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Abstract: We present an automated detector that can predict a student’s future 
performance on a transfer post-test, a post-test involving related but different 
skills than the skills studied in the tutoring system, within an Intelligent 
Tutoring System for College Genetics. We show that this detector predicts 
transfer better than Bayesian Knowledge Tracing, a measure of student learning 
in intelligent tutors that has been shown to predict performance on paper post-
tests of the same skills studied in the intelligent tutor. We also find that this 
detector only needs limited amounts of student data (the first 20% of a student’s 
data from a tutor lesson) in order to reach near-asymptotic predictive power.  

Keywords: Transfer, Bayesian Knowledge Tracing, Educational Data Mining, 
Student Modeling, Robust Learning 

1. Introduction 

Over the previous two decades, knowledge engineering and educational data mining 
(EDM) methods have led to increasingly precise models of students’ knowledge as 
they use intelligent tutoring systems and other AIED systems. Modeling of student 
knowledge has been a key theme in AIED from its earliest days. Models of student 
knowledge have become successful at inferring the probability that a student knows a 
specific skill at a specific time, from the student’s pattern of correct responses and 
non-correct responses (e.g. errors and hint requests) up until that time [cf. 8, 14, 16, 
19]. In recent years, the debate about how to best model student knowledge has 
continued, with attempts to explicitly compare the success of different models at 
predicting future correctness within the tutoring software studied [cf. 12, 16]. 

However, the ultimate goal of AIED systems is not to promote better future 
performance within the system itself. Ideally, an intelligent tutoring system or other 
AIED system should promote “robust” learning [13] that is retained over time [15], 
transfers to new situations [20], and prepares students for future learning [6]. 
Historically, student modeling research has paid limited attention to modeling the 
robustness of student learning. Although studies have demonstrated that learning in 
intelligent tutors can be made robust [1, 7, 17], student models used in intelligent 
tutors have typically not explicitly modeled robustness, including whether knowledge 
will transfer. In fact, only a handful of studies have even attempted to predict 
immediate posttest performance on the same skills studied in a tutor [e.g., 3, 8, 10, 



19], a very limited form of transfer. For instance, Bayesian Knowledge Tracing 
models of student knowledge have been shown to predict this type of post-test 
performance [8], but with a small but consistent tendency to overestimate students’ 
average post-test performance, systematic error that can be corrected by incorporating 
pretest measures of students’ conceptual knowledge into the knowledge tracing model 
[9]. Other student models have modeled the inter-connection between skills, within a 
tutor [cf. 14]. However, it is not clear whether this can in turn support prediction of 
transfer to different skills and situations outside of the tutor.  

Within this paper, we present a model designed to predict student performance on 
a transfer post-test, a post-test involving related but different skills than the skills 
studied in the tutoring system, within a Cognitive Tutor for genetics problem solving 
[10]. This model is generated using a combination of feature engineering and linear 
regression, and is cross-validated at the student level. We compare this model to 
Bayesian Knowledge Tracing – a student model shown to predict post-test 
performance – as a predictor of transfer. As a student model predicting transfer will 
be most useful if it can be used to drive interventions fairly early during tutor usage, 
we also analyze how much student data is needed for the model to be accurate.  

2. Data set 

The data set used in the analyses came from the Genetics Cognitive Tutor [10]. This 
tutor consists of 19 modules that support problem solving across a wide range of 
topics in genetics. Various subsets of the 19 modules have been piloted at 15 
universities in North America. This study focuses on a tutor module that employs a 
gene mapping technique called three-factor cross, in which students infer the order of 
three genes on a chromosome based on offspring phenotypes, as described in [3].  In 
this laboratory study, 71 undergraduates enrolled in genetics or in introductory 
biology courses at Carnegie Mellon University used the three-factor cross module. 
The students engaged in Cognitive Tutor-supported activities for one hour in each of 
two sessions. All students completed standard three-factor cross problems in both 
sessions. During the first session, some students were assigned to complete other 
cognitive-tutor activities designed to support deeper understanding; however, no 
differences were found between conditions for any robust learning measure, so in this 
analysis we collapse across the conditions and focus solely on student behavior and 
learning within the standard problem-solving activities. The 71 students completed a 
total of 22,885 problem solving attempts across 10,966 problem steps in the tutor.  

