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Abstract 

In this paper, we review algorithmic bias in education, discussing the causes of that bias and 
reviewing the empirical literature on the specific ways that algorithmic bias is known to have 
manifested in education. While other recent work has reviewed mathematical definitions of 
fairness and expanded algorithmic approaches to reducing bias, our review focuses instead on 
solidifying the current understanding of the concrete impacts of algorithmic bias in education—
which groups are known to be impacted and which stages and agents in the development and 
deployment of educational algorithms are implicated. We discuss theoretical and formal 
perspectives on algorithmic bias, connect those perspectives to the machine learning pipeline, 
and review metrics for assessing bias. Next, we review the evidence around algorithmic bias in 
education, beginning with the most heavily-studied categories of race/ethnicity, gender, and 
nationality, and moving to the available evidence of bias for less-studied categories, such as 
socioeconomic status, disability, and military-connected status. Acknowledging the gaps in what 
has been studied, we propose a framework for moving from unknown bias to known bias and 
from fairness to equity. We discuss obstacles to addressing these challenges and propose four 
areas of effort for mitigating and resolving the problems of algorithmic bias in AIED systems 
and other educational technology. 

Keywords: algorithmic bias, algorithmic fairness, machine learning, artificial intelligence and 
education 
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Algorithmic Bias in Education 

 

1. Introduction 

Today, algorithms influence our lives in a wide variety of ways. Computer algorithms that make 
decisions and predictions are often viewed as inherently fair and objective (M. K. Lee, 2018). 
But in recent years, a competing perspective has emerged -- the perspective that algorithms often 
encode the biases of their developers or the surrounding society, producing predictions or 
inferences that are clearly discriminatory towards specific groups. Examples of algorithmic bias 
cross contexts, from criminal justice (Angwin et al., 2016), to medicine (O’Reilly-Shah et al., 
2020), to computer vision (Klare et al., 2012), to hiring (Garcia, 2016). These limitations appear 
-- and are particularly salient -- for high-stakes decisions such as predicting recidivism (Angwin 
et al., 2016) or administering anaesthesia (O’Reilly-Shah et al., 2020).  

This limitation is found in educational algorithms as well, an increasing number of papers assert 
(e.g. Bridgeman et al., 2009, 2012; Ocumpaugh et al., 2014; Yudelson et al., 2014; Kai et al., 
2017; Hu & Rangwala, 2020; Yu et al., 2020). The problem of bias in educational testing has 
been documented since the 1960s and anticipated many aspects of the modern literature on 
algorithmic bias and fairness (see review and discussion in Hutchinson & Mitchell, 2019). In 
recent years, algorithms have become applied in educational practices at scale for a range of 
applications, often high-stakes, including dropout prediction (Christie et al., 2019; Milliron et al., 
2014), automated essay scoring (Ramineni & Williamson, 2013), graduate admissions (Waters & 
Miikkulainen, 2014), and knowledge inference (Ritter et al., 2016). Academics have been 
warning about possible uneven effectiveness and lack of generalizability across populations in 
educational algorithms for several years (e.g. Bridgeman et al., 2009; Ocumpaugh et al., 2014). 
This concern became very salient to the general public in the 2020 UK GCSE and A-Level 
grading controversy (H. Smith, 2020), where a set of formulas was developed by the national 
qualifications regulator (by hand rather than by an automated algorithm) to assign predicted 
examination grades based on teacher predictions -- the algorithm assigned poorer grades to 
students in state-funded schools and better grades (even better than teacher prediction) to 
students in smaller independent schools.  

In this paper, we review algorithmic bias in education, discussing theoretical work on the root 
causes of algorithmic bias, and reviewing the existing empirical literature on the specific ways 
that algorithmic bias is known to have manifested in education. In doing so, we distinguish 
ourselves from more algorithmically-focused reviews of algorithmic bias in education (e.g. 
Kizilcec & Lee, 2020). There is a great deal of merit to reviewing mathematical definitions of 
fairness and algorithmic approaches to reducing bias. Our review focuses instead on 
understanding exactly who appears to be impacted, and the impact played by the context 
surrounding the algorithms themselves. We focus in particular on biases emerging from how 
variables are operationalized and which data sets are used. This review is also distinct from 
broader discussions of how artificially intelligent technologies can be biased (e.g. Holstein & 
Doroudi, in press), including in the processes of the design of these technologies, focusing on the 
narrower issue of bias in the algorithms used to assess and make decisions. 

Our review starts in section 2 with a discussion of theoretical and formal perspectives on 
algorithmic bias. Within that, we define algorithmic bias, and connect it to different perspectives 
on the machine learning pipeline. We review metrics for assessing bias and taxonomies on forms 
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bias, and consider the essential link between two forms of bias in data collection -- situating key 
challenges around algorithmic bias not in the algorithms themselves, but in the data input to 
those algorithms.  

In section 3, we review the evidence around algorithmic bias in education. We start by reviewing 
the evidence around the most heavily-studied categories (race/ethnicity, gender, and nationality). 
We then review and discuss the evidence for algorithmic bias in less-studied categories. We then 
discuss the (very large) gaps in what has been studied, with a focus on the America-centric bias 
of most of the research on algorithmic bias in education. 

Finally, in section 4, we propose a framework for moving from unknown bias to known bias to 
fairness. We discuss the obstacles to addressing algorithmic bias in education, and propose four 
directions for the field of AIED to move in, that can help to mitigate and resolve the problem of 
algorithmic bias, for the benefit of the students our community serves. 
 
2. Theoretical and formal perspectives on algorithmic bias 
2.1 Defining algorithmic bias 
Discussions of algorithmic bias in education have been complicated by overlapping meanings of 
the term bias (Crawford, 2017; Blodgett et al., 2020). For example, a recent survey of the uses of 
the term bias in natural language processing across 146 papers found several areas for 
clarification in how authors define and write about bias, from a lack of explanation about how 
exactly systems were biased to confusion as to the eventual harms these forms of bias might 
cause (Blodgett et al., 2020). While not attempting to reconcile these conflicts, we will briefly 
discuss some issues of definition for algorithmic bias before proposing a more limited working 
definition we use in our survey.  
 
Algorithmic bias in emerging use 
The term algorithmic bias has been applied to an array of examples of unfairness in automated 
systems, only some of which seem to fit statistical or technical definitions of bias. In response, as 
examples have appeared in popular use, researchers have attempted to describe criteria for bias. 
Mitchell et al. (2021) summarizes “popular media” usage of the term biased as describing cases 
where “a model’s predictive performance (however defined) unjustifiably differs across 
disadvantaged groups along social axes such as race, gender, and class” (p.1). Similarly, Gardner 
et al. (2019) use bias as “inequitable prediction across identity groups” (p. 228). Applying a 
broader definition, Suresh and Guttag (2020), refer to biases as possible sources of harm 
throughout the machine learning process, including “unintended or potentially harmful” 
properties of the data that lead to “unwanted or societally unfavorable outcome[s]” (p. 1-2).  

Other authors favor the use of unfair over biased, preserving bias for its statistical meaning and 
using fair/unfair for its social/moral implications. Mehrabi et al. (2019) describe fairness in the 
context of algorithmic decision-making as “the absence of any prejudice or favoritism toward an 
individual or a group based on their inherent or acquired characteristics. An unfair algorithm is 
one whose decisions are skewed towards a particular group of people” (p. 1). Similarly, while 
acknowledging that algorithmic bias, in its popular sense, refers to socially objectionable 
“demographic disparities,” Barocas et al. (2019) avoid this popular usage of bias altogether, 
instead using demographic disparity and discrimination to refer to the negative impacts of 
applying some models, while maintaining bias in its statistical sense as systematic error in either 
data or model estimates. Friedman and Nissenbaum’s (1996) definition foreshadows these 
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distinctions, claiming that biased computer systems “systematically and unfairly discriminate 
against individuals or groups of individuals in favor of others [emphasis in original]” (p. 332).  

Overall a range of “biases” appear across definitions, from the statistical biases of measurement 
and error to imbalances in how well a model performs across groups, to systematic skew in 
results, to disparate impacts and discrimination as model results are interpreted and applied.  
As the nature and impacts of algorithmic bias continue to emerge, Blodgett et al.’s (2020) 
suggestions for clarity in description of bias are timely, particularly in education, where fewer 
cases of algorithmic bias impacting real-world outcomes have been reported, compared with 
criminal justice or healthcare. The authors suggest including descriptions of the kinds of system 
behaviors found to be harmful, how and why the system behaviors are harmful, who is harmed, 
and the normative reasons for making these judgements.  

Research outside of education has put a spotlight on some of the very real harms that can result 
from algorithmic bias. Such harms have been categorized broadly into allocative and 
representational forms (Crawford, 2017; Suresh & Guttag, 2020). Allocative harms result from 
the withholding of some opportunity or resource from specific groups or the unfair distribution 
of a good across groups. Some examples include gender and racial bias in ad delivery for 
housing and employment (Ali et al., 2019; Benner et al., 2019); gender bias in assigning credit 
limits (Knight, 2019; Telford, 2019); racial bias in sentencing decisions (Angwin et al., 2016), 
racial bias in identifying patients for additional health care (Obermeyer et al., 2019), and -- in 
education -- bias in standardized testing and its resulting impact on high stakes admission 
decisions (Dorans, 2010; Santelices & Wilson, 2010). Representational harms, on the other hand, 
manifest as the systematic representation of some group in a negative light, or in a lack of 
positive representation (Crawford, 2017). Multiple forms of representational harm have been 
uncovered in recent years. Work by Sweeney (2013) identifies representational harms of 
denigration and stereotyping, where the word “criminal” was more frequently returned in online 
ads after searches for black-identifying first names. Kay et al. (2015) describe other 
representational harms of recognition and under-representation, with work finding that image 
search results for male-dominated professions displayed a higher proportion of males than the 
proportions suggested by the data from U.S. Bureau of Labor and Statistics. 

As can be seen, there are a range of ways that algorithmic bias can be defined and viewed. In the 
current article, we focus on studying algorithmic bias in terms of situations where model 
performance is substantially better or worse across mutually exclusive groups (i.e. Gardner et al., 
2019; Mehrabi et al., 2019; Mitchell et al., 2021). Other forms of algorithmic bias can also be 
highly problematic, but -- as we discuss below -- the published research in education thus far has 
focused on this form of algorithmic bias. In this review, we also focus on the bias in algorithms, 
not in the broader design of the learning or educational systems that use these algorithms. Bias 
can emerge in the design of learning activities, leading to differential impact for different 
populations (Finkelstein et al., 2013), but this is a much broader topic than the bias that comes 
from algorithms.  
  
