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Abstract 

Building on the promise shown in game-based learning research, this paper explores 

methods for Game-Based Learning Assessments (GBLA) using a variety of educational data 

mining techniques (EDM). GBLA research examines patterns of behaviors evident in game data 

logs for the measurement of implicit learning—the development of unarticulated knowledge that 

is not yet expressible on a test or formal assessment. This paper reports on the study of two digital 

games showing how the combination of human coding with EDM has enabled researchers to 

measure implicit learning of Physics. In the game Impulse, researchers combined human coding 

of video with educational data mining to create a set of automated detectors of students’ implicit 

understanding of Newtonian mechanics. For Quantum Spectre, an optics puzzle game, human 

coding of Interaction Networks was used to identify common student errors. Findings show that 

several of our measures of student implicit learning within these games were significantly 

correlated with improvements in external post-assessments. Methods and detailed findings were 

different for each type of game. These results suggest GBLA shows promise for future work such 

as adaptive games and in-class, data-driven formative assessments, but design of the assessment 

mechanics must be carefully crafted for each game. 

 

Keywords: computer-based assessment, implicit science learning, game-based learning, 

educational data mining, learning analytics.  
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Assessing Implicit Science Learning in Digital Games 

The assessment of student learning often relies on evidence-based measurement of salient 

knowledge and skills (NRC, 2011). Formalisms used in common learning assessments, such as 

text and equations, may present barriers to the expression of cognitive abilities demonstrated in 

many everyday activities (Sternberg, 1996).  Many students may host a wealth of untapped 

knowledge that could be demonstrated and leveraged with appropriate tools such as digital games 

(Gee, 2007; Haladyna & Downing, 2004; Thomas & Brown, 2011). Data-driven game-based 

learning assessments show promise to measure implicit knowledge – knowledge that is not 

articulated and thus hard to measure with traditional assessments. This provides an innovative form 

of formative, computer-based assessments that teachers can leverage for improved classroom 

learning.  

This paper introduces a model of Game-Based Learning Assessments (GBLA) to measure 

implicit learning. We introduce the theoretical lenses with which we view GBLA and implicit 

learning and then describe the study of two different physics learning games, Impulse and Quantum 

Spectre. They both use popular game mechanics embedded in authentic science simulation, but 

Impulse is a fast action game dealing with idealized physics that is different than everyday 

experiences, while Quantum Spectre is a slower-paced puzzle game that closely mimics everyday 

experience.  We provide an overview of each game with the associated data mining methods used 

to measure implicit physics learning in the game, and then present the methods and findings from 

classroom studies that examined how students’ implicit learning in the game related to scores on 

pre/post assessments of similar content. We conclude with a discussion of the implications of this 

research on design, teaching, and future game-based learning research. 
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Literature Review 

Game-based learning research has captured the attention of many researchers because of 

the natural potential for assessment, or GBLA. Digital games engage learners in complex activity 

and researchers are able to track their behaviors and actions within that activity to inform the 

assessment of learning (Gee, 2007; Shute, Ventura, & Kim, 2013). Games compel players to 

persist in complex gameplay fostering high-level reasoning, inquiry, persistence, and creativity 

(Asbell-Clarke, et al., 2012; Shute, Ventura, & Ke, 2015; Steinkuehler & Duncan, 2008; Qian & 

Clark, 2016). Games also promote STEM learning (Clark et al., 2011; Rowe, Asbell-Clarke, 

Bardar, & Edwards, 2017; Shute, Ventura, & Kim, 2013; Squire, 2011; Hamari, Shernoff, Rowe, 

Coller, Asbell-Clarke, & Edwards, 2015). GBLA has been framed as stealth assessments (Shute, 

Ventura, Bauer, & Zapata-Rivera, 2009) that aim to move away from external pre/post testing and 

towards assessments embedded within and/or consisting solely of gameplay data.  GBLA often 

uses an Evidence-Centered Game Design (ECD) model (Shute et al., 2009; GlassLab, 2014; Plass 

et al., 2014; Halverson, Wills, & Owens, 2012). To build GBLA for implicit science learning, we 

draw from ECD but use educational data mining as the basis for inferring implicit physics 

knowledge not yet expressed formally by the learner. 

 

Implicit Science Knowledge  

The importance of implicit knowledge to science education is highlighted by the 

“misconception” literature in Physics education that focused on underlying misunderstandings that 

may interfere with conceptual development (diSessa, 1993; McCloskey, 1983a, 1983b; Minstrell, 

1982). For example, many undergraduate physics students believed that objects will come to rest 

in the absence of a force (thus violating Newton’s first law of motion), or that an object at the end 



IMPLICIT SCIENCE LEARNING IN GAMES 
  

4 

of a string being swung in a circle will continue to move in a circle even after the string is cut (e.g., 

McCloskey, 1983a, 1983b; Minstrell, 1982). When considering friction and gravity, learners may 

appropriately build these “misunderstandings” through evidence they gather while dwelling in 

their daily experiences since most experiences include frictional and gravitation forces they may 

not be aware of.  Their mental models may be “correct” but are built upon a different body of 

evidence.  

