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Abstract. The study of how affect develops and manifests over time during 

learning is a popular area of research called affect dynamics. Students’ affective 

states are recorded in authentic settings like classrooms using direct observations 

by culturally sensitive, trained, and certified coders. A popular approach to 

studying affect dynamics in the last decade involved a transition metric called the 

L statistic. However, recent studies have reported statistical errors and other 

discrepancies with L statistic leading to questions about its reliability. Thus, we 

turn to epistemic network analysis (ENA), an emerging technique that is gaining 

popularity in studying the structure of temporal interconnections between codes.  

In this paper, we present an alternative approach to study affect dynamics by 

extending ENA to include directionality in the network edges to capture 

transitions. We also propose a new approach to running significance tests on 

network edges to identify significantly likely transitions. Then, we apply the two 

techniques – L statistic and ENA - to a previously collected affect dataset from a 

middle school math class, in order to better understand the trade-offs between 

these methods. Our analysis revealed that ENA could be a promising new 

approach to conduct affect dynamics analysis. In addition to avoiding statistical 

errors seen in L statistic, ENA offers better visualization which better emphasizes 

the magnitude of a transition’s strength. We discuss the assumptions in ENA that 

need to be vetted further and the possibility for new kinds of analysis in the future 

for affect dynamics research using ENA.  

Keywords: Affect Dynamics, Transition Analysis, Epistemic Network 

Analysis, L Statistic, Temporal Sequences. 

1 Introduction and Motivation 

Affect within intelligent tutors and other types of adaptive and artificially intelligent 

educational systems has been shown to correlate with a range of other important 

constructs including self-efficacy [17], analytical reasoning [7], motivation [21], and 

learning [4, 8]. Affect-sensitive interventions have been designed to improve student 

engagement [22], learning gains [8, 9] and overall experience [10].  

Developing effective real-time interventions depends on understanding how affect 

develops and manifests over time, an area of research termed affect dynamics (i.e. [14]), 

with a large body of research examining how students transition from one affective 

state to the next during learning activities (see [11] for review). These studies have been 

conducted in a wide range of contexts and demographics, including students in middle 
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school (private), high school (public and private), undergraduate programs and graduate 

schools, with a particular focus on contexts in the United States and in the Philippiness. 

Identifying student affect for research and to develop automated models is complex 

and nuanced. Affect data collection in authentic settings like classrooms typically 

involves direct observations by culturally sensitive, trained, and certified coders, or 

intensive video data collection and coding procedures [20]. Students are observed using 

widely-used protocols like BROMP [3] to reduce rater bias and observer effects and 

enable rigorous quantitative analysis. The output of such a method is temporally 

sequenced codes representing the field observations of student affect. 

A popular transition metric used in affect dynamics research is the L statistic. It 

calculates the likelihood that a student in a given affective state will transition to a next 

state, given the base rate of the next state. In 2019, Karumbaiah and colleagues [12] 

provided mathematical evidence that several past studies applied the transition metric 

(L) incorrectly - leading to invalid conclusions of statistical significance. They 

proposed a corrected method which shifts the chance value of L from 0 to a positive 

value dependent on the number of affective states studied. Although this solution 

attends to the primary statistical error in past work, it makes the statistic difficult and 

non-intuitive to interpret.  For example, it is possible for an L value to be above 0, but 

statistically significantly below the chance value, a situation likely to confuse 

researchers and readers and lead to incorrect conclusions. In addition, a recent study 

has reported that there are further issues with the L statistic involving states with high 

base rates [16], frequently seen for the affective state of engaged concentration [2]. 

Another simulation study with L produced results above chance levels for randomly 

generated affect sequences, if the sequences were short [5]. These continuing issues 

with the L statistic suggest an alternate approach may be warranted. We turn to the 

emerging field of quantitative ethnography for alternative approaches to conduct affect 

dynamics analysis. 

