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1 INTRODUCTION    

Computational Thinking (CT) is an emerging field in K–12 education that focuses on 

problem-solving practices related to computer-driven systems. CT practices include problem 

decomposition, pattern recognition, abstraction, and algorithm design (Authors, 2017d). The 

rapid rise of interest in CT in K-12 education is calling for new models of pedagogy, instruction, 

and assessment (National Academy of Sciences, 2010).  

While an important application of these practices is in the development of computer 

programs (coding),  CT can be applied to a broader range of problems that do not involve 

coding. CT is a way of thinking, or set of habits of mind, that offer a specific approach to 

problem solving. Computational thinkers see patterns in types of problems, and are able to 

abstract those patterns to generalized groups so that they can re-use and modify algorithms from 

previous problems. CT practices are used in everyday activities involving structure, sequencing, 

and ordered procedures such as recipes for cooking,  assembly instructions, or even daily 

routines to structure the school day. 

As educators become interested in the teaching and learning of CT, the challenge of 

designing and validating learning assessments for CT arises. Measuring CT requires measuring 

learners’ abilities to plan, design, and solve complex problems, which is not done by a typical 

school test (Ritchhart, Church, & Morrison, 2011). Even when CT is assessed in a natural 

setting, such as in a when artifacts from coding activity are reviewed, the learning assessment 

may not reveal the CT practices as a problem-solving approach as much as a review of how the 

student crafted the code (Grover & Basu, 2017).   

The development of novel forms of assessment of CT may be particularly important to 

broadening participation in Computer Science and other Science, Technology, Engineering, and 
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Mathematics (STEM) fields. Many learners who are considered “learning disabled” have 

demonstrated particular areas of strength in tasks related to CT, such as pattern recognition and 

systematic thinking (Baron-Cohen, Ashwin, Ashwin, Tavassoli & Chakrabarti, 2009; Dawson, 

Soulières, Gernsbacher, & Mottron, 2007; O'Leary, Rusch, & Guastello, 1991). Many IT 

companies such as Microsoft and Google recognize and nurture the unique cognitive assets of 

neurodiverse learners, knowing they may be vital to our future workforce (Martinuzzi & 

Krumay, 2013; Wang, 2014). Unfortunately, however, current educational assessments often 

include irrelevant barriers (e.g., reading or coding prerequisites) that may mask conceptual 

understanding for some learners (Haladyna & Downing, 2004).  

A promising avenue for building more inclusive assessments of CT practices may lie in 

digital games. There is increasing evidence that games can play a significant role in promoting 

STEM learning for children and young adults (Steinkuehler & Duncan, 2008; Authors, 2015; 

Squire, 2011). Digital games can also be used as powerful tools for providing formative, stealth 

assessments, that are able to measure implicit learning in a natural and engaging environment for 

learners (Shute, Ventura, & Kim, 2013; Authors, 2015).   

This paper describes an emergent approach to developing game-based assessments of 

students’ computational thinking in the puzzle game, Zoombinis. Using the digital log data 

generated through gameplay, researchers designed automated detectors of CT practices in 

gameplay based on theoretical and empirical grounding. The process of designing the detectors 

and results on their confidence of predicting those CT practices in Zoombinis gameplay are 

reported on here. 

2. BACKGROUND ON COMPUTATIONAL THINKING ASSESSMENTS  
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CT is the way of thinking used to design systematic and replicable ways to solve 

problems, and includes specific problem-solving practices such as Problem Decomposition, 

Pattern Recognition, Abstraction, and Algorithmic Thinking (Authors, 2017; CSTA, 2017; 

Wing, 2006). These  CT practices rely upon and may build facility with logic, representations, 

and sequential thinking, as well as broader ways of thinking such as tolerance for ambiguity, 

persistence in problem solving, and abstraction across applications (Allan et al., 2010; Barr & 

Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013; Weintrop et al., 2016). CT is 

also seen to be related to creativity and innovation (Mishra, Yadav, & the Deep-Play Research 

Group, 2013; Repenning et al., 2015) as well as integrating into many STEM areas (Barr & 

Stephenson, 2011; Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013; Weintrop et al., 2016). 

Furthermore, CT may foster particular dispositions in K-12 education, such as confidence and 

persistence, when confronting particular problems (Barr and Stephenson, 2011).   

The development of CT learning assessments in K-12 is still a relatively young endeavor. 

Many current assessments used in K-12 are strongly tied to computer-science frameworks as 

opposed to focusing on CT and most assessments analyze products from, or ask questions about, 

the construction or analysis of coding artifacts. These include assessments such as the Fairy 

Assessment (Werner, Denner, Campe, & Kawamoto, 2012), Dr. Scratch (Moreno-León & 

Robles, 2015), Ninja Code Village (Ota, Morimoto, & Kato, 2016), REACT (Real Time 

Evaluation and Assessment of Computational Thinking) (Koh, Basawapatna, Nickerson, & 

Repenning, 2014), CodeMaster (von Wangenheim, et al., 2018) and tools developed by Grover, 

Cooper, and Pea (2014), which are all designed for specific programming environments like 

Alice, Scratch, AgentSheets, App Inventor, Snap!, or Blockly. The reliance on coding may 

prevent these assessments from measuring CT with learners who do not have sufficient coding 
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experience. As such, these tools may not be well-suited for use as pre-assessments or for use 

with interventions that are not primarily focused on coding (Wiebe, London, Aksit, Mott, Boyer, 

& Lester, 2019). 

A few recent assessment endeavors have removed some of the reliance on coding. The 

Computational Thinking test (CTt) (González, 2015) is an online, 28-item, multiple choice 

instrument that shows promise in assessing core CT constructs for middle-grades students 

through situational questions rather than coding (Wiebe et al., 2019). The CTt was shown to be 

valid and reliable with middle-school students in Spain (Román-González, Moreno-León, & 

Robles, 2017). Some items on the CTt have block-based, programming-like elements in them, 

but this has shown not to be problematic for students who reported having little or no prior 

programming experience (Wiebe et al., 2019). This result is supported by Weintrop, Killen, 

Munzar, and Franke (2019), who found that students perform better on questions presented in 

block-based form compared to text-based questions.  

Bebras Tasks (Dagienė & Futschek, 2008; Dagienė, Stupurienė, & Vinikienė, 2016) 

originated as a set of short competition tasks through which students in grades 5–12 apply CT to 

solve “real life” problems. The Bebras tasks have recently been studied as assessment tools of 

CT practices (Barendsen et. al., 2015; Dagienė, Stupurienė, & Vinikien, 2016; Izu, Mirolo, 

Settle, Mannila, & Stupurienė, 2017). Like the CTt, many Bebras Tasks do not rely on prior 

knowledge of an application or programming language, but the psychometric properties of 

Bebras Tasks have not been fully demonstrated and some tasks may be considered too peripheral 

to core CT skills (Román-González, Moreno-León, & Robles, 2017). Wiebe and colleagues 

(2019) explored a hybrid of  CTt and Bebras as a “lean” assessment of CT practices, and found 
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promising results. The Bebras items are, however, dependent on textual questions and scenarios 

which may present a barrier for neurodiverse learners. 

3. AN EMERGENT APPROACH TO GAME-BASED ASSESSMENT OF IMPLICIT 

LEARNING  

In an effort to build learning assessment of CT practices that are inclusive for a wide 

range of learners, we look to a model of implicit learning—foundational knowledge that may be 

demonstrated through everyday activities but may not be expressed explicitly by the learner on 

a test or in schoolwork (Authors, 2015). There is ample research showing that traditional IQ 

tests and academic exams do not measure all of the cognitive abilities required in many 

everyday activities (Sternberg, 1996), and a large body of previous literature illustrates the 

implicit mathematical abilities in studies of gamblers at the race track (Ceci & Liker, 1986); 

street children using early algebra skills in their vending of fruit and snacks (Nunes, 

Schliemann, & Carraher, 1993) and housewives calculating “best buys” at the supermarket 

(Lave, Murtaugh, & de la Roche, 1984). Learners may demonstrate implicit knowledge through 

behaviors in everyday activities, such as games, that they are not yet able to express formally 

(Polanyi, 1966; Ginsburg Lee, & Boyd, 2008).  