In their description of a Preparation for Future Learning (PFL) model that emphasizes the 

role of prior knowledge in the learning process, Bransford & Schwarz (1999) argue that 

assessments should measure how people know, not what they know. Similarly, Cook and Brown 

(1999) suggest differentiating between what learners can express from what learners are able to 

do, noting that studying learners’ behaviors may provide a key lens to their implicit knowledge. 

Prior knowledge may be implicit—not yet articulated by the learner—which makes it difficult to 

assess (Reber, 1993; Collins, 2010).  Implicit knowledge is thought to be foundational to learning 

(Polanyi, 1966; Lucariello, 2016; Brown, Roediger, & McDaniel, 2014; Underwood, 1996; 

Kahneman, 2011) and ignoring it may put many students at a disadvantage, particularly 

neurodiverse learners because explicit assessment may not capture what they are capable of doing 

and understanding (Haladyna & Downing, 2004).  Bransford and Schwarz (1999). 

GBLA: Stealth Assessment 

Researchers are examining how stealth assessments within games may provide new 

quantifiable and scalable ways to measure learning, typically by studying patterns of behaviors 

that may provide evidence of game-based learning (de Klerk, Veldkamp, & Eggen, 2014; Kim, 

Almond, & Shute, 2016; Owen, Ramirez, Salmon, & Halverson, 2013; Fu, Zapata, & 
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Mavronikolas, 2014; Martin, Petrick, Forsgren, Aghababyan, Janisiewicz, & Baker, 2015; 

Riconscente, Mislevy, & Corrigan, 2015).  

Most stealth assessments in GBL use an Evidence-Centered Design model (Shute et al., 

2009; GlassLab, 2014; Plass et al., 2014; Halverson, Wills & Owens, 2012) to establish a logically 

coherent, evidence-based argument between the domain being assessed and assessment task design 

and interpretation (Mislevy & Haertel, 2006). Stealth assessments measure learning using digital 

tasks embedded within the gameplay itself to “support learning, maintain flow, and remove (or 

seriously reduce) test anxiety, while not sacrificing validity and reliability” (Shute et al., 2010, p. 

10). 

However, ECD can be limited in cases where we are not entirely sure which behaviors 

indicate implicit knowledge. When humans can recognize behavior as demonstrating implicit 

knowledge, but it is impractical to identify exactly how they recognized the demonstration – for 

example, in cases where there are fuzzy boundaries between the behavior associated with having 

implicit knowledge and the behavior associated with not having implicit knowledge, or whether 

several factors can contribute to an assessment, ECD and other knowledge engineering methods 

can perform relatively poorly. In these cases, better results can sometimes be obtained through 

methods that leverage educational data mining to automatically determine the behaviors and cut-

offs that are associated with human labels of a construct. For example, this approach has led to 

effective models that can recognize more complex (but still appropriate) science inquiry strategies 

than simple vary-one-thing-at-a-time strategies (Sao Pedro et al., 2013) and models that can infer 

whether a student using a virtual learning environment is conducting inquiry that places them on 

track to obtain the correct final conclusion (Baker & Clarke-Midura, 2013). 
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As such, we strive to build an evidence model drawing from ECD and grounded in 

behaviors that players utilize to grapple with scientific challenges they face in science learning 

games. However, because player paths towards solutions in Impulse and Quantum Spectre are 

open to many possible trajectories, we opted for research methods that could remain open to a very 

large number of possibilities of what players might do, using the more emergent method of data 

mining to help us model whether or not a player’s behavior reflects appropriate implicit 

knowledge. As such, this work attempts to make a contribution to computer-based assessment, 

facilitating the assessment of implicit knowledge in complex learning games.   

Research Design 

This paper reports on the final validation step towards GBLA research in two implicit 

physics learning games. In each of these physics learning games, Impulse and Quantum Spectre, 

it is possible to view student’s gameplay as presenting evidence of their implicit understanding of 

fundamental scientific laws. The purpose of this study of two physics learning games is to 

demonstrate that the gameplay behaviors we have identified as potential evidence of implicit 

science learning are, in fact, valid measures.  For each game we examined the research question: 

• How do players’ patterns of behaviors exhibited in the game related to their changes 

in pre/post test scores on related content? 

This work lays the foundation for using these automated measures to further scaffold student 

science learning through adaptive versions of the games, dashboards, and other tools designed to 

share student learning progress with teachers. To experience the games described below, readers 

are encouraged to play Impulse and Quantum Spectre at games.terc.edu/Impulse/ and 

games.terc.edu/QuantumSpectre/. 
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Game1: Impulse 

Game & Learning Mechanic 

Impulse was designed to foster and measure implicit learning about Newton’s first and 

second laws of motion. Impulse immerses players within a simulation of an ideal form Newton’s 

laws of motion without the distractions of a background gravitational field or friction. The behavior 

of the particles in the game (and thus the players’ reactions) are consistent with the Newton’s laws 

of motion as they are typically taught (and tested) in high school physics class, rather than the 

“misconceived” version complicated by friction and Earth’s gravity that learners experience in 

their everyday life.  