Post-tests, given by paper-and-pencil, consisted of four activities: a 
straightforward problem-solving post-test discussed in detail in [3], a transfer test, a 
test of preparation for future learning, and a delayed retention test. Within this paper 
we focus on predicting performance on the transfer test of robust learning. The 
transfer test included two problems intended to tap students’ understanding of the 
underlying processes. The first was a three-factor cross problem that could not be 
solved with the standard solution method and required students to improvise an 
alternative method. The second problem asked students to extend their reasoning to 
four genes. It provided a sequence of four genes on a chromosome and asked students 
to reason about the crossovers that must have occurred in different offspring groups.  



Students demonstrated good learning in this tutor, with an average pre-test 
performance of 0.31 (SD=0.18), an average post-test performance of 0.81 (SD=0.18), 
and an average transfer test performance of 0.85 (SD=0.18). The correlation between 
the problem-solving post-test and the transfer test was 0.590 suggesting that, although 
problem-solving skill and transfer skill were related, transfer may be predicted by 
more than just simply skill at problem-solving within this domain.  

3. Analysis of Model using Cross-Validation 

In this paper, we introduce a model that predicts each student’s performance on the 
transfer test, using a hybrid of data mining and knowledge engineering methods. 
Within this approach, a small set of features are selected based on theory and prior 
work to detect related constructs. These features are based on thresholds which are 
given initial values but are also optimized by grid search, using as goodness criterion 
the cross-validated correlation between an individual feature and each student’s 
performance on the transfer test. Finally a model is trained on these features (using 
both the original and optimized thresholds) to predict each student’s performance on 
the transfer test, and is cross-validated. We then compare this model to a baseline 
prediction of transfer, Bayesian Knowledge Tracing (BKT) [8] fit using brute force, 
which has been previously shown to predict student post-test problem-solving 
performance reasonably well within this lesson [3]. Recent work in other tutoring 
systems has suggested that other algorithms (BKT fit using Expectation 
Maximization; Performance Factors Analysis) may fit within-tutor performance 
slightly better than BKT fit using Brute Force [12, 16], but thus far no published 
studies have demonstrated that these algorithms fit post-test performance better. As 
BKT accurately predicts problem-solving post-tests, and the transfer test was 
reasonably correlated to the problem-solving post-test in this study, it should correlate 
reasonably well to transfer. Hence, a useful detector predicting transfer should 
perform better than BKT, under cross-validation.  

3.1. Feature Engineering 

The first step of our process was to engineer the feature set. As we were predicting 
performance on a measure external to the tutor, given after tutor usage, we focused on 
proportions of behavior across the full period of use of the tutoring system (e.g. what 
proportion of time a student engaged in each behavior). Our data features consisted of 
the following behaviors (the prime notation connotes a feature closely related to the 
previous feature): 1) Help avoidance [2]; 1') Requesting help on relatively poorly 
known skills; 2) Long pauses after receiving bug messages (error messages given 
when the student’s behavior indicates a known misconception), which may indicate 
self-explanation; 2') Short pauses after receiving bug messages, indicating failure to 
self-explain; 3) Long pauses after reading hint messages; 4) Long pauses after reading 
hint message(s) and then getting the next action right [cf. 18]; 5) Off-task behavior; 
5') Long pauses that are not off-task; 6) Long pauses on skills assessed as known; 7) 



Gaming the system [4]; 7') Fast actions that do not involve gaming; 8) Carelessness, 
detected as contextual slip [3]; 9) Learning spikes [5]. 
 
Three of these features were incorporated into the final model predicting transfer: 1, 2’ 
and 7’. We will discuss our model development process in a subsequent section, but 
in brief, no additional feature both achieved better cross-validated performance than 
zero on its own, and also improved cross-validated predictive power in a model 
already containing these three features. The exact operational definition of these 
features was: 
 
1: Proportion of actions where the student has a probability under N of knowing the 
skill, according to Bayesian Knowledge Tracing [8], does not ask for help, and makes 
an error on their first attempt. Initial value of N = 60% probability.  
2': Proportion of actions where the student enters an answer labeled as a bug, and then 
makes their next action in under N seconds. Initial value of N = 5 seconds. 
7': Proportion of actions where the student enters an answer or requests a hint in under 
N seconds, but the action is not labeled as gaming, using a gaming detector previously 
trained on a full year of data from high school algebra [4]. Initial value of N = 1 s.  
  