Bias against whom? 
Researchers have also considered a range of groups which have been, or might be, impacted by 
algorithmic bias. Many of these groups have been defined by characteristics protected by law, in 
various countries. In the United Kingdom, for instance, the Equality Act 2010 merged over a 
hundred disparate pieces of legislation into a single legal framework, unifying protections 
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against discrimination on the basis of sex, race, ethnicity, disability, religion, age, national origin, 
sexual orientation, and gender identity. In the United States, the same categories are protected by 
a combination of different legislation, commission rulings, and court rulings, dating back to the 
Civil Rights Act of 1964. Similar laws afford protections in the European Union and most other 
countries around the world, though differing somewhat in which groups are protected and how 
groups are defined.  

However, while critical for social equity, looking for bias only under the lamppost of nationally-
protected classes (categories often with their own complicated histories) may be leaving 
unexamined serious impacts on other, under-investigated, groups of people.  Depending on the 
social context of specific algorithmic systems, other researchers have suggested additional 
characteristics vulnerable to bias, such as urbanicity (Ocumpaugh et al., 2014), military-
connected status (Baker et al., 2020), or speed of learning (Doroudi & Brunskill, 2019). Section 
3.2 reviews the limited education research into algorithmic bias associated with other groups.  

While recognizing that many of the implications and harms of algorithmic bias currently fall 
outside of legal purview, legal frameworks used to decide which classes of people merit 
protection from discrimination may be helpful in assessing the unknown risks that algorithmic 
bias poses to as yet unidentified groups (Soundarajan & Clausen, 2018). Past discriminatory 
patterns against individuals, as well as the degree that class membership can be changed, may be 
useful in focusing efforts in bias mitigation. Judicial standards may also be helpful, particularly 
in medicine and education, in determining whether or not discrimination is justified by a 
compelling interest. Machine-learning applications that diagnose medical conditions or generate 
Early Warning Indicators (EWIs) for high school dropout could potentially satisfy criteria 
justifying discrimination when the benefits of an application outweigh possible harms, when 
individuals are aware of algorithmic decisions and are able to opt out or modify them, and when 
interventions are narrowly tailored to the relevant features of a targeted class (Soundarajan & 
Clausen, 2018). 
 
A note on the term “algorithmic” 
In this review, most examples of algorithmic bias are drawn from cases where large datasets of 
past examples were used to train predictive models using algorithmic or statistical methods. In 
other work, the term algorithmic in this context has been used to mean automated decision-
making systems in general, with machine-learning products and processes playing an increasing 
role in such automated systems. While this article uses algorithmic to refer more specifically to 
processes where models were created by applying automated algorithms to data, the recent A-
Level grading controversies in the UK make clear that bias and discrimination can result in cases 
where models and automation were coded by hand as well. While most of the cases that we 
review involve automated algorithms rather than manually-created models, many of the themes 
we discuss are relevant to manually-created models as well. 
 
2.2 Origins of bias and harm in the machine learning pipeline  
Researchers in education have recently begun drawing attention to existing cases of algorithmic 
bias in educational technologies, as well as to the possible increase, through adoption of artificial 
intelligence and machine learning, of such bias and its harmful impacts. As a starting place in 
understanding the origins of algorithmic bias, Mitchell et al. (2021) make a helpful distinction 
between statistical and societal forms of bias, where statistical bias encompasses sampling bias 
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and measurement error and societal bias refers to “concerns about objectionable social structures 
that are represented in the data” (p. 4). In a model used in practice, either of these forms of bias 
might contribute to overall algorithmic bias and possible real-world discrimination and harms. 
Several authors working at the intersection of computer science and the social sciences have laid 
the groundwork for this examination, expanding the statistical/societal distinction to describe the 
kinds of bias that can arise at each stage of the machine learning lifecycle and categorizing the 
possible harms and impacts arising from that bias. 

In the context of fairness and bias, process descriptions of machine learning range from the 
simple to the complex. Some collapse the process into broad stages, such as Barocas et al. (2019) 
and Kizilcec and Lee (2020), who view the process as going from measurement to model 
learning to action, or Mehrabi et al. (2019), who considers the process as going from user 
interaction to data to algorithm. Others, such as Suresh and Guttag (2020), have conceptualized 
machine learning in a finer-grained way and have considered the possibility of bias at each of the 
following stages: data collection, data preparation, model development, model evaluation, model 
post-processing, and model deployment. 

There have also been efforts in collaboration between industry and academia to develop process 
maps to support decision-making around bias in organizational contexts. One such process, 
illustrated in Figure 1, includes additional stages for Task Definition prior to Dataset 
Construction, along with separate stages for a Testing Process prior to Deployment, and ongoing 
Feedback from users (Cramer et al., 2019). The authors contend that explicitly considering each 
of these stages is critical in an organizational response to mitigating bias. 

Common sources of bias have been outlined in several taxonomies and related to stages in the 
machine learning lifecycle (Barocas et al., 2019; Hellström et al., 2020; Mehrabi et al., 2019; 
Silva & Kenney, 2018; Suresh & Guttag, 2020).  Landmark early work by Friedman and 
Nissenbaum (1996) set a precedent for this sequential framing of bias, categorizing biases based 
on the context where they arise, whether from preexisting social biases, technical limitations, or 
use of the models by real users. As this early work makes clear, much of the bias ultimately 
detected in algorithms arises outside the actual training of the model, whether from preexisting 
historical bias, aspects of measurement and data collection, or the uses to which model 
predictions are put. 

More exhaustively, Suresh and Guttag (2020) categorize bias into Historical bias, 
Representation bias, Measurement bias, Aggregation bias, Evaluation bias, and Deployment bias 
and map these forms of bias to stages in the machine learning process (See Figure 1 for a 
complete mapping). Historical bias involves mismatches between the world as it is and values 
for how the world should be, causing models that replicate decisions made in the world to be 
biased. An example in education might be including student demographics as predictors of 
grades and generating a model that achieves better performance by using those features to predict 
lower grades for some students -- i.e. if a student is in group X, they get 5 points lower on their 
final grade (i.e. Wolff et al., 2013). Such a model achieves better accuracy at the cost of 
potentially perpetuating bias. Bias of this nature can also arise even when demographics are not 
explicitly encoded in models, for instance when a proxy for a demographic variable is 
unintentionally included as a predictor. This form of bias is surprisingly common in education -- 
in a recent survey of the role of demographics in the Educational Data Mining (EDM) 
community, Paquette et al. (2020) found that roughly half of papers including demographics in 
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analyses used at least one demographic attribute as a predictive feature within the model, without 
incorporating demographics into model testing or validation.  

Representational bias is when a group that is under-sampled in the training data is predicted 
more poorly; for example, Anderson et al. (2019) find that the college graduation prediction they 
develop works poorly for indigenous learners, who comprise a very small proportion of the 
overall sample. Measurement bias occurs when choosing variables, for example when variables 
do not have construct validity for what they are intended to represent, and biases in the variables 
chosen cause unequal prediction across groups. For example, a model predicting school violence 
may be biased if the labels of which students engage in violence are created by a process that 
involves prejudice – e.g. the same violent behavior by two students is documented and punished 
for members of one race but not for members of another race (Bireda, 2002). As Holstein & 
Doroudi (in press) note, disparities in access to learning technologies can in turn create 
representational biases, lowering the quality of learning technologies for students who already 
have less access to them. 

Moving past the data collection and preparation phases of machine learning and into model 
development, Suresh and Guttag (2020) discuss how aggregation bias occurs when distinct 
populations are combined in the same model and the resulting model does not work for some -- 
or all -- groups of learners. This is seen in Ocumpaugh et al. (2014), where detectors of student 
emotion trained on a combination of urban, rural, and suburban students function more poorly 
for all three groups than detectors trained on individual groups. Evaluation bias occurs when the 
test sets used to evaluate a model do not represent the eventual population where the model will 
be applied. As reviewed in Paquette et al. (2020), many models in educational data mining are 
developed on non-representative populations, and many papers do not even report what 
populations the models were tested on, making detection of evaluation bias quite difficult. 
Finally, deployment bias involves a model being used in inappropriate ways -- being designed 
for one purpose and then used for a different purpose, such as using a model designed to identify 
student disengagement for formative purposes to assign participation grades. 

While raising overlapping concerns with Suresh and Guttag (2020), Olteanu et al. (2019) 
highlight the potential for bias specifically in the analysis of social data, such as user-generated 
content, online behavior and networks. To the degree that education algorithms leverage data 
from social software functions, they may be vulnerable to some of the same biases as analysis of 
social media in other contexts. The authors frame bias in a statistical sense, as a threat to the 
validity of research conclusions, where proof/disproof of hypotheses is undermined by biases 
that threaten the internal, external, or construct validity of the research findings. However, they 
note how examples of statistical bias may relate to the systemic, discriminatory biases which are 
often thought of in connection to algorithmic bias.   

Bias of the forms discussed above has the potential to manifest in a range of educational 
applications. Algorithmic bias has been documented in situations ranging from at-risk prediction 
for high school or college dropout (Anderson et al., 2019), at-risk prediction for failing a course 
(Hu & Rangwala, 2020; H. Lee & Kizilcec, 2020), automated essay scoring (Bridgeman et al., 
2009, 2012), assessment of spoken language proficiency (Wang et al., 2018), and even the 
detection of student emotion (Ocumpaugh et al., 2014). There has been documentation of 
algorithmic bias impacting educational algorithms in terms of student race, ethnicity, nationality, 
gender, native language, urbanicity, parental educational background, socioeconomic status, and 
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whether a student has a parent in the military. We review the literature on these specific findings 
in Section 3 below. 