The game mechanic requires players to get their particle to the goal without crashing into 

other particles within a simulation of gravitationally interacting particles (see Figure 1). All the 

particles obey Newton’s laws of motion. Players use an impulse (triggered by a click or touch) to 

apply a force to particles. Each level gets more complex, requiring players to grapple with the 

increasing gravitational forces of an increasing number of particles and also particles of different 

mass. The game was designed with the hypothesis that patterns of play in the game may show 

evidence of implicit learning of Newton’s first and second laws of motion:  

NFL: An object will remain in constant motion (or rest) in the absence of a net external 

force. 

NSL: The acceleration of an object caused by a net external force is depending on its mass 

(F=ma). In layperson’s terms, this means the heavier an object, the harder it is to move. 

The Impulse particles have different mass, as distinguished by their color, including very dense 

particles that have a small radius but the heaviest mass. The text between levels of the game briefly 
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introduces the particles as heavy or light but does not introduce any discussion of the related 

physics.  

 

 

Figure 1: A screenshot from Impulse. The player is the green particle and is going towards the 

cyan goal in the bottom-right corner. 

 

Building Implicit Game-Based Learning Assessments in Impulse 

Three steps were taken to build GBLA of students’ implicit understanding of Newton’s 

First and Second Laws for Impulse. First, we coded videos in terms of specific strategic moves, 

noting which moves are consistent with an understanding of Newton’s First and Second Laws. 

Second, we built detectors (i.e., classification algorithms) of the strategic moves consistent with 

an implicit understanding of those laws. Finally, in the results reported below, we examine the 

relationship between those strategic moves and learner performance on a pre/post assessment of 

those concepts to establish the validity of the in-game measures as assessments of implicit science 

learning.  
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Step 1: Human Coding. Using video and screen capture of gameplay from 69 high school 

students (29 female) from urban and suburban schools in the northeastern United States, we 

developed a coding system of strategic gameplay exhibited while playing Impulse during group 

think-aloud sessions (Rowe, Baker, Asbell-Clarke, Kasman, & Hawkins, 2014 and Rowe, Asbell-

Clarke, & Baker, 2015). From the video analysis, several moves and strategies were evident in 

gameplay and described during playtesting sessions as potentially consistent with the salient 

phenomena of Newton’s First and Second Laws of Motion. For example, players were observed 

to lift their hands from the keyboard and say “let it float” when allowing the particle to remain in 

constant motion without exerting a force. This understanding may also be consistent with their 

exerting an opposing (or buffering) force in the path of an incoming dangerous particle. 

Table 1 includes definitions of the codes hypothesized to reflect an implicit understanding 

of Newton’s First Law (NFL) with inter-rater (human-human) Kappas exceeding 0.70. A more 

detailed coding manual is available from the authors. 

Table 1. Strategic Move Codes, Indicators, Implicit Science Understanding, and Kappas for 
Newton’s First Law (NFL). 
 
Intended 
Strategy Move 
Code 

Game-based move indicators  Implicit Understanding Kappa 

Float The learner did not act upon the 
player particle for more than 1 
second. 
 

Player particle will move in 
a straight path if no force is 
applied (NFL). 

0.759 

Move Toward 
Goal 

The learner intended to apply 
force to direct the player particle 
toward the goal. 
 

Control movement of player 
particle by applying force.  

0.809 

Stop/slow 
down 

The learner intended to use 
opposing force on the player 
particle in the path of the player 
particle to stop/slow it down. 
 

Slow particle down by using 
an opposing force (NFL). 

0.720 
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Keep player 
path clear 

The learner intended to apply 
force to non-player particles to 
keep them out of the path of the 
player particle. 
 

Player particle will move in 
a straight path if no force is 
applied (NFL). 

0.819 

Keep goal clear The learner intended to apply a 
force to non-player particles to 
keep the goal clear by removing 
the non-player particle. 
 

Control movement of non-
player particles by applying 
force. 

0.832 

Buffer The learner intended to apply a 
force between the player and 
other particles to avoid collision. 
 

Control movement of player 
and non-player particles by 
applying force. 

0.772 

Source: Rowe, Baker, Asbell-Clarke, Kasman, & Hawkins (2014) 

As evidence of implicit understanding of Newton’s Second Law, we looked for patterns in 

how players treated the different colored (and thus mass) particles. Impulse included four different 

colored particles besides the player with each color signifying a different mass (in order from least 

to most massive): blue, red, white, dark grey. The blue, red, and white particles also increased in 

size (consistent with constant density) but the grey particle was most massive and smallest in size. 

