers student knowledge by contin-

ually updating the estimated probability a student knows a skill every time the student 

gives a first response to a new problem. It uses four parameters, each estimated sepa-

rately per skill: LO, the initial probability the student knows the skill; T, the probabil-

ity of learning the skill at each opportunity to use that a skill; G, the probability that 

the student will give a correct answer despite not knowing the skill; and S, the proba-

bility that the student will give an incorrect answer despite knowing the skill. In this 

model, the four parameters for each skill are held constant across contexts and stu-

dents (variants of BKT relax these assumptions). BKT uses Bayesian algorithms after 

each student’s first response to a problem in order to re-calculate the probability that 

the student knew the skill before the response. Then the algorithm accounts for the 

possibility that the student learned the skill during the problem in order to compute 

the probability the student will know the skill after the problem [6]. With the data 

from the logs, BKT parameters were fit by employing brute-force grid search [cf. 2]. 

After obtaining the assessments of student affect and prior knowledge at each prob-

lem, we assessed the relationship between the two. The following section shows both 

qualitative and quantitative estimates of these relationships for each affective state. 

Since our models provide confidences in their predictions as well as overall predic-

tions, we conduct analyses using the confidences of the affect predictions rather than 

the proportion of binary predictions. 

3 Studying the Relationship between Affect and Knowledge 

3.1 Data Set 

The detectors of student affect and student knowledge were applied to a data set co n-

sisting of five years of student usage of the ASSISTment system by four schools in 

New England, from 2004-2005 to 2008-2009. These four schools represent a diverse 

sample of students in terms of ethnicity and socio-economic status. Two districts were 

urban with many students requiring free or reduced-price lunches due to poverty, 

relatively low scores on state standardized examinations, and many students learning 

English as a second language. The other two districts were suburban, serving relative-

ly wealthier populations. The affect models were applied to this much larger dataset. 

This data set included 8,454 students and a total of 1,568,974 student actions within 

the learning software.  

3.2 Boredom and Student Knowledge 

Boredom is less common when student skill is higher, as shown in Figure 2. This 

finding contrasts with predictions by Csikszentmihalyi [8] and Shernoff et al. [28], 

which would suggest that boredom should mostly occur when material is too easy 

relative to student skill. The linear trend is fairly modest (a difference of 5% in aver-

age boredom between material where the student has a high probability of knowing  



 

 

 

 

 

 

Fig. 2. The relationship between boredom and the probability that the student knows the skill. 

Note that the X axis denotes difficulty for the current problem for the current student, prior to 

the student completing the problems; i.e., the contextually hardest problems are on the left, and 

the contextually easiest problems are on the right. 

the skill and material where the student has a very low probability of knowing the 

skill). However, due to the large sample size, the negative linear trend is statistically 

significant (r = -0.157, F(1, 1560519) = 14223.174,  p < 0.0001). Note that a student 

term was included in the model (and all the statistical tests in this paper) to avoid 

violation of statistical independence. 

3.3 Frustration and Student Knowledge 

The relationship between frustration and student skill, shown in Figure 3, appears 

non-linear. Frustration appears to be significantly more common for students with 

very low skill and for students with very high skill, than for other students. When we 

fit a linear curve, there is a significant but small correlation between frustration and 

prior knowledge (r = 0.093, F(1, 1560519) = 11647, p < 0.0001). A parabolic curve 

(i.e., Frustration = (Knowledge – Mean(Knowledge))
2
) achieves better fit (r = 0.222, 

F(1, 1560519) = 63989, p < 0.0001). The difference in BiC’ values between these two 

models is 65,667, indicating that the parabolic curve fits the data substantially better  

 

 

 

 

 

 

                                                                                                                                       

 

Fig. 3. The relationship between frustration and the probability that the student knows the skill. 



than the linear function (differences in BiC’ of ten or greater indicate substantial dif-

ferences between models). The relationship between low skill and frustration accords 

with Flow theory, but the relationship between high skill and frustration is surprising, 

indicating that students may become frustrated when repeatedly given easy items. 

3.4 Engaged Concentration and Student Knowledge 

The incidence of engaged concentration is higher for more skilled students, as shown 

in Figure 4. The linear trend is fairly modest (a difference of 6% in average engaged 

concentration between material where the student has a high probability of knowing 

the skill and material where the student has a very low probability of knowing the 

skill). However, due to the large sample size, the linear trend is statistically significant 

(r = 0.184, F(1, 1560519) = 13660.477, p < 0.0001 ). In accordance with past studies 

[3, 24], engaged concentration is the most common affect when using ASSISTments 

regardless of student skill level. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The relationship between engaged concentration and the probability that the student 

knows the skill. 