Figure 1 summarizes several of the machine learning life-cycles mentioned previously alongside 
sources of bias that might arise at each stage. Where possible the broad categories of 
measurement, learning, and action on the vertical axis align with taxonomies from Barocas et al. 
(2019) and Kizilcec and Lee (2020). Sources of bias are drawn from multiple papers (Cramer et 
al., 2019; Mehrabi et al., 2019; Olteanu et al., 2019; Mitchell et al., 2021; Paullada et al., 2020; 
Suresh and Guttag, 2020), indicated by a bracketed number within the figure. 
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Figure 1: Descriptions of the Machine Learning Process and Possible Sources of Bias 

 
Alternative schema for the origins of bias 
While several attempts have been made at locating sources of bias within the machine learning 
pipeline (See Figure 1), other researchers have argued for locating algorithmic bias, not only at a 
stage within this process, but also as the product of the social interactions surrounding the 
production and use of an algorithm. Drawing from sociocultural activity theory, Ferrero and 
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Barujel (2019) describe an algorithm as the artifact of an activity system, locating bias within the 
connected parts of that system, where subjects make decisions within a context of objects, rules, 
community, and division of labor. Applying this alternative framework, they identify biases as 
either theoretical, methodological, interpretive, due to decontextualization, or due to data 
training. The authors’ description of bias as the artifact of specific decisions by particular agents 
draws attention to the fact that identifying a stage at which bias is generated goes only part of the 
way towards mitigating that bias. The activity system view elaborates other possible pathways 
for eliminating bias by grounding the temporal stages of a process model in the decisions of 
subjects working with organizational constraints. Ferrero and Barujel’s (2019) activity framing 
also encourages an examination of algorithmic bias as it develops across contexts. As commonly 
happens in education, one organization, perhaps commercial, develops a predictive algorithm, 
while another, a school or district, applies it (see discussion of this issue also in Holstein & 
Doroudi, in press). Locating machine learning in a similarly broad context, Dieterle et al. (under 
review) describe algorithmic bias as one in a larger series of AI-driven divides in educational 
technology. The authors describe how a digital divide in access to online learning leads to 
divides in the representativeness of data across populations, in how algorithms are developed, in 
how data are interpreted in schools, and eventually in how civic society is impacted. 

The increasing quantity of research and journalism over the last decade, empirically describing 
cases of algorithmic bias and their far-reaching harms, has galvanized public awareness and 
prompted extensive academic and industry research into the ways that algorithmic bias can be 
more effectively identified, mitigated, and its harms reduced.  
   
2.3 Formal fairness and its application (in a messy world) 
Much of this recent work addressing algorithmic bias has focused on mitigating bias at the model 
evaluation and postprocessing stages of the machine learning pipeline. More specifically, many 
articles have aimed at developing and cataloging a variety of formalized fairness definitions and 
metrics against which models might be evaluated. Recent surveys, both in education and more 
broadly, present different taxonomies of fairness and its measurement (Barocas et al., 2019; 
Caton & Haas, 2020; Kizilcec & Lee, 2020; Mehrabi et al., 2019; Mitchell et al., 2021; Verma & 
Rubin, 2018). 

Several researchers (Barocas et al., 2019; Kizilcec & Lee, 2020; Verma & Rubin, 2018) divide 
mathematical formalizations of fairness into high-level categories of statistical, similarity-based, 
and causal definitions. Statistical measures examine fairness through the lens of the confusion 
matrix, calculating relationships and ratios between predicted or true, positive or negative values 
in relation to membership in a sensitive group. Many of these formalized criteria for fairness 
connect back to three possible relationships of conditional probability across three main variables: 
the prediction, the true outcome, and membership in the relevant group. For example, the criteria 
of independence, requires simply that the algorithm’s decision or score be independent of 
membership in the group under consideration, with specific measures including statistical parity, 
group fairness, and demographic parity (Barocas et al., 2019; Kizilcec & Lee, 2020). Judged 
against this criterion, an independent (and therefore fair) algorithm might predict that equal 
percentages of students belonging to different demographic groups will fail a college course or 
that urban and rural students will have equal knowledge of farming technologies. Independence 
can be useful in some contexts, particularly when there are laws or regulations requiring that 
individuals be admitted in equal proportion of racial or gender categories (Chouldechova, 2017; 
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Makhlouf et al., 2020). However, this criterion has its limitations in not considering true 
outcomes in relation to predicted values; depending on context, this definition of fairness may 
correct for the historical biases impacting real-world data, or may produce undesirable results 
until those historical biases have been addressed.  

Two other criteria of statistical fairness, separation and sufficiency, consider group membership 
and algorithmic predictions, while also incorporating the true outcome of the predicted variable. 
Generally, separation requires that an algorithm’s performance be fair across groups, or stated 
another way, that correct and incorrect predictions are distributed equally in relation to the 
groups under consideration. This criterion has generated several attempts at precise formulation, 
from equal opportunity/equalized odds (Hardt et al., 2016) to slicing analysis (Gardner et al., 
2019) to predictive parity (Chouldechova, 2017). The sufficiency criterion asks the slightly 
different question of whether true outcomes are independent of group membership, while taking 
into account the predicted values. Satisfying sufficiency would require, for example, that of all 
students predicted to drop out in some educational setting, the same proportion are correctly 
predicted across sensitive groups (Kizilcec & Lee, 2020). 

In addition to these statistical definitions, other high-level categories of fairness include 
similarity-based measures, which account for similarities between individuals beyond a single 
sensitive attribute (Dwork et al., 2012; Verma & Rubin, 2018), and causal measures, which 
apply causal graphs and structural equation modeling to trace relevant pathways between a 
sensitive group attribute through intermediate factors to the predicted outcome (Verma & Rubin, 
2018).  

Along with this expanded set of formalized metrics and their clarifications of algorithmic bias 
has come the recognition that applying fairness measures in practice reveals its own range of 
obstacles. Specifically, technical obstacles to the use of fairness metrics manifest in several 
“impossibility” results (Chouldechova, 2017; Kleinberg et al., 2017; Berk et al., 2018; Loukina 
et al., 2019; Lee & Kizilcec, 2020, Darlington, 1971), where satisfaction of one statistical 
criterion of fairness makes “impossible” satisfaction of another. Kleinberg at al. (2017), for 
example, describe how the fairness criteria of calibration, balance for the positive class, and 
balance in the negative class cannot be simultaneously satisfied, except in special cases of 
perfect prediction and equal base rates, where both groups have an equal proportion of members 
in the positive class. Calibration here refers to the criterion that the predicted probability of a 
group to achieve the target variable should match the overall proportion of actual positive 
instances in the same group. Chouldechova (2017) comes to similar conclusions when analyzing 
the COMPAS dataset (Angwin et al., 2016) in light of competing fairness perspectives of 
calibration, predictive parity, and the balance of false predictions across groups.  

Education-specific analyses have pointed out similar trade-offs in automated scoring for 
language proficiency exams (Loukina et al., 2019) and predictions of above-median grades in 
required college courses (Lee & Kizilcec, 2020). As Kleinberg et al. (2017) point out, varied 
rules for fairness provide slightly different answers to the same general question: are an 
algorithm’s predictions equally effective across groups? Nonetheless, when the presence of the 
target variable is imbalanced across groups, attempts to satisfy criteria of calibration or 
predictive parity result in an imbalance in the rate of false positives or false negatives, leading to 
disparate impacts across groups (Chouldechova, 2017). 
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While work in this area has clearly acknowledged the need for tradeoffs between fairness metrics, 
there are fewer attempts to describe optimal tradeoffs in fairness for domain-specific problems 
(Lee & Kizilcec, 2020; Makhlouf et al., 2020; Suresh & Guttag, 2020). Providing such guidance 
is clearly difficult, as within even a single task or domain, the goals and uses to which algorithms 
are assigned can still vary considerably across local contexts, along with the perceptions of 
fairness among stakeholders. 

Similarity-based and causal metrics may face obstacles as well, particularly in identifying 
sufficient numbers of cases of individuals close enough to each other on selected distance 
metrics or who vary along the necessary characteristics (Kizilcec & Lee, 2020; Verma & Rubin, 
2018). Both similarity-based and causal measures of fairness also depend on either a distance 
metric or a causal model, both of which may face their own issues of validity and fairness 
(Kizilcec & Lee, 2020). 

In historical perspective, Hutchinson and Mitchell (2019) point out that many formalized 
definitions of fairness have precedents from the 1960s and 1970s as researchers worked to 
minimize bias in standardized testing. By the mid-1970s, however, these same researchers 
recognized persistent confusion in the use of fairness metrics in practice, both among researchers 
and in communication to the general public (Cole & Zieky, 2001). Questions were raised about 
applying different fairness metrics in contexts of competing goals and values (Hunter & Schmidt, 
1976). Other work noted that formal definitions often disagreed, that it was challenging to find a 
principled way to select between metrics, and broached the possibility that efforts towards the 
formalization of fairness might ultimately distract from more direct efforts to address societal 
problems of equity and justice (Petersen & Novick, 1976). 

These critiques of the 1970s foreshadow current sociotechnical critiques that heavy reliance on 
statistical definitions of fairness will ultimately impede efforts for the just deployment of 
algorithms in high stakes, real world situations. Work by Green and colleagues (Green, 2020; 
Green & Hu, 2018; Green & Viljoen, 2020), for example, suggests that the conflation of fairness 
defined as statistical measures of group parity with fairness in society creates its own obstacles to 
addressing social inequities. A focus on statistical solutions, they argue, offers decision-makers a 
seemingly objective criterion on which to evaluate fairness. Such a criterion could lead 
developers and users of algorithms to avoid grappling with other consequences of employing 
algorithms for high-stakes decisions. Such an over-dependence on fairness metrics, Green and 
colleagues contend, could increase the possibility for additional forms of societal unfairness, 
such as the limiting or reweighting of the criteria that stakeholders use for high stakes decisions, 
perpetuating harm through a reliance on historically-biased data, or failing to consider a sensitive 
group’s needs independent of a balance of fairness with other groups. 

As these authors suggest, it is important for data scientists and AI researchers to push the 
boundaries of investigation beyond a canonical understanding of algorithms to an understanding 
that includes algorithmic interventions and application in context (Green & Viljoen, 2020). 
Towards that end, it may also be highly important to also focus on identifying and mitigating 
bias in the earlier stages of the machine learning lifecycle, the stages of data collection and data 
preparation. There has been extensive ML research addressing the later stages of the ML pipeline: 
model development, model evaluation, model postprocessing. There may also be considerable 
gains towards fairness to be found by examining and mitigating bias from the upstream portions 
of the cycle.  
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2.4 Representational and measurement biases: the key role for data collection 
Much of the work studying algorithmic bias, both in education and beyond, has focused on how 
algorithms and metrics can be used to assess and remove algorithmic bias (see review in Kizilcec 
& Lee, 2020). Clearly, there is an important role for both of these types of work. Finding better 
metrics to assess algorithmic bias -- and pushing the field to use them -- can help to catch many 
forms of algorithmic bias. Algorithms that attempt to ensure fairness, or at least reduce the 
likelihood or degree of bias, can play an important role in improving outcomes for students who 
might otherwise be disadvantaged. 