This was to ensure that mass rather than size was being differentiated in players’ behaviors. 

In the video coding we observed players commenting “Those white ones are hard to move” or 

“those blue ones really fly”, supporting our hypothesis to analyze players’ differentiation in how 

they treated the different mass particles, more specifically if they consistently used more force 

(clicks) to move the heavier particles than the lighter ones, which would be consistent with an 

implicit understanding of Newton’s second law. 

Step 2: Data Mining Detectors: Because Impulse logs every game event as well as the 

location of every object in the game space and feeds that data into the game data collection 

architecture, Data Arcade, we distilled the raw data to a set of 60+ features in five major categories: 

(a) Location/Vector Movement of Player Particle; (b) Timing and Location of Impulses; (c) 
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Number and Location of Other Particles; (d) Overall Game Characteristics; and (e) Game 

Outcome. The feature distillation process explicitly selected features thought by domain experts 

to be semantically relevant to the strategies observed by the human coders (cf. Sao Pedro, Baker, 

& Gobert, 2012).   

 To examine players’ behaviors related to Newton’s first law of motion, we followed a 

standard process for developing a model that could replicate the human judgments using the 

distilled log files (cf. Baker & Clarke-Midura, 2013; Sao Pedro et al., 2012, 2013; Baker et al., 

2014). The goal of these analyses was to develop detectors that can judge a learner’s strategic 

moves relevant to Newton’s laws of motion, successfully drawing many of the same conclusions 

a human being can. These models were assessed based on their ability to agree with a human rater 

on entirely new, unseen data, and achieve comparable reliability to human raters (see Rowe, 

Asbell-Clarke & Baker, 2015 for details regarding the reliability of these detectors). They met this 

test, achieving levels of reliability comparable with human raters, levels of reliability also 

comparable to medical diagnostics used to make real-world decisions about medical treatment (cf. 

Revell et al. 2013) as well as the diagnostics used in effective online learning platforms using 

detection of this nature (Sao Pedro et al., 2013).    

Using the detectors to compare the learning of those players who use these moves 

consistently to those who do not, we hypothesize that we should be able to predict implicit learning 

of Newton’s first law of motion. If the detectors are a valid form of GBLA, we hypothesized that 

those players who exhibit consistent use of Float, Stop/Slow Down, and Keeping the Player Path 

Clear strategies will have larger gains on an external pre-post assessment of Newtonian mechanics 

than players who use them less frequently.  
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To seek evidence of implicit understanding of Newton’s Second Law of Motion (F=ma), 

we analyzed sequences of fast clicks by students. Aggregating data across all 69 students, we found 

students treated these pairs of particles differently: grey versus red, grey versus blue, white versus 

red, and white versus blue. The remaining two tests were not significant, white versus grey and 

blue versus red (see Rowe, Asbell-Clarke, & Baker, 2015 for more details). This pattern of results 

is more clearly shown in Figure 2.  

  

Figure 2: Sequence length (average number of clicks) by particle color, from least mass (blue) to 

greatest mass (grey). Source: Rowe, Asbell-Clarke, & Baker, (2015) 

 

Across colors, this pattern suggests that the entire group of players was differentiating overall 

between particles with different masses, and thus this behavior of mass-differentiation could be 

used as a measure of implicit physics learning for individual players. The next step would be to 

validate it by comparing the prevalence of this behavior with players’ scores on pre/post 

assessments. 
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Game 2: Quantum Spectre 

Game & Learning Mechanic 

When building GBLA Quantum Spectre is a puzzle-style game that uses scientifically 

accurate simulations of optical devices and colored laser beams to targets (see Figure 3). For each 

level, the player must place and rotate the lenses, flat and curved mirrors, and beam-splitters 

provided in the inventory to direct the laser to the matching colored target.  

 

Figure 3: Quantum Spectre screenshots. Using mirrors and other optical devices from the right-

side inventory, players must direct the colored laser beams to the matching targets.  

Source: Hamari, Shernoff, Rowe, Coller, Asbell-Clarke, & Edwards (2015). 

 

To examine implicit learning in Quantum Spectre we focus on two key science concepts: 
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• The Law of Reflection, which states that the angle of incidence of a light beam reflecting off 

a smooth surface equals the angle of reflection. To be consistent with understanding, players 

must correctly rotate the optical devices to solve the puzzles.   

• Slope: Slope is the ratio of x and y coordinates when describing a line (rise/run). To be 

consistent with understanding, players must correctly place the optical devices on the puzzle 

grid to solve the puzzle. 