A technique that is gaining popularity to study the structure of temporal 

interconnections between codes is epistemic network analysis (ENA). ENA models the 

pattern of association in coded data by building a network of relationships among the 

codes [23]. For affect dynamics, this means exploring associations between students’ 

affective states during learning. There are five preliminary reasons why ENA could be 

a useful approach for affect dynamics research. First, the ENA network offers an 

intuitive way of visualizing probabilistically likely connections between affective 

states. Second, the edge thickness in the network (representing the strength of the 

association) offers a straightforward approach to interpreting the magnitudes of the 

transition strength – an indicator often overlooked in previous work focusing on the 

statistical significance of transitions. Third, unlike the L statistic, ENA can represent 

the case where there are multiple affective states occurring during the same time 

interval (seen more in the use of affect detectors as data sources than in field observation 

data – i.e. [19]). Fourth, ENA could enable identification of the most salient differences 

between the transitions observed in different student subgroups or learning activities 

and visualize them clearly as difference networks. Fifth, ENA could also help 

researchers study changes in the strength of connections over time. 
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There are two main limitations of using ENA as-is for affect dynamics analysis. 

First, we need to go beyond simple associations between the codes to also capturing the 

directionality of the co-occurrence. For instance, it is not enough to know that confusion 

and frustration has a strong association. We also need to know whether confusion 

transitions to frustrations or vice-versa or both. Second, we need to establish ways to 

conduct statistical tests on the strengths of these associations to identify significant 

transitions.  In this paper, we present an alternative approach to study affect dynamics 

using ENA, also proposing ways to overcome the current limitations of the ENA tool 

for this type of analysis. We then compare this method of analyzing affect dynamics to 

the currently popular method of using the L statistic and discuss the strengths and 

weaknesses of the two approaches. 

2 Affect Dynamics Analysis with L Statistic – Prior Work 

Given an affect coding sequence, the L statistic [17] calculates the likelihood that an 

affective state (prev) will transition to a subsequent (next) state, given the base rate of 

the next state occurring.  

𝐿(𝑝𝑟𝑒𝑣 → 𝑛𝑒𝑥𝑡) =
𝑃(𝑛𝑒𝑥𝑡|𝑝𝑟𝑒𝑣) −  𝑃(𝑛𝑒𝑥𝑡)

1 − 𝑃(𝑛𝑒𝑥𝑡)
 (1) 

The expected probability for an affective state, P(next), is the percentage of times 

that the state occurred as a next state. The conditional probability, P(next|prev) is given 

by: 

𝑃(𝑛𝑒𝑥𝑡 | 𝑝𝑟𝑒𝑣) =
𝐶𝑜𝑢𝑛𝑡(𝑝𝑟𝑒𝑣 → 𝑛𝑒𝑥𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑝𝑟𝑒𝑣)
 (2) 

where Count(prev → next) is the number of times the prev state transitioned to the next 

state, and Count(prev) is the number of times the state in prev occurred as the previous 

state.   

    The value of L varies from -∞ to 1. The sign and the magnitude of L has been thought 

to be intuitively understandable as the direction and size of the association (see [8]). L 

= 0 has generally been treated as chance association, while L > 0 and L < 0 are treated 

as transitions that are more likely or less likely (respectively) than chance. To perform 

affect dynamics analysis across all students in an experiment, first the L value for each 

affect combination is calculated individually per student. Next, for each transition, a 

two-tailed one-sample t-test is conducted to test whether the likelihood is significantly 

greater than or equivalent to zero, across students [1]. More recently, researchers have 

added a step where a Benjamini-Hochberg post-hoc correction procedure is used to 

control for false positive results since the set of hypotheses involves multiple 

comparisons [11]. 

One special case that is not fully discussed in most of the literature is self-transitions 

where the student remains in the same affective state for more than one step in a 

sequence. Close to half of the previous studies have removed self-transitions during the 
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data preparation stage (see discussion in [11]). This straightforward procedure seems 

quite logical, but violates the statistical assumption of independence between prev and 

next states as next state can now only take values other than that of prev state. Hence, 

when self-transitions are excluded, P(𝑛𝑒𝑥𝑡|𝑝𝑟𝑒𝑣) ≠ 𝑃(𝑛𝑒𝑥𝑡) for transitions at chance, 

and for a state space with n affective states (n > 2), the value of L at chance is [11]: 

𝐿 =  
1

(𝑛 − 1)2
 if self-transitions are excluded   

This finding showed that the L statistic must be interpreted differently depending on 

how many affective states are being observed; several past published studies which 

treat chance L as 0 therefore treat relationships significantly less likely than chance as 

significantly more likely than chance (see [12]). Although adjusting the chance value 

for L offers a remedy for this error, it complicates the interpretation of the statistic. 