Learning assessments used in more current educational research typically attempt to 

measure explicit knowledge, and are often laden with terminology and formalisms that may 

present barriers to learners’ expression of their underlying knowledge (Arena & Schwartz, 2013). 

The assessment of implicit knowledge proves inherent difficulty for researchers because it is, by 

definition, unexpressed and thus cannot be measured through traditional pen and paper tests or 

possibly even clinical interviews (Reber, 1989). Self-contained or decontextualized tests do not 

call upon this type of previous knowledge or experience of learners to support new learning 
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(Arena and Schwartz, 2013). Well-designed games provide an opportunity to support and 

measure implicit learning. 

Game-based learning assessments (GBLA) show promise to assess implicit knowledge 

by avoiding jargon within test items, construct-irrelevant material, and test anxiety, all of which 

can make traditional assessments less effective at assessing student competency (Authors, 2015, 

2017c; Shute, 2011). GBLA research is often grounded in an Evidence-Centered Design (ECD) 

framework (Mislevy, Steinberg, & Almond, 2003). ECD seeks to establish a logically coherent, 

evidence-based argument between three important models: a competency model, which 

involves variables about targeted cognitive constructs; a task model, which includes activities 

that support students’ demonstration of these cognitive constructs; and an evidence model, 

which provides the rationale and specifications of how to identify and evaluate targeted cognitive 

constructs (Grover et al., 2017). 

Researchers have developed stealth assessments guided by the ECD framework using 

educational data mining techniques to discern evidence of learning from the vast amount of click 

data generated by online science games and virtual environments such as Progenitor X 

(Halverson, Wills & Owens, 2012), EcoMUVE (Baker & Clarke-Midura, 2013), Physics 

Playground (Shute et al., 2013, 2016), INQ-ITS (Li, Gobert, & Dickler, 2017; Li et al., 2018), 

Shadowspect (Kim & Rosenheck, 2018), Earthquake Build (Lee, 2016), and Surge (Clark, 

Nelson, Chang, D’Angelo, Slack, & Martinez-Garza, 2011). Within ECD, measures of learning 

must be considered and designed along with the game mechanics.  While ECD approaches have 

been applied to the assessment of CT and CS (SRI International, 2013; Tissenbaum et  al., 2018), 

no one to the best of our knowledge has studied a puzzle game as an assessment of CT. 
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REDACTED seeks to remain as open to emergent evidence of implicit learning in games 

while still pursuing the logical coherence of the ECD framework. We have used our methods in 

digital games using an emergent method of stealth assessment with a more naturalistic and 

bottom-up approach by designating our task model as the predefined activities that elicit implicit 

learning within the game activities (Authors, 2017a, 2019). We then observe strategies that 

players demonstrate as they play the game and we identify those that are consistent with learning 

constructs of interest, such as CT. This approach for building evidence of learning is a 

modification of most applications of the ECD framework, where explicit learning outcomes are 

defined in advance and assessment tasks stem from those outcomes (Mislevy & Hartel, 2006).  

To study implicit CT in Zoombinis, we leverage methods from the field of educational 

data mining, which offers unique opportunities for providing scalable, replicable measures of 

implicit learning in games (Authors, 2015, 2017a; Baker & Clarke-Midura, 2013; Martin, 

Petrick, Forsgren, Aghababyan, Janisiewicz, & Baker, 2015; Shute et al., 2010; Hicks et al., 

2016; Li et al., 2018). This paper describes the use educational data mining techniques to build 

automated detectors of CT practices using game log data in a popular CT learning gamed called 

Zoombinis as evidence of their implicit learning.  

 The central questions addressed by this research are: 1.) What indicators of implicit CT 

can be reliably predicted by automated detectors in Zoombinis? 2.) How do in-game measures of 

implicit CT in Zoombinis relate to external measures of CT? (I.e., are these valid assessments?)  

 

4 A DESCRIPTION OF THE GAME ZOOMBINIS  

Zoombinis (Author, 2015) is an award-winning learning game that was designed in the 

1990s and re-released for current platforms. Players guide Zoombini characters on a journey 

through a series of challenging logic puzzles, leading them to safety in Zoombiniville. The game 
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consists of a suite of 12 puzzles for learners ages 8 and above with four difficulty levels per 

puzzle. Zoombinis puzzles were designed to develop mathematics concepts essential for 

computer programming and data analysis, such as sets, logical relationships, dimensions, 

mappings, sorting, comparing, and algorithms. Players can play in practice mode, where they can 

select physical characteristics for Zoombinis, or journey mode, where the game randomly 

generates characteristics for a group of Zoombinis which the player shepherds through several 

puzzles. 

In this paper, we focus on three Zoombinis puzzles, Pizza Pass, Mudball Wall, and 

Allergic Cliffs (see Figure 1).  

4.1 Pizza Pass  

In Pizza Pass, the Zoombinis’ path is blocked by one or more trolls that demand a meal 

(pizza or pizza and a sundae) with a specific set of toppings. However, the trolls only say 

whether (a) they want more toppings, (b) do not like at least one of the toppings, or (c) the meal 

is perfect. If there is more than one troll, each troll must receive its particular meal preference. 

4.2 Mudball Wall  

A large wall split into grid-squares blocks the Zoombinis’ progress. Three Zoombinis line 

up on planks at the bottom of the screen, waiting to be launched over the wall. Each grid-square 

of the wall contains 0–3 dots, indicating how many Zoombinis will be launched over the wall 

when the player fires a mudball onto that grid-square. A machine allows players to choose the 

shape and color of the next mudball to fire. The shape and color of the mudball determine the 

landing position of the mudball on the wall. There is a limited amount of mud, and only those 

Zoombinis who make it over the wall by the time the mud runs out are safe.  
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4.3 Allergic Cliffs  

The Zoombinis must cross two bridges spanning a chasm. Each bridge is supported by a 

cliff face that is allergic to one or more Zoombini trait. Players choose which of the two bridges 

each Zoombini should cross. Each Zoombini that causes a cliff face to sneeze is knocked back 

along the bridge to the starting side, and one of the six pegs holding both bridges up is dislodged. 

When all six pegs are gone, both bridges collapse, stranding the remaining Zoombinis. All 

Zoombinis that have safely crossed a bridge will move on.  

5 IMPLICIT COMPUTATIONAL THINKING IN ZOOMBINIS 

The learning mechanics embedded in Zoombinis puzzles align with contemporary 

constructs of CT as outlined by CSTA (2017) and related research (Wing, 2006; Brennan & 

Resnick, 2012). CT is increasingly important for developing 21st century skills, and also may 

provide unique opportunities to support inclusive STEM learning.  

5.1 CT Practices and Progression 

Drawing from several definitions of CT emerging in the field (Weintrop et al., 2016; 

Grover, 2017; Grover & Basu, 2017; Wing, 2011; Barr & Stephenson, 2011; Authors, 2017d), 

we defined a learning progression of CT that is consistent with the literature and is also aligned 

with the practices observed in Zoombinis gameplay (Figure 2). While shown linearly, this 

progression is highly iterative with many embedded small loops among phases repeating as new 

problems and contexts are encountered. We hypothesize that the following CT practices will be 

evident in Zoombinis gameplay: 

1. Problem Decomposition: the reduction of the complexity of a problem by breaking it 

into smaller, more manageable parts.  
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2. Pattern Recognition: the ability to see trends and groupings in a collection of objects, 

tasks, or information. 

3. Abstraction: the ability to make generalizations from observed patterns to make general 

rules or classifications about the objects, tasks, or information.  

4. Algorithm Design: the creation of a replicable solution to a set of problems.  

5.2 Phases of CT Problem Solving in Zoombinis 

For each of the three puzzles studied, we identified the common strategies or methods 

players used to solve the problems in Zoombinis gameplay and associated each with one or more 

CT practices. These include: 

1. Trial and Error: Player demonstrates no evidence of testing hypotheses in an ordered 

or intentional way. The player’s actions are independent of prior actions or game 

feedback, and do not build from feedback in a productive way. 