Building Implicit Game-Based Learning Assessments in Quantum Spectre  

Instead of extensive human coding, we sought a method that could reduce the thousands 

of different solutions sets players used for the puzzles to a manageable set of patterns that could 

be interpreted by humans. Thus, we focused on student step-by-step actions called interactions, 

and we aggregated all of the student gameplay interaction logs into an Interaction Network (IN) 

for each puzzle (Eagle Hicks, Peddycord, & Barnes, 2015). INs use complex network 

representation to represent student solution attempts. Game states are represented as vertices and 

game-actions are represented as edges with additional information preserved in the network 

elements. Once the networks were formed, we were able to apply data mining and visualization 

techniques in order to derive insight into the player behavior. This process is summarized below 

and can be seen in more detail in Rowe, Asbell-Clarke, Eagle, Hicks, Barnes, Brown, and Edwards 

(2016). 

 STEP1: Build Interaction Networks. To construct an Interaction Network, we collected 

the set of all solution attempts for each puzzle. Each interaction is defined as Initial State, Action, 

and Resulting State, from the start of the puzzle until the player solves the puzzle or exits the 

system.  

A sample trace is shown in Figure 4.  
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Step 0 is the initial puzzle.  

In Step 1 the player PLACES a mirror at (4, 1).  

In Step 2 the player ROTATES the mirror 90 degrees.  

In Step 3, the player PLACES another mirror at (2, 3).  

In Step 4, the player ROTATES the mirror 270 degrees and solves the puzzle. 

 

Figure 4: Sample trace of player actions in Quantum Spectre Puzzle 18. Each square represents 

an individual game state, and the edges represent actions that move a player from one state to 

another. Source: Rowe, Asbell-Clarke, Eagle, Hicks, Barnes, Brown, & Edwards (2016) 

 

 STEP 2: Clustering Paths by Shape. To simplify the state space, we consolidated game 

states where mirror and lens configurations resulted in similar output (the overall shape of the laser 

is functionally equal in terms of activating the sensors, etc.).  Considering the output of a state as 
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well as the position/orientation of objects in that state (Eagle & Barnes, 2014), we grouped 

equivalent states using laser shapes as a state representation. Figure 5 shows an example of a laser 

shape and its equivalent game states. While the shape of the laser’s path (laser shape) is the same 

for each of these states, the difference is in which exact vertex the player placed the mirror. 

 

Figure 5: Using laser shape to group similar game states in Puzzle 18. 

To further reduce the number of states and explore higher-level strategies of student 

solution attempts, we used a network clustering method called an Approach Map (Eagle & Barnes, 

2014). The Approach Map identifies important actions (edges) that distinguish one group of IN 

regions from another (Eagle & Barnes, 2014). These groups were then reviewed by researchers 

and designers to align IN groups with those consistent with relevant game or science knowledge. 

This method enabled great simplification of the data analysis. For example, Puzzle 18 pictured 

above, for example, had 3458 unique edges (player actions) and 1800 unique game states, which 

were reduced to 22 groups of INs that could be human coded for further analysis. 

STEP 3: Coding clusters of laser shapes. The game designer and researchers classified 

the laser shapes into one of four categories: 

1) Correct move—placement and rotation of the mirror are consistent with an eventual goal state. 
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2) Placement errors—placement of the mirror in a location that does not match a goal state—

may indicate a lack of understanding of slope.  

3) Rotation errors—rotation of a mirror to an angle that does not match a goal state—may 

indicate a lack of understanding of the Law of Reflection.  

4) Puzzle errors—placements of mirrors that were not consistent with a goal state, but were 

indicative of misunderstanding the game’s puzzle elements (rather than the science concepts) 

(Eagle, Rowe, Hicks, Brown, Barnes, Asbell-Clarke, & Edwards, 2015). 

The game designer and a researcher independently determined which placements for Puzzles 14-

23 would constitute puzzle errors and completely agreed on the 33 puzzle errors. Puzzles 16, 21, 

and 23 had the largest number of potential puzzle error placements with 5, 7, and 8, respectively. 

 

Figure 6: Sample Puzzle Error in Level 18. 

For example, in the puzzle shown in Figure 4, a correct solution requires players to use the two 

available mirrors to direct the laser through the two targets simultaneously. In Figure 6 above, 

player actions are consistent with someone who understands slope (i.e., they placed the mirror on 

the path of the laser) and the Law of Reflection (i.e., they rotated the mirror to reflect the mirror 
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through the target). However, these actions will not enable the student to solve this puzzle with 

one remaining flat mirror. 

STEP4: Automated coding of errors. Once all laser shapes had been coded and puzzle 

error placements identified, we automated the coding of individual player actions. Every player 

action was classified as a Placement Error, Rotation Error, or Puzzle Error (0=Not Present; 

1=Present). These are mutually exclusive player actions. Player actions with none of these errors 

were classified as Correct. Figure 7 shows the distribution of player behaviors across each puzzle. 