While running statistical tests or making sense of the transition patterns, researchers 

have to be cautious about choosing the correct chance L value and interpreting values 

accordingly.  

 Additional problems have been revealed in terms of the reliability of the L statistic, 

based on analysis being conducted at the student-level and ignoring the within-student 

sample size. A recent simulation study [5] reported that L frequently produced results 

above chance levels for randomly generated sequences, if the sequences were short. 

Their study recommends a minimum sequence length of 20 per student for 4 states to 

avoid invalid values and much longer sequences (in excess of 50) to avoid spurious 

results. A sequence length of 50 would translate to a minimum observation session of 

2.5 hours in a typical data collection setting with 10 students and a 20-second 

observation grain size. This is impractical to achieve in traditional classrooms where a 

class period is often under an hour long. In other words, L may be unreliable for use 

with the BROMP data collection where it is currently commonly used [11].  

3 Affect Dynamics Analysis with ENA – An Alternate 

Approach 

Epistemic network analysis (ENA) is a method used to identify and quantify 

connections among elements in a coded data [23]. An epistemic network - originally 

developed to model cognitive networks [23] - represents the structure of connections 

and the strength of association among the codes. To interpret situated events, codes are 

used as the socially and culturally organized ways of seeing these recorded actions. In 

authentic classroom settings, a protocol like BROMP [3] produces a sequence of data 

coded in terms of a validated list of codes of student affect and behavior. BROMP has 

been used by over 160 researchers and practitioners in seven countries for field 

observations with culturally sensitive coding schemes revised for and adapted to 

different cultural contexts [3]. In this section, we explore the use of ENA to model 

affect dynamics by capturing the temporal interconnections between the recorded 

affective codes.   
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3.1 Capturing Directionality  

Traditionally, most ENA research has been interested in the co-occurrences of codes 

over time and thus focuses on symmetric data where an edge between two codes imply 

that they are connected to each other, with no explicit consideration of the direction of 

the connection. When adopting ENA for transition analysis like in the case of affect 

dynamics, the direction of the connection needs to be established clearly. This can be 

achieved by extending the approach suggested by Shaffer [23] wherein each code 

assumes two functions – sending and receiving.  These two functions can be represented 

as two separate nodes in the network. For instance, the affective state of confusion 

(CON) can be denoted as confusion_sender (CON_S) if it is the current state in the 

transition and confusion_reciever (CON_R) if it is the next state in the transition. Thus, 

a transition from confusion to frustration (FRU) will be represented as the codes 

CON_S (time N) and FRU_R (time N+1). This change can be captured at the data 

preparation stage. For an example affect sequence of ENG (engaged concentration)-

CON-CON-BOR (bored)-BOR-FRU, Table 2 shows the transformation into the vector 

encodings representing the 5 transitions in the sequence. Each row has 2 columns that 

are set to 1 – one for the sender (_S) and one for the receiver (_R). Note that the first 

state in the sequence is ignored as it does not represent a transition. 

Table 1. Vector Encodings Preserving the Direction of the Transitions ENG-CON-CON-BOR-

BOR-FRU 

Affect Transition ENG_S CON_S FRU_S BOR_S ENG_R CON_R FRU_R BOR_R 

ENG - - - - - - - - - 

CON ENG-CON 1 0 0 0 0 1 0 0 

CON CON-CON 0 1 0 0 0 1 0 0 

BOR CON-BOR 0 1 0 0 0 0 0 1 

BOR BOR-BOR 0 0 0 1 0 0 0 1 

FRU BOR-FRU 0 0 0 1 0 0 1 0 

 

3.2 Removing Self-Transitions 

The decision of whether to include or exclude self-transitions depends on the research 

goals. If some affective states are particularly persistent - for instance engaged 

concentration [2] - including self-transitions could lower the transition probabilities for 

transitions to new affective states, and/or in some cases, cause them to become non-

significant. In contrast, excluding self-transitions may inflate the frequency of seeing 

transitions between affective states. Recent research on affect dynamics has focused on 

between states rather than their persistence [4, 6, 11]. In keeping with this, our analysis 

within this paper also excludes self-transitions. Self-transitions can be removed from 

the vector encodings by eliminating all the transitions where the sender (_S) and 

receiver (_R) states match, such as the third row in Table 2 (CON-CON) where 
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CON_S=1 and CON_R=1. The Exclusion of self-transitions could also be done at the 

beginning of data preparation by collapsing self-transitions in the original sequence into 

a single state.  