Each of these three features depends on a threshold parameter, N; adjusting a feature’s 
parameter can result in very different behavior. In some analyses below, we used an 
arbitrary but plausible value of N chosen prior to optimization, as given above. 
Features were then optimized to select optimal thresholds, using grid search. 
Parameters involving probabilities were searched at a grid size of 0.05; parameters 
involving time were searched at a grid size of 0.5 seconds.  
 
3.2 Detector development 
 
Our first step towards developing a detector was to fit a one-parameter linear 
regression model predicting transfer from each feature, using leave-out-one-cross-
validation (LOOCV), in RapidMiner 4.6. LOOCV was conducted at the student level, 
the overall level of the analysis. The cross-validated correlations for single-feature 
regression models are shown in Table 1. This process was conducted for both original 
and optimized threshold parameters. Both help avoidance (1) and making fast 
responses after bugs (2') were found to be negatively associated with transfer.  Fast 
non-gaming actions (7') were positively correlated with transfer, perhaps because 
these actions are a signal that the skill has been acquired very strongly (additionally, 
for low values of the threshold, very few fast non-gaming responses are help requests, 
which is some additional evidence for interpreting this feature in this fashion).   

 
Table 1. Goodness of single-feature linear regression models at predicting transfer 

Feature Direction of 
relationship 

Cross-validated r 
(orig. thresholds) 

Cross-validated r 
(optimized thresholds) 

1. Help Avoidance Neg. 0.362 0.376 
2'. Fast After Bugs Neg. 0.167 0.269 
7'. Fast Not Gaming Pos. 0.028 0.189 

 



Given each set of features, we developed linear regression models using 
RapidMiner 4.6. To find the set of parameters, Forward Selection was conducted by 
hand. In Forward Selection, the best single-parameter model is chosen, and then the 
parameter that most improves the model is repeatedly added until no more parameters 
can be added which improve the model. Within RapidMiner, feature selection was 
turned off, and each potential model was tested in a separate run, in order to 
determine how well a specific set of features predicts transfer. Keeping feature 
selection on would result in some features being filtered out for some sub-sets of the 
data, making it harder to infer how well a specific set of features predicts transfer. The 
goodness metric used was the LOOCV correlation between the predictions and each 
student’s performance on the transfer test. In addition, as an additional control on 
over-fitting, we did a first pass where we eliminated all features that, taken 
individually, had cross-validated correlation below zero. We give differences in cross-
validated correlation rather than statistical significance tests, as a measure of model 
generalizability; comparing cross-validated correlations is a redundant test [cf. 11]. 

The cross-validated correlation of the model to the transfer test was 0.407, for the 
original thresholds, and 0.416 for the optimized thresholds. By comparison, the 
Bayesian Knowledge Tracing estimates of student knowledge achieved a cross-
validated correlation of 0.353 to the transfer test. Hence, the transfer model appears to 
perform better than this reasonable baseline.  

We then investigated the possibility that multiplicative interaction features 
(where one feature is multiplied with another feature) would lead to a better model. 
To reduce the potential for over-fitting, we restricted our analysis to multiplicative 
features consisting of the 3 features above, and the 3 original features. This model 
achieved a cross-validated correlation of 0.435 to the transfer test, for the original 
thresholds, and 0.428 for the optimized thresholds.  

One question is whether the resultant models are better predictors solely of 
transfer or of student knowledge overall. This can be investigated by examining how 
well the transfer prediction models predict the regular problem-solving post-test, with 
no re-fitting. If we predict the problem-solving post-test using Bayesian Knowledge-
Tracing, we obtain a correlation of 0.535. As seen in Table 2, each of the four transfer 
prediction models perform better than this at predicting the post-test, with the 
optimized model without multiplicative interactions performing best (r=0.633).  