 

Figure 7: Error rates by puzzle level. Source: Eagle, et al. (2016) 

There was considerable variability in the distribution of correct moves and errors across puzzle 

levels. These changes likely depend both on students’ implicit science learning (i.e., they make 

fewer errors as their implicit understanding improves) and features of the puzzle design (e.g., 

number of obstacles, number of targets, novelty of puzzle). The next step is to validate the 

prevalence of science and puzzle errors against changes in students’ pre/post assessments.  
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The rest of this paper reports on the relationship between in-game measures of implicit science 

learning and changes in external pre/post assessment scores using HLM to account for the nesting 

of students within classrooms and teachers having multiple classes in the national implementation 

studies described above (Rowe, Asbell-Clarke, Bardar, and Edwards, 2017).  To validate the 

GBLA detectors as assessments of implicit physics learning, we conducted a national 

implementation studies of both games, Impulse and Quantum Spectre. We compared changes in 

related physics understandings shown on pre- and post-assessment scores across classrooms 

assigned to one of three conditions: 

1. Bridge classes where students played the game in and out of class, and the teacher bridged 

game-based learning to classroom physics learning using game examples and discussion; 

2. Game Only classes where students played the games outside class and the teacher taught 

the relevant physics with typical instruction;   

3. Control classes where students did not play the game and received typical instruction. 

For both games, learners in Bridge classes—where learners played the games and had classroom 

instruction intended to bridge the implicit game-based learning to explicit classroom learning—

showed significantly larger learning gains than students in classes that only played the game or 

had no access to the game (Rowe, Asbell-Clarke, Bardar, & Edwards, 2017). These findings show 

that teachers can effective bridge game-based learning to science learning on a class level, and 

leads to the ultimate research question of this paper: How do in-game measures of implicit learning 

in Impulse and Quantum Spectre relate to external measures of implicit learning of the science 

phenomena (i.e., are they valid assessments)? 

We hypothesize that if the measures are valid, then players who exhibit game behaviors 

consistent with implicit science understandings will show larger gains on external learning 
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assessments than players who exhibit those behaviors less often. Similarly, we hypothesize that 

players whose gameplay suggests a lack of implicit understanding will show smaller gains than 

players without those gameplay patterns. Table 2 summarizes how the salient implicit knowledge 

is hypothesized to map to the game strategy or move and how that maps to the evidence in the data 

logs for each salient phenomenon or construct.  

Table 2: Connecting explicit and implicit science knowledge. 

Explicit 
Science 

Construct 

Implicit 
Knowledge 

Game 
Strategy 

Game 
Behaviors/Moves 

Newton’s 
First Law 

Particles will stay in 
constant motion (speed 
and direction) until 
acted upon by a force. 

Let particles not in 
danger float, use force to 
oppose incoming 
dangerous particles. 

Player does not impart 
force (lets it float) or 
consistently clicks in the 
particle’s path close 
enough to stop or slow it 
down. 

Newton’s 
Second 
Law 

To change their motion 
heavier particles 
require more force than 
lighter particles. 

Impart more force to 
move heavier particles 
than lighter particles. 

Player consistently clicks 
more frequently next to 
heavier particles than 
lighter particles. 

Law of 
Reflection 

Angle of incidence 
equals angle of 
reflection. 

Anticipate the path of the 
light beam for the 
various angles possible 
for lenses and mirrors.  

Player consistently 
rotates mirrors to direct 
the laser beams correctly. 

Slope A linear path is 
determined by a 
consistent vertical 
change to horizontal 
change. 

Anticipate the path of the 
light beam for the 
various grid placements 
of the optical devices. 

Player consistently places 
optical device on the grid 
to direct the laser beams 
correctly. 

Source: Impulse: Rowe, Asbell-Clarke & Baker (2015) 

Applying these hypotheses to the in-game measures created for Impulse and Quantum 

Spectre, we anticipate that: 
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1. In-game measures of implicit understandings (Float, Oppose, Keeping the Player Path 

Clear strategies and correct differentiation of mass in Impulse) will be positively related to 

learning gains. 

2. In-game measures of a lack of implicit understanding (incorrect differentiation of mass in 

Impulse, science errors in Quantum Spectre) will be negatively related to learning gains. 

For the results presented here, these in-game measures were combined with hierarchical linear 

modeling (HLM) to relate individual students’ implicit game-based learning to their performance 

on external science learning assessments.  

An alternative hypothesis is that it is gameplay duration or achievement that predicts 

learning, regardless of specific gameplay behaviors. If this were true, players with greater 

durations of gameplay and who reached higher levels in the game should have greater gains 

between the pre and post assessments than players with shorter durations of gameplay or lower 

levels reached. To test this alternative hypothesis, we included the duration of game play and 

highest level reached in the HLM models.  

Methods 

Sample 

This paper reports results from 17 Impulse teachers (19 Bridge and 19 Game Only classes) 

and 17 Quantum Spectre teachers (15 Bridge and 12 Game Only classes) drawn from the larger 

implementation studies are described in Rowe, Asbell-Clarke, Bardar, and Edwards (2017). The 

schools in these studies were located in 22 states.  

Table 4: Teacher and student samples for the Impulse and Quantum Spectre gameplay analyses. 