3.3 Choosing ENA Parameters 

Our unit of analysis is a student. All the affect codes for a student from a single 

observation session will constitute a conversation, in terms of ENA analysis. Since we 

are interested in analyzing the transitions between two states, we limit the temporal 

context for ENA analysis to a single vector encoding a single transition. Thus, the 

moving window size (grain-size of time for co-occurrence) is set to 1. The resulting 

epistemic network will not have any edge between the sender nodes (say CON_S and 

ENG_S) or between the receiver nodes (say CON_R and ENG_R). As we remove self-

transitions, there also will not be any edge between the sender and receiver nodes for 

the same state (say ENG_S and ENG_R). An example epistemic network with three 

affective states (Engaged Concentration, Frustration, Confusion) and without self-

transitions is given in Figure 1. In this example, stronger connections (thicker edges) 

are seen in these four (of six possible) transitions:  

• ENG_S and CON_R - Engaged Concentration -> Confusion 

• ENG_S and FRU_R - Engaged Concentration -> Frustration 

• FRU_S and ENG_R – Frustration -> Engaged Concentration 

• CON_S and ENG_R – Confusion -> Engaged Concentration 

   

Fig. 1. An example epistemic network 

3.4 Significance Test for Transition Strength 

Most ENA research focuses on network level analysis with statistical tests comparing 

one network to another. In case of transition analysis like affect dynamics, our focus 
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shifts from the whole network to individual transitions. Thus, it is necessary to quantify 

the transition strength and establish significance tests on the edges to determine which 

of the transitions are significant. We do so by extracting the edge weights of the 

resulting network for each individual student. While the output network in the web 

version of ENA tool presents the mean strength of the edges (Figure 1), we can extract 

the line weights for individual students by clicking each data point and hovering the 

cursor over the edges of the individual network. This could be time consuming when 

there is a bigger data set or a higher number of codes. Thus, we recommend extracting 

the network line weights for individual student networks from the $line.weights 

variable in rENA - its R implementation [15]. The output matrix will have 𝐶2
𝑛  columns 

representing all possible edges, where n is the number of affective states. For instance, 

if a data set has 4 affective states, there will be weights for 28 possible edges for each 

student. These include self-transitions (4), transitions between senders (6) and 

transitions between receivers (6) – all of which are invalid in our network configuration. 

Thus, we will run a one-sample [two-tailed] t-tests on the normalized transition 

strengths (line weights) only on the weights of the twelve edges that remain after 

removing the sixteen invalid edges. Lastly, a Benjamini-Hochberg post-hoc correction 

procedure is used to control for false positive results since the set of hypotheses 

involves multiple comparisons.   

4 Example Analysis 

In this section, we apply the two techniques – L statistic and ENA - to a previously 

collected affect dataset, in order to better understand the trade-offs between these 

methods. 

4.1 Data 

The data used in this analysis was collected through field observations of 838 students 

using ASSISTments, a computer based learning system for middle school math [6]. The 

coders used BROMP (Baker Rodrigo Ocumpaugh Monitoring Protocol; [3]) to code 

3,127 observations of student affect and behavior. The observation data is highly 

skewed, with approximately 82% of observations coded as engaged concentration, 10% 

coded as boredom, 4% coded as confused, and 4% coded as frustration. This affect 

distribution is consistent with past research on affect prevalence in systems such as 

ASSISTments. 

4.2 L Statistic Result 

Table 3 lists the result of the affect dynamics analysis with L statistic. In this case, as 

there are 4 affective states, the L value at chance is 0.11 (see Table 1), and this value is 

used within the one-sample t-tests. The transitions that are statistically significantly 

likely than chance (after post-hoc correction) are Engaged Concentration -> Boredom, 

Confusion -> Engaged Concentration, Frustration -> Engaged Concentration, and 
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Boredom -> Engaged Concentration. Note that the transitions Boredom -> Confusion 

and Boredom -> Frustration are both significant and have an L value greater than zero 

but are not significantly positive because they both have L values less than the chance 

value.  