2. Systematic Testing: The player shows evidence of testing hypotheses about an 

underlying rule. They use an ordered, planned method with the end goal of finding a 

working solution to implement. During testing, the learner’s next action depends on the 

result of their previous action and game feedback. 

3. Systematic Testing with a Partial Solution: The player has solved one dimension of 

the puzzle and is testing hypotheses about a second dimension to find the complete 

solution. 

4. Implementing a Full Solution: The player completes the puzzle once a working solution 

for all dimensions of the puzzle has been found. 



 11 

We labeled these four mutually exclusive phases of CT within the gameplay of two puzzles: 

Pizza Pass and Mudball Wall.  

In some cases, we had to further specify the practice. For example, in the Mudball Wall 

puzzle, we distinguished explicit and implicit problem decomposition. As players chose the 

color and shape of the mudballs they launched to solve the puzzle, some players held one 

attribute (e.g., shape) constant while trying all values of the other attribute (e.g., color). We 

labeled this as explicit problem decomposition because the player was making the problem 

simpler by making the entire pattern visible. Another strategy was to choose mudballs in 

color/shape combinations that revealed information about both dimensions simultaneously (row 

AND column) to more quickly establish the overall grid rules (e.g., player tried all combinations 

of values in sequence: red circle, blue star, yellow square, green diamond, pink triangle). We 

called this implicit problem decomposition because the player was implicitly decomposing both 

attributes at the same time but not making the entire pattern visible. 

5.3 Zoombinis Puzzle Strategies  

Through our analysis of videos and playback from each of the three puzzles, we 

identified and operationalized specific strategies players commonly used that are consistent with 

CT practices (described in more detail in Authors 2018, 2019). In Zoombinis, strategies are 

implicit algorithms or repeatable solutions we observed players taking to solve puzzles that 

could be replicated with programming. While strategies present in each round of play were 

labeled as described below, they were not considered implicit algorithm designs unless players 

repeated them across multiple rounds of play.  

5.3.1 Pizza Pass. We found three strategies frequently used in Pizza Pass gameplay.  
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1. One at a time strategy: Player tries one topping at a time and, after trying all toppings, 

combines only those the troll likes.  

2. Additive Strategy: Player tries one new topping at a time and on subsequent deliveries, 

retains only the toppings the troll likes.  

3. Winnowing strategy: Player tries all toppings at once, then removes one at a time on 

subsequent deliveries.  

5.3.2 Mudball Wall. For Mudball Wall, we identified five common strategies: 

1. Color or Shape Constant: Player holds one attribute (color or shape) constant, while 

systematically testing values of the other attribute to establish the rule of a row or 

column. Player recognizes that sufficient information about the rule of the row/column 

is revealed after placement of four mudballs in that row/column. 

2. 2D Pattern Completer: Special case of Color or Shape Constant strategy in which a 

player completes an ENTIRE row AND an ENTIRE column to establish the full grid 

pattern before moving on to implementation. 

3. Maximizing Dots: Player appears to actively target dots on the grid using information 

available to them from previous moves. 

4. All Combinations: Player tries all shape/color pairs, changing both attributes between 

moves so as not to repeat a shape or color. The resulting diagonal pattern provides the 

full set of evidence needed to complete the puzzle. 

5. Alternating Color and Shape: Player systematically alternates between holding color 

(e.g., red) and shape (e.g., circle) constant to establish the rule of a row or column. 

5.3.3 Allergic Cliffs. We also identified three common strategies in Allergic Cliffs gameplay:  
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1. Nothing in Common: Player chooses two (or more) Zoombinis in a row that differ on 

all attribute values. This strategy applies to systematic testing early in the round when 

the player appears to be trying to establish bridge/cliff rules.  

2. Hold Attribute Constant: Player chooses four or more Zoombinis in a row that have 

different values of the same attribute (e.g., noses) to test all values. 

3. Hold Value Constant: Player chooses three or more Zoombinis in a row that have at 

least one attribute value in common (e.g., red noses or shaggy hair). This strategy 

applies to systematic testing early in the round plus systematic testing with partial 

solution. 

5.4 Zoombinis Gameplay Efficacy Related to CT 

In addition to CT practices and strategies, we also labeled other characteristics of gameplay 

efficacy for all puzzles that may be related to CT and provide an overall sense of understanding 

of the game demonstrated by the player. These include:  

1. Gameplay Efficiency: indicates how well the learner appeared to understand the game 

mechanic and applied an effective strategy across an entire round of play. Researchers 

selected from three values (1=Not at all Efficient; 2=Somewhat Efficient; 3=Highly 

Efficient). 

2. Learning Game Mechanic: moves that indicate a lack of understanding of the game 

mechanic (e.g., repeating identical mudballs, pizzas, or Zoombinis) 

3. Acting Inconsistent with Evidence: moves that contradict evidence available from prior 

moves, assuming the player understands the game mechanic. 
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6 METHODS 

This paper reports the process of building automated detectors of implicit CT demonstrated 

within data logs from a wide variety of Zoombinis gameplay. The process of building automated 

detectors, successfully applied to two physics games (Authors, 2017a), includes six steps: 

1. Define constructs (see 4.1) 

2. Hand-label Zoombinis gameplay 

3. Synchronize labels to gameplay process data 

4. Distill gameplay process data into features  

5. Build automated detectors of players’ CT practices  

6. Validate the detectors as formative assessments of implicit CT practices.  

Previous work provides a more detailed description of the hand-labeling process mentioned in 

step 2 (Authors, 2017a, 2017b). In particular, more information about the discussions between 

researchers during labeling of Mudball Wall can be found in Authors (2019). In this paper, we 

briefly describe the reliability of hand labeling and the categories of features engineered to the 

models (steps 3-4) (Authors, 2019). This paper’s discussion focuses primarily on steps 5 and 6 

and describes the process involved in building detectors of CT using a sample of upper 

elementary- and middle-school students. Additionally, we summarize our findings from prior 

research on one puzzle, Mudball Wall (Authors, 2019), and present new findings on two puzzles, 

Pizza Pass and Allergic Cliffs. As part of step 5, we present evidence from goodness metrics to 

assess the quality of the automated detectors across all three puzzles. For step 6, we discuss the 

correlational results between our detectors and external CT assessments.  

6.1 Data Collection & Sample   
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For the hand labeling and modeling of CT, participants were drawn from a sample of 194 

students participating in one-hour Zoombinis playtesting sessions that included multiple 

Zoombinis puzzles, such as Pizza Pass, Mudball Wall, and Allergic Cliffs. Participants were 

recruited from local schools, clubs, and after-school programs. Most playtesting sessions were 

small groups of 4–6 students playing on individual computers in their classroom, after-school 

program, or at REDACTED. These small groups were encouraged to talk to each other 

throughout the session, just as they would in classrooms. A few students played by themselves 

and were asked to think aloud as they solved puzzles in the presence of a researcher. This 

diversity of approaches to data collection was intended to mirror the range of conditions of 

classroom implementation in which the detectors will likely be used.  

A minimum sample of 70 students across grades 3–8 evenly divided by gender and grade 

level was sought (see Table 1 for details). To ensure a high likelihood of finding a range of CT 

practices, players with higher success rates (i.e., 100% of Zoombinis through a puzzle multiple 

times) in these three puzzles were oversampled compared to players with lower success rates. 

Oversampling was done to improve the likelihood we would have enough examples to represent 

a wide range of CT behaviors in the hand-labeled sample to build reliable, generalizable 

detectors. These success rates were not shared with the researchers who were hand-labeling the 

puzzle gameplay.  

A broader sample was used for validating our detectors as formative assessments. Thirty-

six teachers of 54 3rd–8th grade classes who participated in our national Zoombinis 

implementation study were used to compare our CT detectors to external measures of CT. Only 

students who completed all post-assessment items belonging to the 4 facets were included. It was 

possible for participants to have played some but not all 3 puzzles resulting in missing detector 
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values for the puzzles they did not play. For this reason, the total number of students varied by 

puzzle. Between 741 and 918 students had rounds with 3 or more moves in Pizza Pass, Mudball 

Wall, or Allergic Cliffs.  