Study 
Group 

Impulse Quantum Spectre 

# 
Teachers 

# 
Classes 

# 
Students 

% Full 
Study 

# 
Teachers 

# 
Classes # 

Students 

% Full 
Study 
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Bridge 9 19 149 82% 8 15 161 67% 

Game 
Only 

8 19 150 72% 9 12 158 73% 

Total 17 38 299 77% 17 27 319 70% 

 

Data were not used from the earlier levels of either game where players were still learning the 

game mechanics. This excluded between 18% and 33% of the sample of each class, depending on 

the game and condition.  

Measures 

The analyses in this paper rely on three distinct data sources used in both implementation 

studies: pre/post assessments, teacher surveys, and game logs. All student assessment and gamelog 

data were collected through the game data collection architecture, Data Arcade. 

 Pre-Post Assessments. The pre/post physics learning assessments used with Impulse and 

Quantum Spectre were written to be answerable with an implicit understanding of the physics 

concepts (i.e., limited formalisms). Items were divided between pre- and post-assessments such 

that each assessment had similar but not identical items to avoid practice effects. Details about the 

development of these assessments can be found in Rowe et al. (2017). To ease interpretation of 

the HLM results, the pre- and post-assessments for both studies were standardized as Z-scores 

(subtract mean and divide by standard deviation) to have a mean of 0 and a standard deviation of 

1. Thus, all HLM coefficients are reported in effect sizes (i.e., units are standard deviations of the 

post-assessment). 

Impulse Assessments. Each assessment included six items, three dealing with Newton’s 

First Law and three dealing with Newton’s Second Law. For each topic, there was one question 

that resembled an animated version of a question from the Force Concept Inventory (Hestenes, 
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Wells, & Swackhamer, 1992; Thornton & Sokoloff, 1998), one question using an example from 

Impulse, and one using an excerpt from a NASA astronaut video. A sample item is presented in 

Figure 8.  

 
 

Figure 8: Sample Newton’s First Law assessment item. 

 

Both Impulse assessments had a maximum of 10 points possible (4 NFL, 6 NSL).1 All 

students with perfect scores on the pre-assessments were dropped from these analyses to prevent 

ceiling effects—6% of the students in the full study. The pre- and post-assessment items had 

Cronbach’s alpha of 0.48 and 0.58, respectively, indicating low internal consistency for the 

separate assessments. There are several potential explanations for these low values. The low values 

are likely due to NFL and NSL items being combined into a single scale because there were too 

few items for separate scales. The relatively small number of items and the skewing of the scores 

                                                
1 One of the Newton’s Second Law items was vaguely worded on the pre and post assessments. All responses were 
considered correct, so the minimum score on both assessments was 1. This item was not included in the Cronbach’s 
alpha. 
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toward the high end of the scale also contribute to lower alphas. Finally, the internal consistency 

of students on the items before they have learned specific concepts on the pre-assessment could be 

lower due to random guessing or other unknown sources of error. When the pre- and post-

assessment items were combined, Cronbach’s alpha was 0.66. 

Standardized scores were created using the mean and standard deviations. For the pre-

assessment, the mean was 7.44 with a standard deviation of 1.53. The post-assessment had a mean 

of 8.25 and a standard deviation of 1.59. The within-group effect sizes (dCohen) ranged from 0.45 

to 0.65. One-way ANOVAs showed significant differences in pre- and post-assessment scores by 

study group, with students in Bridge classes scoring significantly higher in both instances (Pre F 

(2, 496)=4.904, p<0.05; Post F (2, 496)=6.710, p<0.05).  

Quantum Spectre Assessments. The Quantum Spectre assessments contained 12 pre and 

13 post questions that required minimal formalisms to complete. Figure 9 is a sample Law of 

Reflection item. To account for the different number of items on the pre and post, we used the 

percentage of items answered correctly as the assessment score in these analyses. All students with 

perfect scores on the pre-assessments were dropped from these analyses—3% of the students in 

the full implementation study. These pre- and post-assessment items had good internal consistency 

(Cronbach’s alpha for standardized items was 0.67 [pre] and 0.78 [post]). 

The overall mean percentage correct and standard deviation were used to standardize the 

scores. Standardized scores were calculated using mean percentage correct (54% on the pre, 60% 

on the post) and standard deviation (22% on the pre, 24% on the post) for the entire group. Within 

group effect sizes ranged from 0.18 to 0.28. Students in Bridge classrooms answered significantly 

fewer questions correctly on both the pre- and post-assessment than students in Game Only 

classrooms (Pre: F (1, 388)=29.5, p<0.01; Post: F (1, 388) =16.2, p<0.01).  
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Figure 9: Sample Law of Reflection assessment item. 

