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Abstract. Building a generalizable detector of student behavior within 

intelligent tutoring systems presents two challenges: transferring between 

different cohorts of students (who may develop idiosyncratic strategies of use), 

and transferring between different tutor lessons (which may have considerable 

variation in their interfaces, making cognitively equivalent behaviors appear 

quite different within log files). In this paper, we present a machine-learned 

detector which identifies students who are “gaming the system”, attempting to 

complete problems with minimal cognitive effort, and determine that the 

detector transfers successfully across student cohorts but less successfully 

across tutor lessons.  

1   Introduction and Prior Work 

In the last couple of decades, there has been considerable work in creating 

educational systems that adapt to their users – offering help and feedback targeted to a 

student’s specific cognitive or motivational needs. However, just as educational 

systems can adapt to their users, users can adapt to their educational systems, 

sometimes in ways that lead to poorer learning [2,5]. For instance, students who game 

the system, attempting to perform well in an educational task by systematically 

exploiting properties and regularities in the system used to complete that task, rather 

than by thinking about the material, learn less than other students [2]. Examples of 

gaming include systematic guessing, and repeatedly requesting help until the system 

gives the answer. It may be possible to substantially improve learning environments’ 

educational effectiveness by adapting to how students choose to use the learning 

environment. In order to do this, we need to be able to detect when a student is 

selecting strategies that lead to poorer learning.  

In [1], we presented a Latent-Response Model [4] that accurately detected if a 

student was gaming the system, within a specific tutor lesson, cross-validated across 

students in 4 classes. This model distinguished “GAMED-HURT” students who 

gamed the system in a fashion associated with poor learning both from students who 

were never observed gaming, and from “GAMED-NOT-HURT” students who gamed 

in a different fashion not associated with poor learning. The model did so by first 

predicting whether each individual student action was an instance of gaming (using 

tutor log files), and then aggregated these predictions to predict what proportion of 



time each student was gaming (comparing the predicted proportions to data from 

classroom observations). The classifier’s ability to distinguish gaming was assessed 

with A' values, which give the probability that if the model is given one gaming 

student and one non-gaming student, it will accurately identify which is which [3].  

A model in this framework consists of features selected from linear, quadratic, and 

interaction effects on a set of 26 base features describing a student action (for 

instance, what interface widget it involved and how long it took), and its historical 

context (for instance, how many errors this student made on this skill in past 

problems). The model presented here improves on the model reported in [1] in three 

fashions: First, by adding two features to the set used in [1], in order to represent 

asymptotic skills (which students on the whole either knew before starting the tutor, 

or failed to learn while using the tutor). Second, by switching from using forward 

selection to select model features to testing a set of search paths constrained by fast 

correlation-based filtering [6] (in both cases, Leave One Out Cross Validation was 

used to prevent over-fitting). Third, by switching from treating both types of gaming 

as identical during training to training to detect just GAMED-HURT students, 

considerably improving our model’s ability to distinguish between types of gaming, 

∆Z=6.57, p<0.01. After these changes, our model was significantly better than chance 

at distinguishing GAMED-HURT students from non-gaming students (within the 

original classroom cohort and lesson), A' =0.85, p<0.01, and at distinguishing 

GAMED-HURT students from GAMED-NOT-HURT students, A' =0.96, p<0.01. 

Though this detector is effective within a single population and tutor lesson, it will 

be more useful if it can generalize across student populations and cognitive tutor 

lessons (or even across types of interactive learning environments).  There appear to 

be multiple ways to game a given system, and we have observed students teaching 

each other new strategies for gaming – therefore, different cohorts of students may 

game differently. Similarly, different tutor lessons often have different patterns of 

interaction, because of differences in subject matter. In this paper, we present work 

towards detecting gaming in a fashion robust to differences between tutor lessons and 

classroom cohorts, through analyzing how well a model trained on one population or 

lesson transfers to other populations and lessons, and how the features that correlate 

to gaming differ across data sets.  