6.2  Hand-label Zoombinis gameplay 

Based on informal observations of children playing Zoombinis as well as our own 

experience playing the game, the initial labeling system for each puzzle included preliminary 

labeling schemas for the CT practices defined in 4.1, phases of problem solving, puzzle 

strategies, and gameplay characteristics. Through an iterative process, a team of four researchers 

watched playback independently, discussed their labeling, and refined label definitions of 

implicit CT until they agreed that the labeling system was an exhaustive representation of all the 

emergent gameplay behaviors previously seen (Authors, 2017b). Researchers repeated this 

process until Cohen’s kappas exceeded 0.70 for a set of 10 players. Once we achieved reliability, 

one researcher (not a labeler) assigned a set of 10 players for labeling with a second researcher 

pre-designated as the Primary labeler and the other researcher designated the Reliability Check 

for the labeling of each player. The two labelers were Primary labelers for half of the players. 

Only data from the Primary labeler was used to create the detectors.   

For the final labeling of gameplay reported here, researchers watched an entire round 

once all the way through, looking for evidence of one or more specific strategies in the 

gameplay. Researchers then either re-watched the round at reduced speed or step through event-

by-event to determine which labels to apply for each category. Researchers used the categories 

of labels to select the most appropriate set of labels for each event and followed the rules for 

each category. For all puzzles, labeling was started at Round 2 based on the assumption that 

players are learning how to play in Round 1. All rounds with less than three events were 
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excluded due to too little information. The remaining rounds were labeled using the guidelines 

laid out in the labeling manuals for each game.  

A non-labeling researcher checked the reliability on a weekly basis for careless errors and 

labeling drift. When found, the labelers were first asked to independently double-check their 

labeling against the labeling manuals and make any corrections. If the reliability was still below 

0.70, the researchers met to review specific cases to determine whether they were aligned with 

the labeling manual. In cases where the disagreements were due to different conceptual 

understandings of the player behaviors and both aligned with the labeling manual, those 

disagreements were retained. This process was repeated for each puzzle, taking approximately 3–

4 months to complete per puzzle. The puzzles are discussed in their order of completion—Pizza 

Pass, Mudball Wall, and Allergic Cliffs. 

Figures 3–5 provide simplified labeled data extracted from REDACTED playback tool 

for Pizza Pass, Mudball Wall, and Allergic Cliffs. The panels in Figure 3 illustrates a player’s CT 

progression through Level 1 of Pizza Pass. In this example, the player decomposed the problem 

of finding the perfect pizza to serve the troll by systematically testing one topping at a time. With 

each pizza served, the troll provided audio and visual feedback, indicating whether or not he 

liked the topping. Once the player had tried all possible single toppings, the Problem 

Decomposition label was turned off because at this point, the player had all the necessary 

information to assemble the final successful pizza. As shown in the final panel of Figure 3, the 

Pattern Recognition and Abstraction labels were applied along with Implementing a Full 

Solution to reflect the fact that the player kept only toppings the troll had previously approved 

and combined them into one pizza.  
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Figure 4 shows an example of labeling Mudball Wall. After the first mudball was 

launched, the player began systematically testing mudballs by holding the mudball (circle) 

constant while changing only the color between launches. This revealed colors were assigned to 

rows. Once the rule for rows was established, the player began testing the other dimension 

(column) by holding color (blue) constant and changing the shape of the mudball between 

launches. Since they had one dimension of the solution, the researcher switched the Phase label 

from Systematic Testing to Systematic Testing with a Partial Solution. While establishing the 

underlying rules for both dimensions, the Explicit Problem Decomposition label was applied. 

The Pattern Recognition label was turned on during Systematic Testing to reflect the player’s 

understanding that for this particular puzzle, circles go in the last column and blue mudballs go 

in the top row. Once the full set of rules for the grid were revealed (rows correlate to color and 

columns to shape) and the player began applying those rules by targeting cells with the 

Maximizing Dots strategy, the Abstraction and Implementing Full Solution labels were turned on. 

In this labeling example for Allergic Cliffs, the player began by systematically testing the 

Zoombinis by placing 3 Zoombinis in a row with the same hair value (ponytail) on the top 

bridge. Panel 3 of Figure 5 shows that the third Zoombini was rejected from the top bridge and 

then placed successfully across the bottom bridge. At this point, a partial solution is in place. The 

player has enough information to know that ponytail hair and pink noses will successfully cross 

both bridges and the top bridge accepts more than one value for feet (Pattern Recognition and 

Abstraction). By placing a Zoombini with sunglasses eyes on the bottom bridge, the player 

reveals that the bridges select on feet, with the bottom bridge accepting only spinner feet. Once 

the player begins placing only spinner feet on the bottom bridge and everything else on the top 

bridge, the Implementing Full Solution label is turned on. As shown in Panel 5 of Figure 5, the 
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player makes a mistake late in the round by placing a Zoombini with the wrong feet on the 

bottom bridge. Since it is a single mistake, the play is still considered Highly Efficient for the 

round. 

6.2.1 Evidence Model of CT Practices Grounded in Hand Labeling 

Through the hand-labeling process, our evidence model (Figure 6) links the specific 

actions that a player tries in Zoombinis with the competency variables of interest—Problem 

Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. Our task model 

relates to the three puzzles and possible behaviors or CT indicators that the player demonstrates 

in these puzzles (Authors, 2017d). For instance, when a player tries one topping at time on a 

pizza in Pizza Pass, that player is likely demonstrating Problem Decomposition. In Mudball 

Wall, consider a player who understands the rule of one dimension by holding the color constant 

and changing the shape in between mudball launches; this player is likely demonstrating Pattern 

Recognition. In Allergic Cliffs, when a player consistently applies the Hold Attribute or Hold 

Value Constant strategy across two rounds, this could indicate evidence for Algorithm Design. 

By building detectors that identify when a player is demonstrating these relevant indicators, we 

can use these detectors to provide evidence for implicit CT learning in Pizza Pass, Mudball Wall, 

and Allergic Cliffs.  

6.2.2 Inter-rater Reliability of Hand Labeling   

Labeling for all puzzles was done originally at the event level. Because some of the labels 

relied on three or more events happening in a row, essentially using the future to predict the 

present, the labels were aggregated to the round level.  



 20 

To achieve inter-rater reliability, two researchers independently labeled all rounds of 

Level 1 play and tested their levels of agreement using Cohen’s kappa (Cohen, 1960). Cohen’s 

kappa provides chance-corrected agreement indices (i.e., take into account the possibility of 

chance agreement) and a range between -1 and 1, with a value of 1 signifying perfect agreement 

and values of 0 or below indicating no agreement above chance. These kappa values are reported 

for all labels except gameplay efficiency. Gameplay Efficiency is an ordinal rating and we 

reported a Cronbach’s alpha (Cronbach, 1951) to reflect the internal consistency between the 

ratings of the two researchers. Inter-rater reliability was calculated at the round level for all CT 

constructs across all puzzles.  

Table 2 shows interrater reliability results of phases of problems solving, CT practices, 

and gameplay efficacy related to CT for Pizza Pass, Mudball Wall, and Allergic Cliffs. 

Researchers generally achieved acceptable interrater reliability across all three puzzles with 

kappa values of 0.70 or more, except for a few labels in Pizza Pass (i.e., Learning Game 

Mechanic), Mudball Wall (Systematic Testing and Implicit Problem Decomposition) and 

Allergic Cliffs (Systematic Testing with Partial Solution and Acting Consistent with Evidence). 

Cronbach’s alpha for Gameplay Efficiency was relatively high across all puzzles, with values 

from 0.96 to 0.98.  

Strategies varied per puzzle (see 4.2). Players could have more than one strategy label per 

round. Table 3 shows the reliability of hand labeling of the strategies (implicit algorithms) 

players demonstrated in each of the puzzles. All labels had kappas exceeding 0.70. Two features 

of Allergic Cliffs gameplay made labeling particularly challenging compared to the other two 

puzzles. First, the transitions in Pizza Pass and Mudball Wall are single, discrete events (pizza 

delivery and throwing a mudball) that can only be completed one at a time. In Allergic Cliffs, 
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while only one Zoombini moves across a bridge at a time, more than one Zoombini can be 

placed in the queue to go over a bridge, making it difficult to discern which event is tied to which 

Zoombini. Second, in Pizza Pass and Mudball Wall, feedback remains visible beyond when it 

was provided by the game. Pizzas remain sorted by whether or not they were liked by the troll 

and mudball shape and color remain on the spot they hit. In a sense, patterns in these puzzles are 

in a “glass box.” In Allergic Cliffs, however, the only feedback that remains visible on the screen 

is which Zoombinis made it over which bridge, not which ones were rejected by which bridge. 