However, attempts to address biases through adjustments to algorithms -- even if the biases are 
identified at this point -- may be ineffective if we have not collected the right data. Both 
representational and measurement bias, to use the terminology from Suresh and Guttag (2020), 
can prevent methods further down the pipeline from being able to detect or resolve bias.  

In terms of representational bias, if we do not collect data from the right sample of learners, we 
cannot expect our models to work on all learners. For example, if we collect training data only 
from suburban upper middle-class children, we should not expect our model to work for urban 
lower-income students (we may get lucky -- the model may indeed function effectively -- but we 
lack a basis for believing this).  

A simple proportional data set may be insufficient -- there may be groups of learners for whom 
insufficient data has been collected to develop and validate a model. Even when we collect a 
seemingly complete data set -- every learner in a university we are developing a learning 
analytics model for -- this may still be insufficient. For example, Anderson et al. (2019) noted 
that their sample of all undergraduates in their university only had 44 learners of indigenous 
descent, a sample that was too small for their models to work reliably. In cases like this one, we 
may want to group data from multiple universities together so that there are enough learners of a 
group we want to ensure our models work for. In general, we may need to over-sample (in terms 
of actual data collection rather than the machine learning technique) learners from less common 
groups to be confident that we have enough data for each group of learners for whom the model 
may function less effectively.  

And, all too often, we are unable to sample proportionally, particularly when sampling across 
institutions. As Baker (2019) notes, it is often much harder to collect data in some schools than 
others. Some urban school districts have extensive protections and limitations on research that 
make it far more costly and difficult to conduct research or collect data involving their students. 
Some rural school districts are sufficiently remote to make it highly costly and difficult to 
conduct studies in person. Some schools and even universities are too poor (or bureaucratic) to 
have high-quality data systems. Some organizations are simply more welcoming to researchers 
than others. 

Measurement bias can also be a significant challenge that improved metrics or algorithms cannot 
entirely address. Although Suresh and Guttag (2020) refer to measurement biases in both training 
labels and predictor variables, the most concerning measurement biases involve training labels. If 
a training label is biased for some specific population -- for instance, if Black students are more 
likely to be labeled as engaging in school violence than White students, even for the same 
behavior -- then it is difficult to determine whether an algorithm works equally well for both 
groups, or indeed to find any way to be confident that the algorithm’s functioning is not biased. 
The training label’s bias may even come from the student themself, if -- for instance -- we are 
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predicting a self-report variable that is prone to biases in student responses due to factors such as 
confidence, cultural interpretation, or stereotype threat (Tempelaar et al., 2020). In these cases, 
finding an alternate variable to predict -- one not as impacted by bias -- may be the best 
alternative.  

In other cases, the measurement bias may emerge when human coders label data that has already 
been collected, a step in the pipeline which it is easier to exert control over. Sociocultural factors 
may impact the reliability of human labeling, for instance -- Okur and colleagues (2018) find that 
American coders labeling the emotions of Turkish students from facial expressions have 
systematic biases in their interpretation. These problems can go beyond just inaccuracy -- for 
example, racial biases can enter into value judgments (Kraiger & Ford, 1985). 

In the case where a predictor is biased, it may end up serving as a proxy for a group label, in 
which case it may be best to discard it from consideration. Alternatively, if it seems to have 
predictive power after controlling for group, it may be possible to create a distilled variable that 
contains this predictor’s variance after partialing out the group variable. 

Ultimately, when possible, the best path to addressing both representational and measurement 
bias is to collect better data -- data that includes sufficient proportions of all groups of interest, 
and where key variables are not themselves biased. This step is recognized as essential among 
learning analytics practitioners (Holstein et al., 2019) but is less emphasized among researchers 
thus far (see, for instance, Paquette et al., 2020, which reports that many papers involving 
educational algorithms do not even report aggregate demographic information). Holstein and 
colleagues (2019) argue that, rather than conducting research on less biased algorithms, one of 
the most important steps for enhancing fairness in the use of algorithms in education would be 
for researchers to find ways to support practitioners in “collecting and curating” higher-quality 
data sets. But doing so depends on knowing what groups we need to make sure are represented in 
the data sets we use to develop models, the focus of our next section. 
 

3. Population Factors and Student Modeling 
 
3.1 What have we learned about algorithmic bias in education from looking at the most 
commonly studied demographic categories?  
The majority of research on actual algorithmic bias in education (as opposed to theoretical 
algorithmic bias in education) has looked at three categories: race/ethnicity, nationality 
(comparing learners’ current national locations), and gender. In this section, we review this 
literature and investigate what the field has learned from these investigations. Table 1 lists the 
studies included in this section and the demographic categories they each address. 
Race/Ethnicity 
Kai et al. (2017) differentiated performance between African-American and White students in a 
model predicting student retention in an online college program. They found that a JRip decision 
tree model performed much more equitably than a J48 decision tree model. Hu and Rangwala 
(2020) investigated a range of algorithms for predicting if a student is at risk of failing a course, 
finding that their models generally perform worse for African-American students, but that this 
result is inconsistent across university courses. Anderson et al. (2019) differentiated performance 
between students in different racial/ethnic groups in a model predicting six-year college 
graduation, across five different algorithms. They found that the algorithms generally had higher 
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false positive rates for White students and higher false negative rates for Latino students. In 
contrast to these results, Christie and colleagues (2019) found only very minor differences in the 
quality of a school dropout model by race, possibly because they included proxies for race in 
their predictors. Lee and Kizilcec (2020) compare an unmodified algorithm to an equity-
corrected algorithm, finding that the unmodified algorithm for predicting course grade performs 
worse for students in underrepresented racial and ethnic groups than for White and Asian 
students, but that their correction improves several indicators of fairness. Yu and colleagues 
(2020) studied prediction of undergraduate course grades and average GPA and found that if race 
data was included in models, students of several racial backgrounds were inaccurately predicted 
to perform worse than other students, but that this effect dissipated if only clickstream and 
survey data were included. Yu and colleagues (2021) studied prediction of college dropout, 
finding that their models have worse true negative rates and better recall for students who are not 
White or Asian, and also worse accuracy if the student is studying in person. In the case of 
automated essay scoring, the E-Rater system was reported to inaccurately give 11th grade 
Hispanic and Asian-American students significantly higher scores than human essay raters, while 
being more accurate for White and African American students (Bridgeman et al., 2009). This 
effect did not replicate with followup studies of GRE students using a later version of E-Rater; 
instead, for some types of essays, E-Rater gave African American students substantially lower 
scores than human raters did (Bridgeman et al., 2012; Ramineni & Williamson, 2018). 

Despite the strong historical underrepresentation of indigenous learners worldwide (James et al., 
2008), very little attention has been paid to indigenous learners across these studies. Across these 
studies, only Anderson et al. (2019) included indigenous learners as one of the categories studied 
for algorithmic bias; with only 44 indigenous learners in a sample of over 14,000 learners, model 
performance was very unstable for this group of learners. This omission likely reflects the 
overall non-inclusion of indigenous learners in the contexts studied. While this does not 
necessarily indicate intentional omission on the part of the researchers, it indicates a systematic 
bias towards conducting this research in contexts where indigenous learners are underrepresented.  
 
Nationality (current national location) 
In the case of automated essay scoring, the E-Rater system was reported to inaccurately give 
Chinese and Korean students significantly higher scores than human essay raters on a test of 
foreign language proficiency, while being more accurate for students of other nationalities 
(Bridgeman et al., 2009). A replication involving a later version of E-Rater was again found to 
give Chinese students higher scores than human essay raters (Bridgeman et al., 2012). This study 
also found that speakers of Arabic and Hindi were given lower scores (Bridgeman et al., 2012). 
E-Rater was also reported to correlate more poorly and bias upwards in terms of GRE essay 
scores for Chinese students, despite correlating comparably across 14 other countries 
(Bridgeman et al., 2009). The SpeechRater system for evaluating communicative competence in 
English was found to have substantial differences in accuracy for students of different 
nationalities, with performance particularly low for native speakers of German and Telugu. 
SpeechRater’s evaluations were also found to systematically bias upwards for Chinese students 
and downwards for German students (Wang et al., 2018).  

Ogan and colleagues (2015) built models predicting student learning gains from a mixture of 
their behaviors related to help-seeking. Models built using data from learners in the Philippines, 
Costa Rica, and the United States were each more accurate on students from their own countries 
than for students from other countries. 
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Li and colleagues (2021) used a large nationally representative dataset collected in 65 countries 
to predict student achievement on a standardized examination from variables related to student 
background. They found that a model trained on data from the United States was highly accurate 
for students from other economically developed countries but less accurate for students from less 
economically developed countries. 
Gender 
Kai et al. (2017) differentiated performance between male and female students in a model 
predicting student retention in an online college program. They found that performance was very 
good for both groups, and that a JRip decision tree model performed more equitably than a J48 
decision tree model, but that the JRip model still had moderately better performance for female 
students than male students. Hu and Rangwala (2020) investigated a range of algorithms for 
predicting if a student is at risk of failing a course, finding that their models generally perform 
worse for male students, but that this result is inconsistent across university courses.  Anderson 
et al. (2019) differentiated performance between male and female students in a model predicting 
six-year college graduation, across five different algorithms. They found that the algorithms 
generally had higher false negative rates for male students. Gardner and colleagues (2019) 
studied MOOC dropout prediction and found that several algorithms studied performed worse 
for female students than male students. Curiously, they found that this pattern was attenuated for 
courses with 50-80% male students (but -- again unexpectedly -- worse when there were fewer 
than 45% male students).  Riazy et al. (2020) investigate whether course outcome prediction is 
impacted by whether a student is male or female. The differences in prediction quality found 
were very small -- on the order of a percentage point -- and the differences in overall proportion 
of predicted pass between groups were generally also fairly small and were inconsistent in 
direction between algorithms. Similarly, Christie and colleagues (2019) found only very minor 
differences in the quality of a school dropout model by gender. H. Lee and Kizilcec (2020) 
compare an unmodified algorithm to an equity-corrected algorithm, finding that the unmodified 
algorithm for predicting course grade performs worse for male students than for female students, 
but that their correction improves several indicators of fairness. Yu and colleagues (2020) 
studied prediction of undergraduate course grades and average GPA and found that female 
students were generally inaccurately predicted to perform better than male students. Yu and 
colleagues (2021) studied prediction of college dropout, finding that their models have somewhat 
worse true negative rates for male students, but somewhat better recall for male students taking 
courses in-person, regardless of whether protected attributes are included in the models. In the 
case of automated essay scoring, the E-Rater system was reported to be comparably accurate for 
male and female students for both 11th grade essays and foreign-language proficiency 
examinations (Bridgeman et al., 2009). This lack of difference replicated in a second set of 
studies on a later version of E-Rater (Bridgeman et al., 2012). 