2  Detecting Gaming Across Classroom Cohorts 

In this section, we discuss how well our detector transfers between our original 

student cohort (termed the 2003 cohort) and a newly recruited cohort of students 

(termed the 2004 cohort). At a surface level, the two cohorts were similar: both were 

drawn from students in 8th and 9th grade non-gifted/non special-needs cognitive tutor 

classrooms in the same middle schools in the suburban Pittsburgh area. However, our 

observations suggested that the two cohorts behaved differently. The 2004 cohort 

gamed 88% more frequently than the 2003 cohort, t(175)=2.34, p=0.02, but a lower 

proportion of the gaming students had poor learning, χ
2
(1, N=64)=6.01, p=0.01. This 

data does not directly tell us whether gaming was different in kind between the two 



Table 1. Our model’s ability to transfer between student cohorts. Boldface signifies both that a 

model is statistically significantly better within training cohort than within transfer cohort, and 

that the model is significantly better than the model trained on both cohorts.1 

Training 

Cohort 

G-H vs no game, 

2003 cohort 

 

G-H vs no game, 

2004 cohort 

 

G-H vs G-N-

H, 

2003 cohort 

G-H vs G-N-H, 

2004 cohort 

2003 0.85 0.76 0.96 0.69* 

2004 0.77 0.92 0.75 0.94 

Both 0.8 0.86 0.85 0.85 

 

populations – however, if gaming differs substantially in kind between populations, 

two populations as different as these are likely to manifest such differences, and thus 

these populations provide us with an opportunity to test whether our gaming detector 

is robust to differences between distinct cohorts of students. 

The most direct way to evaluate transfer across populations is to see how 

successfully the best-fit model for each cohort of students fits to the other cohort. As 

shown in Table 1, a model trained on either cohort could be transferred as-is to the 

other cohort, without any re-fitting, and perform significantly better than chance at 

detecting GAMED-HURT students (marginally significantly better at distinguishing 

them from GAMED-NOT-HURT students in the 2004 cohort; significantly better in 

all other comparisons). However, in 3 of the 4 comparisons, the models were 

statistically significantly better in the student population within which they were 

trained than when they were transferred to the other population of students. 

It was also possible to train a model, using the data from both student cohorts, 

which achieved a good fit to both data sets, shown in Table 1. This model was 

significantly better than chance in all 4 comparisons conducted. However, models 

trained in single cohorts did better than the unified model, in 3 of the 4 comparisons. 

3  Detecting Gaming Across Tutor Lessons  

In this section, we discuss how well our detector transfers between two tutor lessons, 

within a single student population. One lesson (the “scatterplot” lesson) involved 

creating and interpreting scatterplots of data; the other lesson (the “geometry” lesson) 

involved computing the surface area of 3D solids. Both lessons were drawn from the 

same middle-school mathematics curriculum and were designed using the same 

general pedagogical principles, although the scatterplot lesson had a greater variety of 

widgets and a more linear solution path. Our observers did not notice substantial 

differences between the types of gaming they observed in these two lessons. Overall, 

the same students gamed between lessons -- a student’s frequency of gaming was also 

correlated across lessons, r=0.22, p=0.02.  

The most direct way to evaluate transfer across lessons is to see how successfully  

                                                           
1 All numbers are A' values. Italics denote a model which is statistically significantly better 

than chance (p<0.05); asterisks (*) denote marginal significance (p<0.10).   



Table 2. Models trained on the scatterplot lesson, the geometry lesson, and both lessons 

together. All models trained using only the 2004 students.1 Boldface denotes the model(s) 

which are statistically significantly best in a given category. 