Thus, patterns in finding solutions in Allergic Cliffs are invisible to researchers in a “black box,” 

making it more difficult to reliably label CT behaviors in this puzzle.   

Labeling was originally done at the event level and the kappas were not as high for the 

Allergic Cliffs strategies. For this reason, one set of labels was combined to create a single 

detector. During the labeling process, it became clear that it was too difficult to distinguish Hold 

Attribute Constant and Hold Value Constant by individual moves, so they were combined to 

create a merged Hold Attribute or Value Constant label. 

6.3 Distill Gameplay Process Data into Features  

The design and implementation of the hand-labeling scheme informed the feature 

engineering process. For each puzzle, we worked with domain experts to construct a list of 90 

hypothetical features which we believed might be indicative of players’ gameplay strategies. 

Using raw log data, we computed values for the approximately 75 features that were feasible 

given the available data. While iterating through this feature-building process, we created 

additional features based on insights that arose. The resulting feature set consisted of between 74 

and 113 features, depending on the puzzle. Of these, 41 features were common across puzzles.  

This included the minimum, maximum, average, and standard deviation of a feature’s values 
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over the course of the round. Feature values were aggregated at the round level when detecting 

gameplay efficiency across all puzzles and when detecting strategies in Allergic Cliffs. These 

round-level features were added to the log data, which were then used for the modeling process. 

All these features represent potentially meaningful evidence of players’ use of CT practices in 

Zoombinis. Table 4 shows selected feature categories, examples, and rationale for each puzzle. 

The full list of features used in each puzzle can be found in Appendices A–C.    

 

6.4  Build Automated Detectors of Players’ CT Practices  

We used RapidMiner 5.3 to build separate detectors for each hand label of implicit CT in 

Pizza Pass, Mudball Wall, and Allergic Cliffs. For each label of CT, we attempted to fit the 

detectors using four common classification algorithms previously used in detecting affect and 

engagement in computer-based learning environments: W-J48, W-JRip, linear regression with a 

step function, and Naive Bayes. These classification algorithms allow us to predict whether or 

not a student is demonstrating a given dimension of CT, in the form of a label. The goal of 

building these detectors is to replace the hand labeling of CT labels with an automated model 

that can be applied directly to data.  

Detectors were evaluated using 4-fold student-level, batch cross-validation, in which 

models are repeatedly trained on three groups of students and tested on the 4th group. Cross-

validation processes are important in order to select algorithms which are not over-fit to 

particular sets of training data, as cross-validation estimates the degree to which the model 

applies to unseen data. In particular, student-level batch, cross-validation avoids over-fitting to 

the behavior of individual students (i.e., avoids building a model tuned to specific students’ 

idiosyncrasies).   
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We used AUC ROC (Area Under the Receiver Operating Characteristic curve) computed 

using the A’ approach (Hanley & McNeil, 1982) as the primary goodness metric to evaluate 

model performance, followed by Cohen’s kappa. In cases where the models had high kappa but 

low AUC values, we used both metrics to select the best performing model of CT behavior. 

Cohen’s kappa assesses the degree to which our models are better than chance at predicting CT 

labels. A kappa of 0 indicates that the model performs at chance, and a kappa of 1 indicates that 

the model performs perfectly. AUC is the probability that if the detector is comparing two 

students, one labeled as demonstrating implicit CT and the other labeled as not demonstrating 

CT, the detector will correctly determine which student demonstrated CT. A model with AUC of 

0.5 performs at chance, and a model with AUC of 1.0 performs perfectly. Metrics for all labels 

were calculated with one data point per round of gameplay.  

6.5 Validate the Detectors as Formative Assessments of Implicit CT  

We applied the detectors of CT to our broader sample of 1000+ upper elementary- and 

middle-school students from the Zoombinis implementation study. These detectors not only 

produce an inference of whether implicit CT is present or absent, but also produce a confidence 

in that inference. For example, if the Highly Efficient Gameplay detector has a confidence of 

80% for a round, this indicates that there is an 80% probability that the student was being highly 

efficient in that round. As in Baker (2015), we average detector confidence values for each 

student across all rounds. Hypothetically, if the Highly Efficient Gameplay detector indicated that 

a student had completed five rounds with confidence values of 72%, 68%, 95%, 40%, and 80%, 

the average confidence for demonstrating highly efficient gameplay is 71%. This represents the 

most likely estimate for how often this hypothetical student was demonstrating Highly Efficient 

Gameplay in 72% of his or her actions, as it retains all information available and avoids treating 
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a student who is repeatedly 95% likely to be demonstrating a dimension of CT the same as a 

student who is repeatedly 51% likely to be demonstrating that dimension of CT.  

These students also completed an 18-item CT assessment using digital interactive logic 

puzzles aligned with foundational CT constructs—Problem Decomposition, Pattern Recognition, 

Abstraction, and Algorithm (see Table 5). Example items can be found in Authors (2017d). 

Aggregated CT assessments were found to have low to moderate validity and reliability 

(Authors, under review). 

Three types of metrics were used for this study (mean number of correct responses for 

Pattern Recognition, mean percentage of spaces completed completely for Abstraction, and mean 

efficiency of responses for Problem Decomposition and Algorithm Design). scores were 

converted to Z scores for each facet to aid in interpretation.  As assessment forms were more 

difficult in middle school than elementary, these Z scores were calculated within each grade 

band to take into account differences of difficulty between forms. For the results reported here, 

the Z-scores for Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm 

Design were calculated for each facet and then averaged to create an aggregated CT score.  

 

Having the average predicted probabilities of each implicit CT construct and the 

aggregated CT score per student, we computed Pearson correlations between students’ in-game 

measures and standardized post-CT assessment scores. We calculated the corresponding p-values 

for the correlation and used the Benjamini-Hochberg (Benjamini & Hochberg, 1995) method to 

adjust the alpha values for multiple comparisons.  

 

7 RESULTS  
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Through the process of hand labeling, identification of salient CT practices, and building 

automated detectors of those CT practices, we were able to design implicit CT assessments for 

Zoombinis. We used external post-assessments of CT with digital, iterative, logic puzzles 

(Authors, in preparation) to determine the validity of those detectors.  

 

7.1 Measures of Implicit CT from Zoombinis Gameplay 

We evaluated the degree to which our models can accurately infer the absence or 

presence of each hand-applied CT label. Tables 6–8 shows the performance of all of the CT 

models in Pizza Pass, Mudball Wall, and Allergic Cliffs.  

In Pizza Pass, the best-performing algorithms had lower reliability than human labelers 

for detecting phases of problem-solving and CT practices. In particular, kappas for the rare 

Winnowing strategy detector (only 10 labeled occurrences) had a relatively poor kappa value of 

0.14 compared to its reliability of 0.75 for hand-labeling. This same detector had the worst AUC, 

only 0.63. The rest of the detectors yielded much higher AUC, with values between 0.77 and 

0.92. In particular, the One at a Time strategy achieved the highest AUC value of 0.92, 

indicating that this model can correctly distinguish between the absence and presence of this 

strategy 92% of the time.  

In Mudball Wall, there was a range of kappa values obtained for different constructs. At 

one extreme, the Color Shape Constant and Alternating Color and Shape strategies obtained the 

lowest performance, with kappa of 0.10 and 0.14 respectively and AUC ROC of 0.60 and 0.63. 

Most students frequently applied Maximizing Dots, where they actively targeted dots on the grid 

based on previous information from previous moves, demonstrating pattern recognition. This 

strategy achieved a much higher kappa value of 0.68, indicating that the model is 68% better 
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than chance at identifying this strategy. At the other extreme of kappa values, Learning Game 

Mechanics achieved excellent kappa performance, with a value of 0.87. In terms of AUC 

performance, these Mudball Wall CT detectors achieved a wide range of AUC values, from 0.60 

to 0.93. Except for Trial and Error (AUC = 0.78), the phases of problem solving detectors 

achieved high AUC values of 0.86 to 0.88, meaning that these models can correctly distinguish 

between the absence and presence of these CT constructs 86% to 88% of the time.  