Notably, despite the relatively large number of studies differentiating male and female students, 
no study that we are aware of has explicitly looked at algorithmic bias in terms of non-binary or 
transgender learners (or any category within the space of LBGTQ identities, for that matter).  
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Table 1 Studies of algorithmic bias involving the most commonly studied demographic 
categories 
 

 Gender  Ethnicity  Nationality

 
Female/ 
Male 

 
African- 
American

White 
Latino/ 
Hispanic

Asian 
Indigenous 
Groups 

 Various 

Bridgeman et al., 2009 X  X X X X   X

Bridgeman et al., 2012 X  X   X

Ogan et al., 2015     X

Kai et al., 2017 X  X   

Ramineni & 
Williamson, 2018 

  X       

Wang et al., 2018     X

Anderson et al., 2019 X  X X X  

Christie et al., 2019 X  X   

Gardner et al., 2019 X    

Hu & Rangwala 2020 X  X   

Lee & Kizilcec, 2020 X   X* X  X* X   X*  

Riazy et al., 2020 X    

Yu et al., 2020 X  X X X   

Li et al., 2021     X

* These categories were grouped together as under-represented minority students.

 
 

3.2 The limited research on other "populations" or “subpopulations”  
In the previous section, we investigated the research on three relatively more widely-studied 
demographic categories: race, current national location, and male/female. These three categories 
are likely selected due to a combination of being relatively easy to study, and a perception of 
their importance. These three categories are clearly important, and the research that has been 
conducted has established the importance of attending to algorithmic bias in education more 
generally. While we do not wish to dispute or diminish the importance of these categories in any 
way, we also would caution that an over-dependence on these categories -- or on traditionally-
measured categories in general -- may miss algorithmic bias in other categories. In this section, 
we discuss the more limited research that has been seen into algorithmic bias for other categories 
of learners. 



18 

In doing so, we must establish some sort of selection criterion for which differences should be 
treated as categories for which algorithmic bias may occur. Clearly, there may be differences in 
detection accuracy that are not evidence of bias, per-se. For instance, perhaps detectors of 
student knowledge are less accurate for students who “game the system”, intentionally misusing 
the system to obtain correct answers without learning (e.g. Johns & Woolf, 2006; Wu et al., 
2017). This difference in accuracy is not bias, per-se, but a result of the intentional choice of the 
learner to defeat the model.  

We propose a non-malleability test for whether a category should be considered in terms of 
algorithmic bias. A student can choose whether or not to game the system -- and we may be able 
to design learning experiences that are less often gamed (Baker et al., 2006; Xia et al., 2020). 
However, the designer of a learning system or an instructor cannot change or influence a 
student’s race, national location, or gender. Similarly, Soundarajan and Clausen (2018) describe 
how the legal definition of a protected class rests in part on its “immutability,” the degree to 
which an individual can move in and out of the suggested class.    

This test suggests other categories that may be relevant: where a student lives (in a finer-grained 
fashion than national location); national origin; socioeconomic status; native language; 
disabilities; age; parental educational background; and parent work that affects student mobility 
(i.e. migrant work or high-risk jobs such as in the military). In the following section, we 
investigate the research into some of these categories. Table 2 lists the studies included in this 
section and the populations they address. 
 
Native language and dialect  
Differences in model reliability based on a learner’s native language have been studied in the 
context of educational applications of natural language processing, particularly automated essay 
scoring. Naismith and colleagues (2018) find that a common measure of lexical sophistication is 
often developed on word lists that are more appropriate for native speakers than second-language 
learners; while the method is effective at differentiating between learners at different levels of 
proficiency, there are often systematic differences in ratings between learners in different 
countries (i.e. Arabic-speaking learners are often rated lower than Chinese-speaking learners 
with comparable language proficiency). They also found evidence that biases differ between the 
corpora used by different testing organizations. Interestingly, Loukina and colleagues (2019) find 
that when conducting automated essay scoring among essays written by individuals from six 
different countries, training nation-specific models actually leads to different skews between 
groups, increasing algorithmic bias compared to training on all groups together.  

However, we were unable to identify any work on algorithmic bias in terms of learner dialect, 
although there has been work to develop learning systems that are appropriate for speakers of 
non-traditional dialects (e.g. Finkelstein et al., 2013). This is in contrast to the relatively greater 
attention to learner dialect in research on algorithmic bias in domains other than education 
(Benzeghiba et al., 2007; Blodgett & O’Connor, 2017; Tatman, 2017). It is possible – even likely 
-- that some of the differences in the performance of essay scoring algorithms for different racial 
groups discussed above (i.e. Bridgeman et al., 2012; Ramineni & Williamson, 2018) is due to 
dialectical differences, but this possibility has not yet been systematically investigated in the 
published literature. 
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Disabilities 
There has been increasing concern about algorithmic bias negatively impacting individuals with 
a range of disabilities -- including concerns about the failure of AI systems to adequately 
recognize gestures of people with mobility or posture differences, atypical speech, or dyslexic 
spelling patterns (Guo et al., 2019). However, as with native language/language proficiency, 
there has been little work on algorithmic bias in education connected to student disability status. 
Paquette and colleagues (2020) note that “very few” papers published in educational data mining 
2015-2019 consider disability status; many of the papers in the field that do consider disabilities 
are focused on detecting whether a student has a disability (e.g. Käser Jacober, 2014; Klingler et 
al., 2017) rather than whether another algorithm or model is biased. However, at least two papers 
do investigate algorithmic bias involving disability in education. The use of speech recognition 
in educational assessment was evaluated by Loukina and Buzick (2017), who found that the 
accuracy of the SpeechRater system (used in a test of English language fluency) was much lower 
for students who appeared to have a speech impairment (according to notes taken by test 
administrators) but did not request accommodations, than for students who did not appear to 
have an impairment or students who requested accommodations for a speech impairment. Also, 
Riazy et al. (2020) investigate whether course outcome prediction is impacted by whether a 
student has a disability (any self-reported disability). They found that students with disabilities 
performed more poorly in the course and that algorithms applied to the data generally over-
predicted success for students with disabilities, but evidence for different quality of prediction 
was fairly weak. 
 
Urbanicity 
A small number of studies have investigated algorithmic bias involving student urbanicity. 
Ocumpaugh and colleagues (2014) studied the effectiveness of interaction-based automated 
detectors of student confusion, frustration, boredom, and engaged concentration, trained on 
urban, suburban, rural, and a combined population. They found that the detectors were generally 
more effective for new students within the population they were trained on than for other 
populations; a detector developed on a combined population was more effective for urban and 
suburban students than for rural students. The authors noted that this was not simply due to race 
or socioeconomic status, since the suburban and rural students had a similar racial profile, and 
the urban and rural students had a similar socioeconomic profile.  

Contrastingly, however, Samei and colleagues (2015) tested detectors that recognized attributes 
of student classroom questions, looking at whether models trained on data from urban learners 
worked in non-urban settings, and vice-versa. They found no degradation in model performance. 
 
Parental educational background 
Kai et al. (2017) differentiated performance between students whose parents had attended 
college and students whose parents did not attend college, in a model predicting student retention 
in an online college program. They found that their model had very good performance for both 
groups, but that it was better for the more at-risk group, students whose parents did not attend 
college. Yu and colleagues (2020) studied prediction of undergraduate course grades and average 
GPA and found that students who were first-generation college students were inaccurately 
predicted to perform worse than other students if educational background was included in the 
model, but that if only clickstream and survey data were included, the models became more fair 
for these students. Yu and colleagues (2021) studied prediction of college dropout, finding that 
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their models have worse accuracy and true negative rates for first-generation residential students, 
but better recall, regardless of whether protected attributes are included in the models 
 
Socioeconomic status 
Yudelson et al. (2014) trained and tested models across schools with high, medium, and low 
proportions of students eligible for free or reduced-price lunches, a common proxy for 
socioeconomic status in the United States. They compared between these groups in predicting a 
complex dependent measure that integrated several dimensions of student performance into a 
single variable. They found that models trained on schools with high proportions of low-SES 
students did not function as well in other schools, but that models trained in other schools 
functioned equally well for schools with high proportions of low-SES students. The differences 
seen, however, were small in magnitude. Yu and colleagues (2020) studied prediction of 
undergraduate course grades and average GPA and found that students who were from less 
wealthy backgrounds were inaccurately predicted to perform worse than other students if 
personal background was included in the model, but that if only clickstream and survey data 
were included, the models became fairer for these students. Yu and colleagues (2021) studied 
prediction of college dropout, finding that their models have worse accuracy and true negative 
rates for residential students with high financial needs, but better recall, regardless of whether 
protected attributes are included in the models 
 
International students 
Yu and colleagues (2020) studied prediction of undergraduate course grades and average GPA 
and found that international students were inaccurately predicted to perform worse than other 
students if personal background was included in the model, but that if only clickstream and 
survey data were included, the models became fairer for these students. 
 