 
 

Table 2. Cross validated correlation between models and transfer test 

Model Cross-validated correlation to 
transfer test 

Correlation to  
problem-solving test 

Only BKT 0.353 0.535 
Model with optimized features 
(no interactions) 0.416 0.633 
Model with original features (no 
interactions) 0.407 0.546 
Model with optimized features 
(multiplicative interactions) 0.428 0.615 
Model with original features 
(multiplicative interactions) 0.435 0.598 



4. Analysis of Model for use in running tutor 

One potential concern with models developed using proportions of behavior 
across entire episodes of tutor use is that the models may not be usable to drive 
interventions in a running tutor. If an entire tutor lesson worth of data is required for 
accurate inference, the detector may have low usefulness for intervention compared to 
approaches such as Bayesian Knowledge Tracing which make a prediction after each 
problem-solving step [8]. However, it is possible to make a version of the transfer 
detector that can be used in a running tutor. Specifically, it is possible to take the data 
up to a specific problem step, compute the model features using only the data 
collected up until that point, and make an inference about the probability of transfer. 
In this section, we investigate how much data is needed for the model to make 
accurate predictions within this data set, comparing our model’s predictive power to 
Bayesian Knowledge-Tracing, when both are given limited data. 

Our first step in this process is to construct 20 subsets of data containing the first 
N percent of each student’s interactions within the tutor, using every increment of 5% 
of the data. Our process for doing this does not take skills into account – e.g. data 
from some skills may not be present in the first 5%. We then compute the feature 
values for each data subset, using the optimized thresholds. Next, we apply the 
transfer prediction model generated using the full data set to the new data sets (e.g. we 
do not refit the models for the new data sets). We also apply Bayesian Knowledge 
Tracing on the limited data sets without re-fitting the BKT parameter estimates. After 
obtaining the predictions we compute the correlation between each of the predictions 
and each student’s performance on the transfer test. Cross-validation is not used, as 
the model is not being re-fit in either case. 

Figure 2 shows the predictive performance of the transfer prediction model and 
BKT based on having the first N percent of the data.  From the graph we can see that 
the transfer prediction model performs substantially better than BKT for small 
amounts of data. For instance, with only the first 20% of the data, the transfer 
prediction model achieves a solid correlation of 0.463 while the BKT model achieves 
a much weaker correlation of 0.254. These findings suggest that it may be possible to 
use the transfer prediction model to drive interventions, from very early in tutor usage.  

 

Fig 2- Predicting transfer with first N percent of the data 
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5. Conclusions  

Within this paper, we have presented a model which can predict with reasonable 
accuracy how well a student will perform on a transfer post-test, a post-test involving 
related but different skills than the skills studied in the tutoring system, within a 
Cognitive Tutor for College Genetics. This model is based on the percentage of 
student actions that involve help avoidance [2], fast actions which do not involve 
gaming the system [4], and fast responses after receiving a bug message. Interestingly, 
two of these features (help avoidance and fast responses after bugs) appear to reflect 
meta-cognitive behavior rather than reflecting what students know, at least according 
to prior theory that these behaviors are meta-cognitive in nature [e.g. 2,18]. The result 
is in line with theory that suggests a key role for meta-cognition in transfer [13]. 

We examine several variants of this model, and find that a variant of the model 
based on multiplicative interactions of non-optimized versions of these features 
achieves the best cross-validated prediction of the transfer test. This is substantially 
higher than the cross-validated correlation of Bayesian Knowledge Tracing, a 
measure of skill learning within the tutor software. Furthermore, we find that the 
transfer detector achieves near-asymptotic predictive power by the time the student 
has completed 20% of the tutor software, suggesting that the transfer detector can be 
used to drive intervention early enough to influence overall learning. Another 
potential use of future work is to investigate the degree to which the transfer detector 
correlates to other measures of robust learning, such as retention [cf. 15] and 
preparation for future learning [cf. 6], in order to improve understanding of how these 
constructs relate to one another. Overall, we view this detector as a potential early 
step towards intelligent tutors that can predict and respond automatically to 
differences in the robustness of student learning, an important complement to ongoing 
research on designing tutors that promote robust learning [e.g. 1, 7, 17].  
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