 

In Allergic Cliffs, we found greater discrepancies in reliability between our automated 

detectors and human labelers. In particular, detectors of the Nothing in Common strategy, Hold 

Attribute or Hold Value Constant strategy, and Learning Game Mechanics performed at chance, 

with kappa values of zero. In particular, the J48 model for the Hold Attribute or Hold Value 

Constant strategy consisted of only one leaf and was not helpful in distinguishing the absence or 

presence of this label. Few too examples of the absence of this label may have made it difficult 

for the algorithm to predict cases in which the player did not demonstrate the Hold Attribute or 

Hold Value Constant strategy. This label was therefore dropped from further analysis. Systematic 

Testing and Problem Decomposition yielded negative kappa values, indicating that these models 

are worse than chance at detecting these CT constructs. In general, these findings may be in part 

due to the challenges of the patterns being tested by students in Allergic Cliffs did not remain 

visible. Researchers also found it more challenging to reliably label patterns of implicit CT. In 

comparison, detectors of Pattern Recognition and Abstraction both achieved a kappa value of 

0.59, indicating that these models are 59% better than chance at identifying these CT practices. 

When taking AUC performance into account, all the detectors except the Nothing in Common 

strategy were better than chance at inferring the absence of presence of implicit CT learning. In 



 27 

particular, detectors of Implementing Full Solution, Gameplay Efficiency, and Learning Game 

Mechanics yielded the highest performance, with AUC values of 0.86 to 0.95.  

Model performance for some detectors resulted in a combination of relatively high AUC 

and comparably low kappa values, including Winnowing in Pizza Pass; Alternating Color and 

Shape, Color or Shape Constant, Systematic Testing, and Implicit Problem Decomposition in 

Mudball Wall; Systematic Testing, Implementing Full Solution, Nothing in Common, and Hold 

Attribute Constant or Hold Value Constant in Allergic Cliffs. These findings suggest that these 

models can distinguish these CT constructs in general but are relatively poor at determining a 

cut-off for ambiguous cases.  

However, the relatively high AUC values suggest that these detectors are of sufficient 

quality for validating these models against post-CT assessments, as they are reliable when 

probability estimates are taken into account. Except for Nothing in Common and Hold Attribute 

Value or Hold Value Constant, all detectors of strategy are at a level of quality where they can be 

used to estimate when players are repeating the same strategies across puzzle rounds, as this 

consistent behavior may be indicative of applying implicit algorithms.  

The rest of our detectors, especially Implementing Full Solution, Pattern Recognition, 

Abstraction, and Highly Efficient Gameplay, showed acceptably high AUC across all puzzles. 

For example, the Highly Efficient Gameplay detector achieved a range of AUC values from 0.84 

to 0.91, indicating that these models can correctly distinguish between a highly efficient student 

and less efficient student 84%–91% of the time.  

 

7.1  Validate the Detectors as Formative Assessments of Implicit CT  
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In Table 9, we summarize the Pearson correlations between each detector related to 

phases of problem solving, CT practices, and gameplay efficacy for Pizza Pass, Mudball Wall, 

and Allergic Cliffs.  

Except for Systematic Testing with Partial Solution in Pizza Pass, all phases of problem 

solving were significantly associated with students’ post-assessment scores. Higher incidence of 

Systematic Testing and Implementing Full Solution were associated with higher CT scores while 

higher incidence of Trial and Error was correlated with lower scores.    

Similarly, most of the CT practices detectors were significantly associated with students’ 

post-assessment scores, except for Explicit Problem Decomposition in Mudball Wall. Players 

with higher incidence of Problem Decomposition, Pattern Recognition, and Abstraction had 

higher CT scores.  

Except for Learning Game Mechanic in Pizza Pass and Gameplay Efficiency in Allergic 

Cliffs, detectors related to gameplay efficacy were significantly associated with students’ post-

assessment scores. Demonstrating Highly Efficient Gameplay was significantly related to better 

performance while demonstrating more Learning Game Mechanic and Acting Inconsistent with 

the Evidence were significantly associated with worse performance.  

As shown in Table 10, correlations for player’s strategies or implicit algorithms were not 

as strong as seen in phases of problem solving, computational thinking practices, and gameplay 

efficacy. For Pizza Pass, the Additive strategy was weakly associated with external CT 

assessment scores. In comparison, the One at a Time strategy and Winnowing strategy achieved 

stronger correlations. Higher probabilities of One at a Time were associated with higher post-

assessment scores while higher probabilities of Winnowing were associated with lower post-

assessment scores.  
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For Mudball Wall, Maximizing Dots achieved the strongest correlation with more of this 

strategy being associated with better post-intervention CT performance. Alternating Color and 

Shape was significantly associated with post-test scores, with higher probabilities of this  

construct being correlated with higher scores. Holding Color or Shape Constant, 2D Pattern 

Completer, and Try All Combinations of Color and Shape were weakly associated with external 

CT assessment scores.  

Due to the lack of accuracy in predicting the absence and presence of the Hold Attribute 

Constant or Hold Value Constant strategy, this detector was dropped from correlational analysis. 

Nothing in Common was significantly and negatively associated with post-test scores.   

 

8 DISCUSSION  

The assessment of CT learning presents several challenges to researchers including the 

novelty of CT as a field, and thus a dearth of established definitions and measures; as well as the 

requirement to measure the ways of thinking of  CT within a process rather than a resulting 

artifact or test question (Grover & Basu, 2017).  

Many current CT assessments are laden with symbolic notation or decontextualized 

scenarios that present extraneous barriers for some learners. In an effort to mitigate these 

barriers, our research team is exploring methods to measure implicit learning— learning that can 

be demonstrated through behaviors and activity within the learning activity itself (Authors, 

2015). Digital games provide unique affordances for implicit learning assessment because they 

can motivate players to persist in complex problem-solving (Shute, Ventura, & Ke, 2015; 

Steinkuehler & Duncan, 2008; Qian & Clark, 2016); and they provide digital log data that can 

analyzed in a replicable and scalable manner (Plass, Mayer, & Homer, 2020).   
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We developed our emergent methodology through the study of implicit science learning 

in two digital games (Authors, 2017, 2019). In this paper, we apply this methodology to use 

gameplay log data and build detectors of implicit CT, grounded on hand labels of recorded 

gameplay process data. We were able to detect students’ implicit learning of CT practices in 

different puzzles of Zoombinis, achieving good agreement with hand labels of 70+ students per 

puzzle. We present evidence from AUC, our primary goodness metric, to assess the quality of 

the automated detectors across all three puzzles. Except for the Nothing in Common strategy in 

Allergic Cliffs, a construct for which detection proved infeasible within our approach, it was 

possible to construct a range of detectors across all three puzzles. These detectors varied in 

quality, from the low 0.6s,  a level of quality similar to detectors predicting affect and 

engagement in online learning environments (Pardos et al., 2013) to detectors in the mid 0.9s, a 

level quality higher than the detectors seen in many medical applications (Revell et al., 2013). 

Even detectors at the lower end of our performance range have proven able to predict long-term 

student outcomes (Pardos et al., 2013; San Pedro et al., 2013), which suggest that these detectors 

can be used for formative assessments of students’ implicit CT and for informing teachers which 

students need learning support.  