Military-connected status 
Baker, Berning, and Gowda (2020) studied models predicting high school graduation and SAT 
score, training on students who were not military-connected (a student with a parent or close 
family member in the military) and testing on students who were military-connected, and vice-
versa. They found evidence for moderate degradation in model quality when models were used 
in this fashion. 
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Table 2 Studies of algorithmic bias involving less frequently studied populations and 
subpopulations 
 

 Native 
Language
/ Dialect 

Disability Urbanicity 
Parental 
Education 

Socio- 
economic 
Status 

International 
Students 

Military- 
connected 
Status 

Ocumpaugh et al., 2014   X     

Yudelson et al., 2014     X   

Samei et al., 2015   X     

Kai et al., 2017    X    

Loukina & Buzick, 2017  X      

Naismith et al., 2018 X       

Loukina et al., 2019 X       

Baker at al., 2020       X 

Riazy et al., 2020  X      

Yu et al., 2020    X X X  

 
3.3 Summary and discussion 
Across categories, the findings of these studies seem to suggest that models trained on one group 
of learners perform more poorly when applied to new groups of learners. This is not universally 
true -- for example, there have been conflicting results for urban/rural learners, and the studies 
conducted across several nationalities often find different nationalities being disadvantaged in 
different analyses. But in aggregate, the findings suggest that it is problematic to ignore group 
differences when applying models. The simple expedient of collecting a diverse sample, and 
training on all students, seems to provide benefits in some cases. It may be that emerging 
methods for fairness-aware machine learning will lead to considerable improvements, once a 
representative sample is collected. Even if these methods are highly successful, we will also need 
to figure out how many members of an underrepresented group are necessary for a combined 
model to be valid, which remains a challenge in machine learning (see discussion and example in 
Slater & Baker, 2018). The trend in machine learning over the last few decades has largely been 
to consider ever-larger data sets rather than minimum data set sizes needed (Jiang et al., 2020). 
While not discounting the “unreasonable effectiveness of big data” (Halevy et al., 2009), we note 
that it is still necessary to determine how many learners of a specific group need to be in a 
training set (or a separate model’s training set) before the model can generally be expected to be 
reliable for that group. 

Another factor that is quickly apparent in looking across studies is the idiosyncracy of the 
categories that have been studied. Three core categories have received most of the attention from 
researchers: race/ethnicity (but not indigenous learners), gender (but not non-binary or 
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transgendered students), and nationality (for a small number of nationalities; in terms of learners’ 
current locations). A handful of other categories have been discussed in one or two papers. The 
list of categories that have been studied seems idiosyncratic. To some degree it is based on 
convenience -- U.S. census categories are relatively likely to be collected, and a learner’s current 
national location is likely to be known. To some degree it is based on the categorizations that are 
societally or politically important. To some degree it is based on the biases in what students even 
make it into the samples -- this may explain to a large degree why indigenous learners are 
omitted.  
 
Even within the categories that have been relatively heavily studied, there is still considerable 
idiosyncrasy in the contexts where these categories are studied. For instance, despite the 
existence of large multi-national datasets involving MOOCs and considerable recent research 
using MOOCs as a context for conducting research on the differences between learners in 
different countries (Reich, 2015; Kizilcec & Brooks, 2017), MOOCs have not yet become a 
widely-used context for studying algorithmic biases involving national difference. Many of the 
findings discussed above were inconsistent across different studies. It is not yet clear whether 
this is simply due to noise and random factors, or whether some differences matter more in 
specific contexts than in other contexts. Fully understanding not only which categories matter, 
but what their characteristic manifestations are in different contexts, will need to wait until a 
much larger number of studies have occurred, conducted across a range of contexts. 
 
It is not immediately obvious why some categories have been studied and other categories have 
not been studied. However, there seem to be effects showing up for a range of groups, suggesting 
that algorithmic bias likely impacts other groups as well. A broader range of groups need to be 
more explicitly studied. For instance, children of migrant workers experience many of the same 
challenges that military-connected students do, such as high personal mobility and concerns 
about the safety of family members abroad, but have not been studied. Religious minorities have 
not been studied. Age has not been studied as a factor in undergraduate courses, graduate courses, 
or professional learning. 

Even when groups have been studied, they are often considered in an overly simplified fashion. 
Large and highly internally diverse groups are currently treated as a single entity. Why are 
Latinx learners or Spanish-speaking learners treated as monolithic groups, given the large 
amounts of variance in each of these categories? Why are all learners from China -- a highly-
diverse country -- treated as being the same? Why are all Asian-Americans treated the same, 
from Japanese-Americans to Cambodian-Americans to Indian-Americans? The categories we 
typically work with come from political distinctions (Strmic-Pawl et al., 2018), not cultural or 
scientific distinctions. While detailed sub-division of groups may be impractical in small data 
sets, educational data sets used in AIED increasingly scale to tens or hundreds of thousands of 
learners. As such, many of the larger data sets studied in the field would be large enough to 
analyze differences between groups currently labeled together, if more fine-grained labels had 
been collected. Some distinctions may be infeasible to make in smaller data sets (true even for 
widely-used census categories), but documenting the differences between groups labeled 
together, where possible, can determine which labels are generally too coarse-grained, and what 
contexts and applications it is important to sub-divide them for.  

The astute reader -- or at least a reader who has not grown up in the United States -- will also 
note the intense American focus of research discussed here. What about Cockneys, Northerners 
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(UK), Travellers, or for that matter the difference between Irish, Scottish, Welsh and English 
learners? What about learners living in different European countries? What about urban and rural 
learners in Brazil or China? What about Pakistani descendants living in the UK, Kurdish 
descendants living in Scandinavia, ethnic minorities in Russia, and members of the Portuguese 
diaspora? What about linguistic minorities in Spain, France, and Italy? The American focus of 
the research presented here is a reflection of where this research is currently occurring. Almost 
every single paper we were able to find that studies algorithmic bias in a specific group of 
learners, based on an externally identifiable non-malleable characteristic, for a specific algorithm, 
involved authors working in the United States. Fascinatingly, relatively few of these authors 
were born in the United States. It is imperative that this research extend beyond the United States. 
 
4. From unknown bias to known bias; from fairness to equity 
In the previous sections, we outlined the published literature on evidence for specific algorithmic 
biases in education. As the summary of that literature indicates, there is not just evidence for 
algorithmic bias -- there is evidence for several algorithmic biases. But this evidence is highly 
sparse -- in several cases, there is only a handful -- or even just one -- cases where a specific 
algorithmic bias has been documented.  

We can posit a progression in a field’s efforts to address bias. First, must come unknown bias-- 
we do not know that a problem exists, or perhaps we do not know its extent or its exact 
manifestations. When the field does the research to better understand the problem, over time it 
moves to a stage of known bias -- we have a working understanding (likely imperfect) of how 
serious a problem is and what situations it emerges in. It is difficult to address a problem until it 
is reasonably well-understood, otherwise our efforts may be directed to the wrong manifestations 
of the problem, or to its symptoms rather than its causes. Even if we cannot discover all biases, 
or fully understand a bias we are aware of, we can do much better at discovering and 
understanding bias than the current state of the field (shown in section 3).  

But, eventually, by understanding a specific bias and engaging in efforts to fix it (perhaps 
theoretically-driven, perhaps more trial-and-error), we can get to a point where we come closer 
to fairness. Even if it is mathematically impossible to simultaneously optimize for all definitions 
of fairness (see discussion in section 2.3), we again can improve considerably on the current state 
of the field, where most algorithms do not even consider fairness, even informally.    

Fairer algorithms can be a step towards designing for equity -- creating a better world, with equal 
opportunity for all (see discussion in Holstein & Doroudi, in press). Equity for all does not imply 
ignoring the inequities that specific groups have suffered, often multi-generationally. Working 
towards equity necessarily implies focusing on the biggest problems -- the biggest failures of 
fairness and the biggest inequities -- first. But it also depends on understanding all the places that 
inequity hides in the shadows, the inequities that we may fail to see because of the biases baked 
into our assumptions and societal narratives. It is imperative on all of us to look for evidence of 
unknown or poorly-understood biases, and not simply to assume that the problems widely known 
today are the only problems worth tackling. If we analyze the attention given to algorithmic bias 
in the last few years, particularly outside of education, we see an intense focus on fairness -- 
developing metrics and algorithms for fairness. But it will be hard to achieve fairness if we 
cannot move from unknown biases to known biases. Perhaps the strongest message of this paper 
is how little we as a field know today about algorithmic bias in education, and how much more 
we have to learn. 
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4.1 What obstacles stand in the way of research into unknown algorithmic biases? 
Given the importance of revealing and understanding unknown biases, the next question is -- 
what can we do to make more progress and faster progress in this area?  

Unknown biases come in multiple types. One type is a bias that is completely unknown -- we do 
not know that algorithmic biases exist for a specific group. There are likely to be several such 
biases out there waiting for our field to discover them -- given the aforementioned sparsity of the 
data on algorithmic bias in education, it seems highly improbable that we have discovered all 
important biases. This first type of unknown bias is very concerning. Without understanding 
which groups are at risk of algorithmic bias, even very well-intentioned attempts to resolve 
algorithmic bias may miss at-risk groups of students. 

For example, systems like The Generalizer (Tipton, 2014) are often used to select samples for 
large-scale studies. The Generalizer has the goal of helping researchers select populations that 
are representative, by examining the degree to which the sample selected is representative of the 
target population in terms of pre-selected variables. However, those variables encode a 
perspective on which demographic and group variables matter; not all of the variables that 
appear to be associated with algorithmic bias in education (according to our review) are available 
in The Generalizer.  

However, a second type of unknown bias is equally serious -- cases where we know that bias 
exists, in general, but not how it manifests itself or where it occurs. We would argue, based on 
the evidence provided in section 3, that this is true even for very well-known problems such as 
racism and sexism. The scattered and sometimes inconsistent evidence on algorithmic bias, even 
for these groups, suggests that our field still has a great deal to learn. 

Perhaps the first and seemingly most obvious step is to collect more data on group membership, 
when data is already being collected. As Paquette and colleagues (2020) note, most research in 
educational data mining publication venues does not even mention learner demographics at an 
aggregate level. If we do not collect data on group membership, we cannot analyze our data sets 
for algorithmic bias. 

However, even this simple step imposes challenges -- both concrete and abstract. First of all, 
reasonable concerns about privacy raise the possibility of risk stemming from collecting this type 
of data. For instance, it may be possible to re-identify a student from their demographic data (cf. 
Benitez & Malin, 2010); a classroom may only have one female indigenous student, and 
therefore reporting this information creates a serious privacy risk. There are methods that can be 
used to reduce this risk, discussed in the next section, but the risk is hard to entirely eliminate in 
a small data set.  