4 Discussion and Conclusion 

Flow theory has emphasized the importance of achieving a balance between perceived 

challenge of a task and perceived skill for that task, to produce optimal student en-

gagement (i.e., flow). In these models, an imbalance between challenge and skill 

would result in either boredom or frustration (or anxiety, which is not studied here).   

In this paper, we study the relationship between these student affect and student 

knowledge within the context of an ITS, towards providing a concrete test of one 

aspect of Flow theory. We do so by applying automated detectors of student affect 

and knowledge to data from the ASSISTment system, a widely used intelligent tutor-

ing system for middle school mathematics. By integrating these two types of detec-

tors, we can analyze the frequency of each affective state for students with different 

levels of knowledge.  



A limitation in this paper is that the model used for difficulty measures looked at 

estimations of actual knowledge and difficulty rather than a student's self-perceptions 

(as in from Flow theory). A challenge in obtaining measures of self-perception is that 

they may change the student’s emotions and learning if obtained in real-time, and 

may be prone to memory limitations if obtained retrospectively. They also present 

some risk of demand effects. However, replicating this research with self-report 

measures would be a valuable step for future work.  

Overall, we find that engaged concentration is the most likely affect, regardless of 

difficulty. This result shows that completing problems in ASSISTments is generally 

engaging, even when the problems are too easy or too difficult. Beyond this, problems 

are seen to become more engaging as student mastery increases, which contrasts 

somewhat with predictions made in Flow theory, which would predict that engage-

ment would be reduced for the most challenging problems. (However, this result rep-

licates a result seen in [17]). Flow theory predicts that these highly challenging prob-

lems will result in student frustration. Indeed, higher frustration is seen for the most 

challenging problems. However, higher boredom is also seen for these highly cha l-

lenging problems, contrary to Flow theory. Boredom is generally lower for easy pro b-

lems than hard problems, also contrary to Flow theory. In addition, higher frustration 

is seen for easy problems than for problems of middling difficulty, a finding that can-

not be easily explained with Flow theory. 

Given that these results are different from earlier predictions, it is worth thinking 

about their interpretation. There have been reports of boredom being associated with 

poorer learning [7, 19] and with disengaged behaviors that in turn lead to poorer 

learning [3]. Recent studies using other methods have also found that students become 

bored and disengaged when they find items difficult [1, 19]. These results accord with 

our findings that boredom is characteristic of less successful students rather than hig h-

ly successful students. Perhaps these students are bored because they have given up 

on succeeding with the material, but must continue to work with the software. It may 

be that this type of boredom is more common in intelligent tutoring systems than 

boredom resulting from overly low challenge – especially since many tutors such as 

ASSISTments are designed to advance students when they reach mastery.  

One possibility is that the relatively low boredom seen for easy items and the u n-

expected frustration seen on these items is due to the student’s lack of control over 

problem difficulty. Perhaps a student who wishes to receive more challenging prob-

lems, but cannot obtain these problems within the software, becomes frustrated and 

upset with the software. In general, further research may be necessary in order to 

understand why students become frustrated with easy material. One possible approach 

would be to pop-up an automated question in this situation (detected frustration on 

easy material), asking students if they are frustrated and why. An interesting aspect of 

the current finding on frustration and student knowledge is that this result provides an 

account for a surprising result from previous studies. Past research has failed to find 

significant relationships between frustration and learning outcomes [cf.7, 22], contra-

ry to theoretical predictions [13]. If unsuccessful students are not more likely to be-

come frustrated, one would not expect to see such a relationship. In general, frustra-

tion appears to be a more complex construct than originally thought [cf. 13]. 



Overall, our findings suggest that there may be substantial holes in our understand-

ing of the situations where different affective states emerge, during human-computer 

interaction. Current theory does not explain these results, and makes predictions that 

are in some cases contrary to the findings presented here. It is important to note that 

these findings only involve one intelligent tutor, and rely upon imperfect detectors of 

both affect and knowledge (though each of these detectors is approximately as good 

as the current state-of-the-art for sensor-free detection of these constructs). Replicat-

ing these results (or failing to) in other learning software will be an important step 

towards understanding the generality of these findings, and towards creating general 

principles for how intelligent tutoring systems should respond to users when they 

demonstrate these affective states. It is likely that we will find that each of the affec-

tive states can emerge in multiple situations, driven by differences in tutor design, and 

perhaps by individual differences as well. Hence, further investigation of the contexts 

of affect will be needed to fully understand these relationships.  
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