Findings from our correlational analyses of a sample of 797-980 (depending on puzzle) 

students in grades 3-8 also show evidence that our CT detectors, especially those related to 

phases of problem solving, CT practices, and gameplay efficacy, are valid assessments of 

students’ implicit CT learning in that they achieve convergent validity with external CT 

assessments. These findings suggest that it is possible to deploy these in-game assessments at 

scale and in real time to reveal students’ implicit knowledge to educators and designers. 
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We can leverage these models to help teachers using Zoombinis determine when players 

are demonstrating gameplay behaviors consistent with CT practices. Specifically, these models 

can reliably identify which players are consistently using the same strategy across rounds, as 

evidence of learners designing implicit algorithms to solve problem-solving scenarios. We have 

previously used confidence levels from valid strategy detectors (e.g., One at a Time strategy in 

Pizza Pass and Maximizing Dots in Mudball Wall) to compute the proportions of actions in 

which a player applied a strategy across two rounds of the same puzzle. For instance, our 

detectors can indicate that a player applied a One at a Time strategy 70% of the time in all his 

actions in any two consecutive rounds of gameplay in Pizza Pass, suggesting consistent use of 

the strategy and application of an algorithm solution across rounds. Similarly, game designers 

could use this methodology to create their own CT detectors to predict implicit learning and 

generate real-time adaptations in digital games that support players’ zone of proximal 

development (Vygotzky, 1978). These are potentially useful future directions for integrating 

data-driven in-game implicit learning assessments into the classroom.  

In sum, this unique approach provides an opportunity to provide scalable and replicable 

measures of implicit learning in learning environments such as games that can be used as 

formative real-time implicit learning assessments during instruction. In building and validating 

three game-based assessments, two physics games (Authors, 2017) and Zoombinis, we 

emphasized the importance of examining and understanding learners’ processes of solving 

problems in authentic situations, rather than in more traditional and constrained testing contexts. 

Because Zoombinis puzzles involve the same implicit CT practices sometimes needed to solve 

real-world problems, our detectors are grounded on learners’ emergent CT behaviors as they 

encounter authentic problem-solving scenarios within the game. Our approach also shows 
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promise in alleviating some of the constraints imposed by an ECD model of assessments. When 

game-based learning assessments primarily rely on designers’ a priori learning trajectories, these 

may not entirely capture learners’ spontaneous and emergent strategies that are likely indicative 

of their cognitive strengths and implicit knowledge of a salient phenomenon. These in-game 

assessments also have the potential to mitigate the barriers of current traditional assessments by 

assessing learning through puzzles that do not rely on textual or verbal representations. We hope 

that this work contributes to a new area of research that highlights the need for CT assessments 

based on educational data mining techniques to reach, better understand, and assess the implicit 

STEM knowledge of young learners.  

 

9 CONCLUSION  

Game-based implicit learning assessments may provide a new genre of formative 

assessment that can reveal what learners know implicitly, not just what they can say on a test or 

class assignment. This form of assessment in an interest-driven environment such as a game has 

the potential to engage a variety of learners because it examines their learning in an environment 

where they are typically motivated and interested in finding solutions. This may be particularly 

important for learners who are often disengaged in school content. Implicit learning assessments 

that use educational data mining techniques grounded in hand labeling of play behaviors provide 

an opportunity to look “under the hood” at what learners can demonstrate through behaviors 

which may reveal cognitive strengths that go unrecognized when relying on traditional academic 

tests (Nguyen, Garner, & Sheridan, 2018). Designing and validating formative game-based 

assessments to reach a broad range of learners at a scale and in real-time is just a beginning and 

is a rich area for future research.  
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Table 1: Number of students labeled by puzzle, grade level, and gender. 

Grades Gender Pizza Pass Mudball Wall Allergic Cliffs 

3rd–5th Grade  Females 17  20  18 

Males 18 17 18 

6th–8th Grade Females 17 16 18 

Males 19 21 18 

Total Females 34 36 36 

Males 37 38 36 
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Table 2: Reliability of hand labeling of Pizza Pass, Mudball Wall, and Allergic Cliffs Phases of 

Problem Solving, CT practices, and Gameplay Efficacy 

Label Kappas 

 Pizza Pass Mudball Wall Allergic Cliffs 

Phases of Problem Solving    

Trial and Error 0.88 0.83 0.94 

Systematic Testing 0.85 0.61 0.93 

Systematic Testing w/Partial Solution 0.81 0.87 0.65 

Implementing w/Full Solution 0.77 0.95 0.89 

Computational Thinking Practices    

Problem Decomposition 0.82 n/a 0.93 

Explicit Problem Decomposition n/a 0.78 n/a 

Implicit Problem Decomposition n/a 0.68 n/a 

Pattern Recognition 0.82 0.84 0.75 

Abstraction 0.74 0.93 0.75 

Gameplay Efficacy    

Gameplay Efficiency* 0.96 0.98 0.99 

Learning Game Mechanic 0.66 0.85 0.83 

Acting Inconsistent with Evidence 0.81 0.77 0.69 

Note: *Gameplay Efficiency is an ordinal label (3 values). The values reported in this table are 

Cronbach’s alphas, not Cohen’s kappas. 

  



Table 3: Reliability of hand labeling of Pizza Pass, Mudball Wall, and Allergic Cliffs strategies 

(implicit algorithms) 

Pizza Pass Mudball Wall Allergic Cliffs 

Strategy Kappa Strategy Kappa Strategy Kappa 

One at a Time 0.79 Color or Shape Constant 0.75 Nothing in 

Common 
0.93 

Additive 0.84 2D Pattern Completer 0.83 Hold Attribute 

Constant 
0.89 

Winnowing 0.75 Maximizing Dots 0.78 Hold Value 

Constant 
0.78 

 Try All Combinations of 

Color and Shape 
0.82  

Alternating Color and Shape 0.87 

 

  



Table 4: Puzzle Feature Categories, Examples, and Rationale 

Category Example Feature Feature Rationale 

Pizza Pass, Mudball Wall, and Allergic Cliffs 

Overall Gameplay: These features 

describe general aspects of a 

student’s play such as the outcome 

of each round (all Zoombinis 

through, Some Zoombinis through, 

no Zoombinis through, Quit)  

Number of Zoombinis 

ejected from the puzzle 

Zoombinis being ejected from 

the puzzle is a significant sign 

play is not going well. 

Topping Futzes (Pizza Pass only): 

Switches toppings before the pizza 

is delivered to the troll.  

Number of futzes since 

last pizza 

More futzing may indicate that 

the player is unsure about their 

next move. 

Mudball Duplicates (Mudball Wall 

only): These features capture the 

extent to which learners throw 

similar mudballs at the wall 

Current consecutive 

number of duplicate 

mudballs 

Duplicate mudballs are wasted 

resources because no new 

information is gained. This 

suggests players may not 

understand the game mechanic. 

Zoombini Timing (Allergic Cliffs 

only): These features describe the 

speed with which learners select 

Zoombinis to cross the bridges. 

Time since the last 

unsuccessful Zoombini. 

More time since the last 

unsuccessful Zoombini may 

indicate if players have figured 

out the underlying rule 

Note: In Pizza Pass, players can add and remove toppings from a pizza as often as they like before delivering that 

pizza to a troll; we use the term “futz” for a player modifying a pizza in this way. This is contrasted to the term 

“change,” which we only use to describe modifications that affect the final, delivered pizza. 

  



Table 5: Description of Post-CT Assessments  

CT Practice Description of puzzle  Number of 

items  

Metric used for 

scoring 

Problem Decomposition Puzzles that require finding the 

correct answer by decomposing the 

problem space. 

4 Mean efficiency  (# 

moves/optimal number 

of moves)  

Pattern Recognition  Raven’s Progressive Matrices 

(RPM; Raven, 1981) 

5 Mean percentage of 

correct responses  

Abstraction  Puzzles that require identification of 

an underlying rule and 

generalization of the rule to the rest 

of the pattern. 

6 Mean percentage of 

spaces completed 

correctly 

Algorithm Design Puzzles that require sequencing of 

arrows that guide a character along a 

path in a maze with obstacles. 