Second, some forms of group data may be restricted in some contexts, due to legal or regulatory 
requirements. For example, many institutional review boards (or similar regulatory organizations 
in other countries) consider demographic data to be higher-risk and therefore create greater 
hurdles for collecting this data, creating an incentive for researchers to ignore issues of 
algorithmic bias. So too, differing protections on data on student disability status between 
countries have an impact on whether researchers are able to investigate algorithmic bias (or even 
design) related to student cognitive disabilities.  
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Several other challenges prevent the deeper research into unknown biases for groups known to 
be at risk of algorithmic bias in general. One is economic. There is a strong commercial 
disincentive for the developers of learning systems to reveal the algorithmic biases in their 
systems. Just collecting the data necessary to investigate algorithmic biases presents risks. Even 
in cases where the privacy risk for any specific student seems logically very small, there are 
many who will enthusiastically critique an apparent data risk, particularly if it involves a 
company or individual disliked for other reasons. Going further and publishing evidence that 
one’s system has algorithmic biases -- even in an effort to fix those biases -- risks public critique 
by journalists, community members, and academics more eager to decry bias than fix it. It can 
potentially even risk lawsuits. As such, there is a strong “keeping one’s head down” incentive 
not to collect or analyze group data. 

Simultaneously, educational effectiveness is often treated as universal -- for example, 
clearinghouses such as the What Works Clearinghouse and Evidence for ESSA treat curricula as 
having evidence for efficacy or not having evidence for efficacy, rather than effective or 
ineffective for specific contexts or groups of learners. As such, in many cases, publicly 
investigating algorithmic bias currently may present more risk for commercial learning system 
developers than benefit. Fortunately, recently some school districts have begun to ask for 
evidence not only that a system works in general but also that it works for students similar to 
their current students (Rauf, 2020). This may create a countervailing incentive for developers to 
collect data and investigate algorithmic bias in their systems, or to partner with external 
researchers in doing so. 

Another important possibility is that some algorithmic bias in education may be intersectional 
(Crenshaw, 1991) -- i.e. creating a specific impact based on multiple group memberships. For 
example, Black female students may be impacted differently than Black male or non-Black 
female students. There has been insufficient research into intersectionality in educational work 
on algorithmic bias, and indeed in algorithmic bias more generally (Cabrera et al., 2019).  While 
there may not always be enough data to study intersectionality, where it is possible, it is an 
important next step. 

Ultimately, there is a lot of work to be done to understand algorithmic biases in education that 
are currently unknown or incompletely understood. Algorithmic, metrics-based work to expose 
bias at downstream locations of the ML pipeline will have limited impact on the equity of 
educational opportunity and outcomes for students, without having the right data in place. This 
will require extensive effort to re-engineer incentives, eliminate barriers, and mitigate challenges 
that prevent this work. Only by addressing these challenges can we achieve the necessary steps 
of expanding the distribution of data collection and research efforts to populations being 
impacted by algorithmic bias. Only by addressing these challenges can we move towards fully 
understanding how population-specific factors (both well-known demographic factors and less-
understood factors) impact the effectiveness of educational algorithmics and the interventions 
and system responses that build upon them.  

In the next section, we take up the issue of how these obstacles -- and other obstacles to 
resolving algorithmic bias -- can be more effectively addressed. 
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4.2 How should researchers and educators address these obstacles? 
There are a number of steps that can be taken to address these obstacles. While no one of these 
steps can by itself eliminate algorithmic bias -- it is not clear that algorithmic bias can be entirely 
eliminated -- any one of these steps has the potential to drive progress in reducing the degree to 
which bias is present in the field’s algorithms (for a summary of recommendations see Table 3). 
 
Improving data collection 
Our first area of recommendation -- likely unsurprising to anyone who has read through this 
paper until this point -- is to improve data collection. As our review above notes, the majority of 
the work on algorithmic bias, including in education, has focused on the stages of the process 
where an algorithm is developed and/or evaluated. However, it is difficult for any algorithmic or 
metric-based approach to make a positive impact if appropriate data is not available to the 
algorithm. 

Towards getting the right data in place, we recommend that researchers collect extensive 
demographic data on learners whenever possible. It is impossible to evaluate if a model is fair 
towards a specific group of learners if we do not know which learners are in that group. These 
efforts should work to collect traditional census categories, absent in many data sets used in our 
field (Paquette et al., 2020), but this is a minimum -- as our review has shown, many other 
categories are associated with algorithmic bias. It is too early to list out all categories that should 
be included in an effort of this nature -- there are too many unknown unknowns, and more 
research is needed. However, it is not too early to focus more energy on our known unknowns 
and collect data about student membership in identity categories that already appear to be 
associated with algorithmic bias. 

Based on the evidence thus far, we strongly recommend that whenever possible researchers 
collect data on gender, race, ethnicity, and national origin. There is not yet sufficient evidence 
about disability status, dialect, socioeconomic status, urbanicity, native language (and second-
language learner status), national region, parental education background, military-connectedness, 
or migrant work to make broad recommendations, but that is due to the lack of research on how 
algorithmic bias manifests for these aspects of identity. We suspect that -- given research -- these 
categories will emerge as important to collect data on as well, and therefore recommend that 
researchers collect data on these categories as well, whenever possible.  

Of course, as discussed in section 4.1, our recommendation to collect richer identity data does 
have the drawback of increasing risk around privacy and increased regulatory challenges. 
Approaches such as data obfuscation (Bakken et al., 2004), providing researchers the ability to 
use but not view variables (Gardner et al., 2018), legal agreements around data re-identification 
(ASSISTments Project, 2014), can mitigate these risks to a degree. Encouraging regulators and 
institutional review boards (or other privacy officers) to balance the risks of privacy violations 
with the risks of algorithmic bias will also be highly important. Once an algorithm development 
project has collected data on learners’ identities, a next step will be to identify gaps in the data 
set’s representativeness and address those gaps through additional data collection. As such, the 
field needs to do additional work to create practices for making sure training sets are 
representative and to address underrepresentation of key groups in data sets. A key step in this 
process will be to determine how much data is actually needed for subpopulations within the data 
set, in order to have reasonably high confidence that the model will work for new data in these 
subpopulations. There are not yet methods for selecting sample sizes for most types of machine 
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learning that have the reliability of statistical power analysis (Kraemer & Blasey, 2015), but 
methods such as adversarial filtering -- which down-sample overrepresented groups rather than 
collecting new data for underrepresented groups (Le Bras et al., 2020) -- may provide insights 
that can eventually lead to guidelines on minimum data set sizes for underrepresented groups. Of 
course, in increasing efforts to collect data from underrepresented learners, it will be important 
not to impose undue burdens on learners (or teachers and administrators) in underrepresented 
contexts (Chicago Beyond, 2019). 

Another important area where data collection can be improved is in avoiding (or reducing) bias 
during the labeling process. Both researcher-generated labels (such as classroom observations of 
student engagement) and labels coming from external sources (such as school data on violence or 
grades) can themselves be biased. As discussed in section 2.4, any label based on a human’s 
judgment -- even self-report -- is at risk of being biased in this fashion. Therefore, it may be 
beneficial to replace subjective judgments with other training labels, where possible. However, 
the solution is not to abandon subjective judgment training labels entirely. Indeed, many 
constructs -- such as 21st-century skills and affect -- can currently only be detected based on 
subjective judgment training labels. Okur et al.’s work (2018) suggests that members of the 
group being labeled will provide more accurate and less biased training labels than members of 
other group. Where possible, data labeling should therefore be conducted by members of the 
group being studied. If this is infeasible, evidence for biases in the training data can be addressed 
by creating a distilled variable that partials out the effects of group variables. 
 
Improve tools and resources 
The last several years have seen a considerable amount of interest in different algorithms and 
metrics for addressing algorithmic bias, both in education and more broadly. However, the ideas 
represented in these papers have not emerged into widespread use within educational research 
and development around algorithms. Part of the challenge is that applying many of the 
algorithms and metrics that are available requires a developer to either implement these 
algorithms themselves, or to use often poorly-documented and buggy software packages.  

Better software tools would therefore be a useful step towards increasing uptake of best practices. 
Hajian and colleagues (2016) make a distinction between tools for algorithms that increase 
fairness/reduce bias and tools that evaluate if bias is present. There is an increasingly large 
number of algorithms for increasing fairness, and research is proceeding quickly in this area. It is 
not yet clear which algorithms will be most effective and useful in education. It might therefore 
be premature to create standard tools for algorithms, especially considering the high amounts of 
effort needed to create scalable, production-quality algorithm packages. 

However, the situation for metrics for evaluating if an algorithm is biased is somewhat different. 
Metrics are typically considerably less complex than algorithms and are therefore more 
straightforward to implement. And having several metrics available facilitates evaluation and 
decision-making around algorithms. As Mitchell and colleagues (2021) note, considering a range 
of metrics makes it possible to consider the trade-offs around different algorithms and ways of 
applying them, as well as making assumptions explicit. Therefore, it is both feasible and 
desirable -- right now -- to create packages in Python and R that can be used by researchers to 
obtain a standard set of metrics around algorithmic bias and fairness. Efforts are already 
underway to create domain-general packages for algorithmic bias/fairness metrics, and their 
developers welcome external contributions (Bellamy et al., 2019). Thus, we call for an effort to 
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build on these domain-general packages to create educational algorithm focused packages. This 
effort would focus on providing functionality for researchers and developers to quickly obtain a 
standard set of metrics. 

A second potentially useful resource would be the creation of “reference data sets” for use by 
researchers interested in algorithmic aspects of fairness, within education. Reference data sets 
have been an essential part of progress in a range of domains, from computer vision (Soomro et 
al., 2012), to computational linguistics (Bird et al., 2008), and -- in educational research -- for 
refining models that infer student knowledge (Selent et al., 2016; Stamper & Pardos, 2016). 
Researchers of algorithmic bias in other domains have recommended the creation and curation of 
high-quality reference data sets (Paullada et al., 2020). A reference data set can be used to 
compare algorithms to reduce algorithmic bias, to compare metrics for evaluating algorithmic 
bias, and as a model for future data set developers to compare their own efforts to. Within 
education, reference data sets should contain a wide variety of demographic variables (as 
detailed in the previous sub-section), have a variety of label variables across data sets (both 
macro-outcomes such as school dropout or course failure, and finer-grained variables such as 
student affect), and should have clear evidence for algorithmic bias. 
 