Table 2. L Statistic Results for ASSISTment BROMP Data  

Sender State Receiver State L p-value Adjusted 

Alpha 

ENG CON 0.171 0.091 0.0333 

ENG FRU 0.153 0.243 0.0375 

ENG BOR 0.349* <0.001 0.0042 

CON ENG 0.539* <0.001 0.0083 

CON FRU 0.049 0.286 0.0416 

CON BOR 0.085 0.683 0.0458 

FRU ENG 0.552* <0.001 0.0125 

FRU CON -0.003* 0.015 0.0250 

FRU BOR 0.120 0.867 0.0500 

BOR ENG 0.669* <0.001 0.0167 

BOR CON 0.033* 0.022 0.0292 

BOR FRU 0.016* 0.012 0.0208 

*All significant transitions 

Significantly positive transitions are in bold 

4.3 ENA Result 

Figure 2 and Table 4 present the result of the epistemic network analysis. From the 

visual inspection of the resulting network (Figure 2), we can observe that the two 

strongest connections translate to strong transitions between Engaged Concentration -

> Boredom and Boredom -> Engaged Concentration. There are four other connections 

that have relatively medium strength - Engaged Concentration -> Confusion, Engaged 

Concentration -> Frustration, Confusion -> Engaged Concentration, and Frustration 

-> Engaged Concentration. Other transitions do not have visibly strong edges.  

While the network provides a visualization to emphasize the relative strengths of the 

transitions, it is also useful to quantify the transition strength to compare the degree of 

difference and run significance tests. Table 4 summarizes the method described in 

section 3.3 to achieve this with rENA. All the visible connections in the network (Figure 

2) have a significantly positive transition strength. The two strongest transitions 

(Engaged Concentration -> Boredom and Boredom -> Engaged Concentration) have 

close to three times the transition strength as the other four statistically significantly 

positive connections.  
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Fig. 2. Epistemic network capturing transitions in ASSISTment BROMP Data 

Table 3. Significance of Transition Strengths in the Epistemic Network 

Sender State Receiver State Transition 

Strength 

p-value Adjusted 

Alpha 

ENG CON 0.099 <0.001* 0.0042 

ENG FRU 0.083 <0.001* 0.0083 

ENG BOR 0.256 <0.001* 0.0125 

CON ENG 0.088 <0.001* 0.0167 

CON FRU -0.027 0.001* 0.0292 

CON BOR -0.018 0.057 0.0416 

FRU ENG 0.090 <0.001* 0.0208 

FRU CON -0.021 0.053 0.0375 

FRU BOR -0.015 0.145 0.0458 

BOR ENG 0.240 <0.001* 0.0250 

BOR CON -0.019 0.046 0.0333 

BOR FRU -0.002 0.907 0.0500 

*All significant transitions 

Significantly positive transitions are in bold 
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There are some similarities and differences between the results of L statistics and 

ENA-based analyses of significance. In both the results, all the significant transitions 

are either into or out of Engaged Concentration – the state with the highest base rate 

(80%). Four transitions are more likely than chance within each paradigm. In 

comparison to the results with L statistics, ENA finds two additional transitions to be 

more likely than chance: Engaged Concentration -> Confusion and Engaged 

Concentration -> Frustration. Both of these transitions have positive L values that are 

above chance (0.17 and 0.15 respectively) but are not significant. They are not among 

the strongest ENA results visualized in the network (Fig 2). Their quantified transition 

strength is less than 0.1. Unlike the L results, there is a visually clear distinction 

between the two strongest transitions involving Engaged Concentration and Boredom 

and all the other four significant transitions in the ENA results. With L statistic, there 

is no such obvious distinction - the significantly positive L values range from 0.35 to 

0.67.  

5 Comparing L Statistic and ENA Approaches to Affect 

Dynamics Analysis 

Validity. One of the primary concerns with the L statistic is that it breaks down when 

self–transitions are removed from the affect sequence. In contrast, ENA does not make 

independence assumptions between two states, relying solely on their co-occurrences. 

Although ENA has not been traditionally used for transition analysis, this paper has 

demonstrated an extension that can serve this purpose. As such, it appears that using 

ENA for affect dynamics analysis is a reasonable choice, whether self-transitions are 

included or excluded. 

 

Interpretability. L statistic offers a simple approach to quantify the transition 

likelihood, which can be used to run significance tests. However, in the case when self-

transitions are excluded, the results need to be interpreted with a non-zero value for 

chance, requiring counterintuitive interpretation. This property has led to incorrect 

statistical tests being run and incorrect interpretations in past work. In contrast, ENA 

does not have an established approach to run significance tests on the transition strength 

as such. In this paper, we propose a new approach to do this – the properties of which 

we offer initial analysis of but which is yet to be vetted thoroughly.  