3 Mean efficiency (# 

moves/optimal # 

moves)   

 

  



Table 6: Kappa and AUC values for best performing models for Pizza Pass 

  W-J48 W-JRip Step Reg Naïve Bayes 

Label Kapp

a 

AUC Kappa  AUC 

 

Kappa AUC Kappa AUC 

Phases of Problem Solving                 

Trial and Error 0.61 0.82 0.64* 0.84* 0.50 0.81 0.59 0.81 

Systematic Testing 0.43 0.69 0.49* 0.77* 0.37 0.71 0.25 0.68 

Systematic Testing with Partial Solution 0.53 0.78 0.50* 0.79* 0.25 0.69 0.48 0.74 

Implementing Full Solution 0.65 0.78 0.59 0.70 0.32* 0.85* 0.02 0.54 

Computational Thinking Practices  

        

Problem Decomposition 0.36 0.79 0.52* 0.81* 0.38 0.71 0.56 0.79 

Pattern Recognition 0.59 0.75 0.62* 0.78* 0.34 0.71 0.02 0.54 

Abstraction 0.65* 0.78* 0.59 0.70 0.32 0.85 0.02 0.54 

Strategy (Implicit Algorithms) 

        

One at a Time 0.72 0.84 0.83* 0.92* 0.52 0.91 0.09 0.62 

Additive Strategy 0.52 0.78 0.63* 0.82* 0.31 0.67 0.46 0.74 

Winnowing -0.01 0.49 0.12 0.61 0.14* 0.63* 0.02 0.53 



Gameplay Efficacy 

        

Highly Efficient Gameplay  0.80 0.89 0.73* 0.91* 0.52 0.83 0.70 0.85 

Learning Game Mechanics 0.33 0.57 0.40 0.70 0.37 0.76 0.49* 0.82* 

Acting Inconsistent with Evidence 0.68 0.80 0.70* 0.83* 0.40 0.76 0.40 0.82 

Note: * best-performing models (shaded) 

 

  



Table 7: Kappa and AUC values for Mudball Wall  

  W-J48 W-JRip Step Reg Naïve Bayes 

Label Kapp

a 

AUC Kappa  AUC 

 

Kappa AUC Kappa AUC 

Phases of Problem Solving                 

Trial and Error 0.38 0.73 0.44 0.67 0.40 0.76 0.35* 0.78* 

Systematic Testing 0.16 0.45 0.34 0.52 0.16* 0.86* 0.03 0.56 

Systematic Testing with Partial Solution 0.40 0.70 0.60 0.78 0.50* 0.88* 0.54 0.83 

Implementing Full Solution 0.61 0.86 0.60 0.78 0.60* 0.88* 0.54 0.83 

Computational Thinking Practices  

        

Problem Decomposition 

        

Explicit Problem Decomposition 0.25 0.67 0.31 0.66 0.23 0.64 0.21* 0.69* 

Implicit Problem Decomposition  0.09 0.56 0.05 0.53 0.16 0.64 0.18* 0.68* 

Pattern Recognition 0.53 0.71 0.56 0.75 0.55* 0.83* 0.36 0.78 

Abstraction 0.60 0.83 0.60 0.82 0.61* 0.86* 0.53 0.81 

Strategy (Algorithms) 

        

Color or Shape Constant 0.16 0.60 0.16 0.54 0.14 0.57 0.14* 0.63* 



2D Pattern Completer 0.19 0.68 0.06 0.43 0.15 0.67 0.20* 0.73* 

Maximizing Dots 0.71 0.85 0.80 0.87 0.68* 0.89* 0.57 0.85 

Try All Combinations of Color and Shape 0.24 0.52 0.21 0.59 0.30* 0.73* 0.06 0.57 

Alternating Color and Shape 0.13 0.53 0.15 0.53 0.15 0.59 0.10* 0.60* 

Gameplay Efficacy 

        

Highly Efficient Gameplay 0.62 0.79 0.60 0.84 0.54 0.83 0.63* 0.84* 

Learning Game Mechanics 0.83 0.91 0.87* 0.93* 0.76 0.92 0.69 0.87 

Acting Inconsistent with Evidence 0.64* 0.85* 0.69 0.82 0.55 0.81 0.50 0.81 

Note: * best-performing models (shaded) 

  



 

Table 8: Kappa and AUC values for Allergic Cliffs  

  W-J48 W-JRip Step Reg Naïve Bayes 

Label Kapp

a 

AUC Kappa AUC 

 

Kappa AUC Kappa AUC 

Phases of Problem Solving                 

Trial and Error 0.18 0.58 0.15 0.60 0.33* 0.73* 0.20 0.73 

Systematic Testing 0.00 0.51 -0.03 0.43 -0.03* 0.62* -0.05 0.47 

Systematic Testing with Partial Solution 0.34* 0.68* 0.28 0.60 0.16 0.62 0.25 0.67 

Implementing Full Solution 0.63 0.78 0.67* 0.86* 0.48 0.82 0.25 0.68 

Computational Thinking Practices 

        

Problem Decomposition 0.00 0.51 -0.03 0.43 -0.03* 0.62* -0.05 0.47 

Pattern Recognition 0.59* 0.81* 0.50 0.79 0.44 0.79 0.32 0.72 

Abstraction 0.59* 0.81* 0.50 0.79 0.44 0.79 0.32 0.72 

Strategy (Algorithms) 

        

Nothing in Common  0.00* 0.53* -0.03 0.52 -0.07 0.52 0.02 0.56 

Hold Attribute Constant or Hold Value 

Constant  

0.06* 0.64* 0.06 0.52 -0.07 0.52 0.02 0.56 



Gameplay Efficacy 

        

Highly Efficient Gameplay  0.62 0.85 0.63 0.82 0.61* 0.86* 0.55 0.78 

Learning Game Mechanics 0.01 0.75 0.01* 0.95* 0.01 0.92 0.00 0.61 

Acting Inconsistent with Evidence 0.60 0.75 0.57* 0.78* 0.54 0.77 0.40 0.75 

Note: * best-performing models (shaded) 

  



Table 9: Correlations between Pizza Pass, Mudball Wall, and Allergic Cliffs Phases of Problem 

Solving, Computational Thinking practices, and Gameplay Efficacy and Post Assessment Scores  

 

 

Detectors  

Correlations with Post 

Assessment Scores  

Pizza 

Pass 

(N=990)  

Mudball 

Wall 

(N=797)  

Allergic 

Cliffs 

(N=989) 

Phases of Problem Solving    

Trial and Error -0.18** -0.16** -0.09** 

Systematic Testing 0.12** 0.14** 0.18** 

Systematic Testing w/Partial Solution 0.08 0.17** 0.17** 

Implementing w/Full Solution 0.20** 0.22** 0.24** 

Computational Thinking Practices    

Problem Decomposition 0.23** n/a 0.18** 

Explicit Problem Decomposition n/a 0.02 n/a 

Implicit Problem Decomposition n/a 0.22** n/a 

Pattern Recognition 0.23** 0.12** 0.14** 

Abstraction 0.20** 0.21** 0.14** 

Gameplay Efficacy    

Gameplay Efficiency 0.18** 0.24** 0.05 

Learning Game Mechanic -0.06 -0.25** -0.20** 

Acting Inconsistent with the Evidence -0.24** -0.21** -0.11** 

**Significant after Benjamini-Hochberg correction 

  



Table 10: Correlations between Pizza Pass, Mudball Wall, and Allergic Cliffs strategy detectors 

(implicit algorithms) and Post Assessment Scores 

 

Correlations with Post-Assessment Scores 

Pizza Pass Mudball Wall Allergic Cliffs 

Strategy r Strategy r Strategy r 

One at a Time 0.13** Color or Shape Constant 0.02 Nothing in 

Common 
-0.07** 

Additive 0.02 2D Pattern Completer 0.02 Hold Attribute or 

Value Constant 
n/a 

Winnowing -0.20** Maximizing Dots 0.25**   

  Try All Combinations of 

Color and Shape 
0.07   

  Alternating Color and Shape  0.13**   

 

**Significant after Benjamini-Hochberg correction 

 

 



 

 

 

 

 

 

Figure 1: 4 Zoombinis Screenshots. (1) Puzzle Map with labels (top left); (2) Allergic Cliffs (top 

right); (3) Pizza Pass (bottom left); and (4) Mudball Wall (bottom right) 

  

Figures 1-6



 

Figure 2. Computational Thinking Learning Progression 

  



 

Figure 3: Sample annotated Pizza Pass labeling  

  



 

Figure 4: Sample annotated Mudball Wall labeling 

  



 

Figure 5: Sample annotated Allergic Cliffs labeling  

  



 

Figure 6. Competency, Task, and Evidence Models for CT in Zoombinis  

 

 