Openness and Incentive Structures  
A key step towards fixing algorithmic bias will be to shed greater light on where it is occurring -- 
reporting it and making the community aware of where the problems are. Given the incentives 
against openly reporting algorithmic bias, discussed above, we need steps to re-align incentives 
in favor of reporting algorithmic bias. 

One such step would be for scientific journal editors and conference committees to adopt 
guidelines for analyzing algorithmic bias in education. Under these guidelines, all papers that 
report the use of prediction algorithms on authentic data sets collected after a selected year 
(announced in advance) would be required to conduct analyses to investigate whether 
algorithmic bias is present. Getting the details of this requirement right (which analyses? which 
metrics? which groups? how to apply this standard evenly worldwide? how to avoid a rush of 
papers to the journals which do not adopt standards?) would require concerted effort among 
many stakeholders, but would exert a powerful influence on practice in academia and the 
commercial organizations that value the reputational and other benefits of academic publishing.  

This effort could be coordinated with ongoing efforts at school districts and local education 
agencies to create standards for demonstrating effectiveness for the local student population 
(Rauf, 2020), and could be combined with an effort to convince organizations such as the What 
Works Clearinghouse and Evidence for ESSA to consider evidence for generalizability instead of 
treating educational effectiveness as universal. In these efforts, more targeted to the general 
public, it might be worthwhile for requirements to include straightforward evidence on whether 
there is algorithmic bias, as well as more specialized technical demonstrations. 

Beyond this, these same organizations could move towards creating guidelines and expectations 
for opening access to data sets and algorithms for inspection and critique, as is seen in the 
biomedical field and in journals like Science and Nature. However, companies have legitimate 
reasons to want to protect their intellectual property, developed at considerable cost and effort. 
One compromise might be for education agencies to require companies to allow access to the 
algorithms to specific designated research scientists who would conduct algorithmic bias reviews, 



29 

the practice used by governmental agencies in demonstrating the effectiveness of new medicines 
(e.g. Ciociola et al., 2014).  

It may be possible to drive greater openness and attention to these problems via positive 
incentives as well as the more negative pressure of guidelines. For instance, journal editors and 
conference organizers in education could create special issues and workshops that provide a 
forum and an opportunity to publish emerging research around algorithmic bias. These forums 
would be particularly beneficial if they created an opportunity for preliminary work around 
unknown unknowns -- creating a space for first publication of evidence for algorithmic bias 
impacting groups that have not been previously studied. 

Another form of positive incentive is funding. Funders, both governmental and non-
governmental, could create funding streams (or possibilities within existing funding streams) for 
research on specific, concrete forms of algorithmic bias in education. It also may be possible for 
non-profit and advocacy organizations to create awards that recognize accomplishments in 
revealing and addressing algorithmic biases, such as a public award for the commercial 
organization that has done the most this year to address inequities stemming from algorithmic 
bias. 
 
Broaden the Community 
One of the key ways to reduce algorithmic bias in education is to broaden the community of 
people who are working on solving these problems. Educational researchers and data scientists 
do not need to solve these problems on their own and will be less successful if they try to. 
Algorithmic bias in education ultimately impacts society in general, and involving teachers, 
school leaders, parents, students, employers, policymakers, and community organizers in the 
process of thinking about educational algorithms has several potential benefits.  

There have been calls to broaden the discussion around the design and use of algorithms (Cramer 
et al., 2019; Mitchell et al., 2021), including in education (Holstein & Doroudi, in press), but 
these calls have not been followed up on to the degree necessary, either in educational domains 
or in the consideration of algorithmic bias more broadly. As Olteanu and colleagues (2019) state, 
“The interpretation and assessment of results are too often done by data experts, not by domain 
experts.” Members of communities being affected can always do a better job of advocating for 
their perspective than well-meaning outsiders, and -- indeed -- well-meaning outsiders often fail 
to fully understand the issues at hand or the constraints on a successful solution (L. T. Smith, 
2013). As such, involving community members in the entire process of algorithmic development 
and use can support more accurate interpretations of data, produce better hypotheses for the 
causes of the phenomena being observed, and lead to designs and interventions more likely to be 
found acceptable by the teachers and school leaders implementing them and the students and 
families who are affected. Fuller inclusion of the people who will use and be impacted by 
algorithms may also lead to better designs for the implementation and use of algorithms, 
avoiding cases where unfairness and bias stem not from an algorithm itself, but from how it is 
used.  
 
These efforts are unlikely to be fully successful unless algorithms and their properties are 
effectively communicated to these community members. Community members -- and non-data 
scientists in general -- cannot provide useful recommendation and oversight if they are not given 
the appropriate information on algorithms and their properties. It is not just a matter of making 
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the information available, it must also be understandable (Howley, 2018). Hence, progress in 
explainable artificial intelligence and interpretable artificial intelligence (Doran et al., 2018) and 
in research on explanation methods that make complex algorithms understandable (Zhou et al., 
2020) will be essential to addressing the challenges surrounding algorithmic bias. Modern 
explainable AI methods make it possible to see the impact of a specific variable on prediction 
(Lundberg et al., 2020), making it easier to see not just where the biases are, but what variables 
might be causing the biases, towards developing better, less-biased algorithms. These efforts will 
also depend on bringing in a wider diversity of voices through the entire process of developing 
an algorithm and using it in practice. Inclusion cannot simply be asking for opinions at one stage 
in the process. Doing so may be perceived as an insincere attempt to obtain buy-in rather than an 
attempt to improve the algorithm, and those judgments may not be wrong. As noted by M. K. 
Lee and colleagues (2019), not only the outcome, but the process that derives the outcome 
determines perceptions of bias. A full and open inclusion of community members may suggest 
better variables to use, better consideration of trade-offs, and even may be able to mitigate the 
negative impacts of a flawed algorithm through choosing better ways to use its outputs and better 
interventions (see discussion in Mitchell et al., 2021). These partners may also be able to identify 
additional sources of bias in a learning technology beyond just the algorithm. As noted in several 
articles (i.e. Arroyo et al., 2013; Baker et al., 2019; Finkelstein et al., 2013; Mayfield et al., 2019; 
Melis et al., 2009; Woolf et al., 2010), considerable bias in education can come from how a 
learning interaction is designed. 

Although the primary sense in which we make this recommendation is in broadening the 
community that considers this issue by adding members of impacted communities, another sense 
in which the community should be broadened is in terms of intellectual perspectives. As feminist 
theory (D’ignazio & Klein, 2020), sociocultural theory (Ferrero & Barujel, 2019), and critical 
race theory (Hanna et al., 2020) begin to influence and improve data science, we need the ideas 
from these communities in AIED research as well. Ideas from these communities have 
influenced this article and bringing these voices into our community to a greater degree will 
enhance our field’s ability to go from bias to fairness, and from fairness to equity.  

Finally, in terms of broadening voices, it is essentially to bring a broader collection of voices not 
just into academic discussion of algorithmic bias, but into industrial work around educational 
algorithms as well. Corporate voices have been prominent in discussions of algorithmic bias in 
broader computer science discourse (Blodgett et al., 2020; Cramer et al., 2019; Gebru et al., 2018; 
Mitchell et al., 2021), but have been relatively less prominent in education. Building capacity in 
the developers of learning systems that use educational algorithms, including the inclusion of 
diverse voices and ideas in these organizations, will be essential to reducing algorithmic bias 
across the educational landscape. 
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Table 3 General strategies and specific recommendations for reducing algorithmic bias in 
education 
 

 Recommendations 

Improve Data 
Collection 

 Prioritize collection of data on gender, race, ethnicity, and national origin. 

 When possible collect data on disability status, dialect, socioeconomic status, urbanicity, 
native language (and second-language learner status), national region, parental education 
background, military-connectedness, and migrant status. 

 Create infrastructure to reduce privacy risks while still using fuller information. 

 Encourage regulators and IRBs (or other privacy officers) to balance the risks of privacy 
violations with the risks of algorithmic bias. 

 Create practices for making sure training sets are representative. 

 Avoid (or reduce) bias during data labeling. 

Improve Tools 
and Resources 

 Create standard, education-specific, packages to calculate bias metrics and to conduct bias 
audits. 

 Create reference datasets for testing new approaches. 

Create Structures 
to Incentive 
Openness 

 Adopt journal and conference guidelines requiring analysis for algorithmic bias. 

 Incorporate evidence of generalizability when demonstrating effectiveness. 

 Consider options for opening data sets to inspection and critique. 

 Create or facilitate journal special issues and publication opportunities. 

 Encourage funding for research that investigates algorithmic bias in education. 

Broaden the 
Community 

 Involve members of communities potentially impacted by algorithms throughout the entire 
process of algorithm development and use. 

 Expand efforts to make artificial intelligence more explainable and interpretable. 

 
5. Conclusion 
In this article, we have reviewed the contemporary problem of algorithmic bias in education. We 
contextualize this within the broad scope of literature on algorithmic bias, across sectors, but 
focus on the specific manifestations of this problem in education. We discuss key theoretical 
perspectives on algorithmic bias and then turn to reviewing the still very sparse literature on how 
specific groups of learners are being impacted by algorithmic bias. This review reveals that there 
are a great number of “known unknowns” in the study of algorithmic bias in education -- areas 
where we know that our current knowledge is insufficient -- but also exposes the possibility that 
there may also be many “unknown unknowns” -- groups that we do not even realize are being 
severely impacted. Foremost among these “unknown unknowns” is the lack of empirical work on 
how algorithmic bias impact specific groups of learners outside the United States, at a finer 
grain-size than the national level. 

This calls for an ambitious program of research, across our field, to study the known unknowns 
and reveal the unknown unknowns. We discuss the challenges currently present to the successful 
completion of this program of research, and offer potential solutions to these challenges, 
focusing on four potential areas of solution: improved data collection, improved tools and 
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resources, increasing openness and improving incentive structures, and broadening the 
community of stakeholders who are included in our field’s efforts to address algorithmic bias. 

We do not pretend that these steps will at last resolve the deep, fundamental inequities in 
educational opportunity and practice around the world. We hope for a world with fewer 
unknown biases, where known biases are better documented, where known biases have been 
reduced in magnitude and impact, and where the world is more equitable. Getting there will be 
difficult. However, by working together to reduce and find ways to mitigate algorithmic bias, we 
can at minimum reduce the risk of worsening the situation further -- and we may be able to make 
a concrete positive difference. 
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