Training 

Lesson 

G-H vs no game, 

SCATTERPLOT 

G-H vs no game, 

GEOMETRY 

G-H vs G-N-H, 

SCATTERPLOT 

G-H vs G-N-H, 

GEOMETRY 

SCATTERPLOT  0.92 0.55 0.94 0.63 

GEOMETRY  0.53 0.80 0.41 0.90 

BOTH 0.82 0.77 0.70* 0.82 

 

the best-fit model for each tutor lesson fits to the other tutor lesson. As shown in 

Table 2, the results were poor.  Though both models were significantly better than 

chance within the training lesson, neither model was significantly better than chance 

when transferred to the other lesson. It was possible to train a model, using both data 

sets, which achieved a good fit to both data sets, as shown in Table 2. This model was 

significantly better than chance on 3 of 4 measures (and was marginally significant on 

the fourth); however, on 2 of 4 measures it was statistically significantly worse than a 

model trained on one lesson alone. But while this unified model performed well in the 

units it was trained in, it transferred very poorly to the 2003 cohort of students using 

the scatterplot tutor, only reaching A'=0.54,p=0.77 (G-H versus non-gaming) and 

A'=0.54,p=0.78 (G-H versus G-N-H). This result is surprising, considering that a 

model trained just on the 2004 cohort using the scatterplot tutor was quite effective at 

detecting gaming within the 2003 cohort (see Table 1). Hence, although we can 

develop a unified model at this point, our modeling approach has not yet delivered a 

unified model which transfers across lessons in a generalizable fashion. 

But why not? The difference in gaming between these lessons is small enough that 

our observers did not notice a qualitative difference in gaming between them. 

Additionally, the top candidate features considered for each lesson (which are highly 

correlated to gaming but not to each other) appear conceptually similar (see Table 3). 

In both sets, gaming corresponds to errors and repeated quick actions. However, the 

top 6 features for scatterplots averaged an unimpressive correlation of 0.06 to gaming 

in the geometry data set, and the top 6 features for geometry averaged a correlation of 

0.09 to gaming in the scatterplot data set, suggesting that the difficulty in transferring 

between models is not just an artifact of the specific features chosen during model 

selection. It is possible that the overall strategic choice underlying gaming is 

consistent across the two lessons, but that the interface and pedagogical differences 

between the two lessons may be causing our models to differ considerably at the 

detailed grain size our approach relies upon to make predictions. 

Table 3. Top 3 non-intercorrelated GAMED-HURT features in each lesson (2004 data).  

SCATTERPLOT  GEOMETRY 

1)   Several quick actions in a row 

2) A high percentage of errors on skills that  

      involve popup menus (ie multiple choice) 

1)  Requesting help several actions in a row on    

     skills the student has a history of getting  

     wrong 

3)  Quick actions on problem steps that need a  
      numerical answer 

 

2) Several very brief help requests in quick  
      succession 

  3)  Several very quick errors in succession 



4   Discussion and Conclusions 

In this paper, we have presented a system that detects when a student is gaming 

the system. This system transfers successfully across cohorts of students. However, 

the same detector can not, at this point, transfer without re-training to different tutor 

lessons. Furthermore, training data from two lessons together does not produce a 

model which can transfer across student cohorts. Despite this, detectors for different 

lessons are detecting qualitatively similar behavior. One approach would be use our 

knowledge of what actions are gaming in different lessons to develop a system that 

maps from a tutor interface to gaming actions. However, given that our approach can 

train successful models for fairly different tutor lessons, it may not actually be 

necessary to make individual models that can generalize across lessons. For example, 

if the detector is deployed in a year-long curriculum, it may be possible to develop 

interventions which guide students to stop gaming, where the effect s maintained even 

after the intervention is no longer present. In this event, we would only need to detect 

gaming in a few lessons during the course of a curriculum, and could train a detector 

for each of those lessons. This approach would not afford rapidly extending our 

detector to new curricula, but may still be quite effective in improving student 

learning. Regardless, a gaming detector such as ours will only be useful if combined 

with an intervention that persuades students to change how they use the tutor. If the 

tutor responds to gaming in a fashion that gives students an incentive to learn how to 

game the gaming detector, the gaming detector will quickly become ineffective. 

Systems that detect intentional mis-use must adapt in a fashion that makes it in the 

student’s interest to use the software appropriately.  
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