 

Visualization. ENA offers a straightforward approach to visualize the results of an 

affect dynamics analysis as a network with nodes representing the affective states and 

the thickness of the edges representing the strength of the transition between two 

affective states. Previously affect dynamics analyses using the L statistic have focused 

more on the significance of the transitions than on the magnitude of the likelihood itself. 

With ENA’s network visualization, it is much easier to see which transitions are most 

prevalent.  
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Co-occurring affective states. L statistic requires an affect sequence with a single state 

active at a given interval of time. This restricts the possibility that multiple affective 

states may occur during the observation interval (e.g., Confusion and Frustration), and 

makes it challenging to handle cases where there is a disagreement between the two 

coders who are observing the same student at the same time, or where an automated 

detector of affect is unable to distinguish which of two affective states is occurring.  

With ENA, it possible to work with data where multiple affective states co-occur as 

ENA uses vector encodings for representing transitions instead of the single state 

representation. 

6 Discussion and Conclusions 

Affect dynamics is the study of how students’ affect develops and manifests over time 

during learning. Past affect dynamics research has analyzed the likelihood of transition 

between states using the L statistic. Researchers have identified many limitations to the 

L statistic. We explore ENA as an alternative approach to model the temporal 

interconnections between affective codes. In this paper, we extend ENA to include 

directionality in the network edges to capture transitions. The resulting network 

represents affect as nodes and the strength of transition as the weight of the edge 

between them. Our analysis with the affect observation data from a middle school math 

class reveals that ENA could be a promising new approach to conduct affect dynamics 

analysis. First, ENA appears to avoid key limitations of using L when self-transitions 

are removed from the affect data. Second, ENA offers better visualization which better 

emphasizes the magnitude of a transition’s strength. Third, ENA could be used when 

more than one affective state is active at once.  

ENA is an emerging technique, and it needs to be vetted further for its assumptions 

and implications for different research contexts and practices. Take, for example, the 

implications of highly imbalanced codes. It is common in affect datasets to have a high 

base rate for certain states like Engaged Concentration (82% in the data analyzed in this 

paper). What is striking with the use of ENA is that all the transitions into or out of 

Engaged Concentration are significantly likely. Further research is needed to analyze 

the impact of dominant codes in ENA. Mello and Gasevic [18] did some preliminary 

analysis on this topic and found that excluding dominant codes had drastic impacts on 

the resulting networks. Unfortunately, removing important codes from the analysis may 

not be a viable option for researchers but may present a challenge for the use of ENA 

for some data sets. 

One of the contributions of this paper is that it demonstrates the use of ENA for 

transition analysis with qualitative codes. We also propose a new approach to running 

significance tests on network edges to identify significantly likely transitions. This has 

implications beyond affect dynamics. For instance, we could identify the dialog moves 

that are more likely to precede or follow other dialog moves in a collaborative 

discourse. It could also be used when the directionality between the epistemic network 

nodes is important. For example, in a network representing citations between authors – 
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author A’s citation of author B is not necessarily the same as author B’s citation of 

author A.  

In our current analysis, we see that doing transition analysis with ENA produced 

significant results for all transitions with a positive transition strength. Further analysis 

is needed to confirm that the chance value of transition strength in ENA is indeed zero. 

Along similar lines, further research is needed to investigate if shorter affect sequences 

could lead to spurious results with ENA, as has been seen for the L statistic (i.e. [5. 

16]).  

Beyond these potential benefits, ENA opens up the possibility for new kinds of 

analysis in the future. Traditionally, affect dynamics research has looked at the 

transitions between two temporally immediately adjacent states. With ENA, we have 

the provision to examine co-occurrence of states at a coarser level by experimenting 

with moving window sizes greater than one.  

Likewise, ENA offers difference networks (or subtracted networks) to enable 

identification of the most salient differences between two or more networks. This could 

be used to identify differences in transition patterns in student subgroups, such as 

whether there are differences between students in the US vs. the Philippines or between 

classroom studies and laboratory studies of affect. It could also be used to recognize 

students’ affective trajectories by visualizing difference networks in time intervals or 

during important moments in learning.   
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