Teacher, classroom, and student characteristics. The analyses reported here focus on 

in-game measures of implicit learning, so only teachers with students playing the game in the 

Bridge and Game Only groups are included in these analyses. Demographic characteristics such 

as the socioeconomic status and percentage of minority students in the school community which 

prior research suggests are correlated with science learning (Wayne & Youngs, 2003; Dee, 2007; 

Sirin, 2005; Morgan et al., 2016; Reilly, Neumann, Andrews, 2015) were used in assigning 

teachers to these groups in the broader implementation study.  With attrition, the distribution of 

teachers with these characteristics across the groups was not equal so these characteristics are 

included in these analyses as background variables.  

Teacher surveys: School, Teacher & Classroom Characteristics. Common Core of Data 

were used to determine percentage of students receiving free/reduced price lunches and percent of 

students with minority status for public schools. Private school teachers reported similar 
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information for their schools. All teachers were also asked their gender, the number of years they 

have taught science, and their degree of experience using educational games in their teaching. For 

each class in the study, teachers reported the number of students enrolled in the class, the 

percentage of students who completed the study, and whether or not the class was an Honors or 

Advanced Placement (college) level class. Impulse class sizes ranged from 8 to 28 while Quantum 

Spectre classes had 10 to 43 students. Of the 39 classes in each study, 11 Impulse (6 of 19 Bridge 

and 5 of 19 Game Only) and 8 Quantum Spectre (2 of 19 Bridge and 6 of 18 Game Only) were 

Honors/AP classes. Supplementary Tables 1 and 2 report the percentage of students in various 

types of schools and classrooms (https://edge.terc.edu/display/EDGE/Supplementary+Materials). 

Data Arcade: Student characteristics. During the Data Arcade registration process, the 

following student-level characteristics were collected: gender, month of birth, and year of birth. 

Using the year of birth, students were classified as Freshman-Sophomores (for Impulse, born 1997 

or later, for Quantum Spectre born 1998 or later) and Juniors-Seniors (for Impulse born 1996 or 

earlier, for Quantum Spectre born 1997 or earlier). While not a perfect classification due to 

students repeating grades, it is sufficiently granular for these analyses comparing groups of 

students on overall age trends. Supplementary Tables 3 and 4 report the percentage of students by 

gender, age, pre-assessment scores, game duration, and game achievement in the Bridge and Game 

Only classes for each game (https://edge.terc.edu/display/EDGE/Supplementary+Materials).  

Measures of Implicit Physics Learning in Impulse:  

Student-level measures of gameplay: Newton’s First Law. The detectors of each learning 

strategy were applied to the data from 149 Bridge students and 150 Game Only students. As binary 

classification algorithms (Witten & Frank, 2005), the detectors of learning strategies not only 

produce an inference of whether a strategy is present or absent, but also produce a confidence in 
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that inference. For example, if the Float detector has a confidence of 62% for a student action, 

there is a 62% probability that the student was using the Float strategy in that action. As Baker 

(2015) recommends, we average across confidences rather than transforming confidences into 

binary values. For example, if the detector indicated that a student had, in five actions, a 62%, 

68%, 96%, 42%, and 92% probability of using the Float strategy, the average confidence for that 

student would be 72%. As such, the most likely estimate for how often this hypothetical student 

was using the Float strategy is 72% of their actions. For the HLM analyses, the average confidences 

for each strategic move were standardized. Table 5 reports the mean confidence and standard 

deviations for each strategic move used for standardization. There were no significant differences 

between in strategic move use by students in Bridge and Game Only groups. 

Table 5: Mean Strategic Move Confidence and Standard Deviations. 

 
Strategic Move 

 
Mean (S.D.) 

(n=299) 
Float 0.42 

(0.08) 
Toward Goal 0.38 

(0.06) 
Stop/Slow Down 0.09 

(0.03) 
Keep Player Path Clear 0.17 

(0.06) 
Keep Goal Clear 0.12 

(0.02) 
Buffer 0.06 

(0.03) 
 

Student-level measures of gameplay: Newton’s Second Law. The evidence for Newton’s 

Second Law relies on the relationship between sequences of actions (i.e., how many times they 

click on particles of different masses within a short time). To do this we: 

A. Identified the particle closest to the player’s click.  
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B. Identified sequences where the player clicked repeatedly next to the same particle. 

C. Identified set of sequences where the clicks were no more than 4 seconds apart  

D. Measured the length of each identified sequence  

E. Computed the average and standard deviation sequence length for each student’s 

treatment of each colored particle. 

With these average and standard deviation values (and the number of sequences for each student 

and color particle), we conducted a set of two-sample t-tests with pooled variance to determine 

whether students were differentiating between colors. A student was considered to be 

differentiating between colors if the means were statistically significantly different between two 

colors (taking the standard deviations and sample sizes into account). Because we were running 

multiple statistical tests for a substantial number of students, we used Benjamini and Hochberg’s 

(1995) post-hoc method, as above.  

Once we could identify which students were differentiating masses of the particles, we 

sorted them by whether those differences reflected differentiating mass correctly OR incorrectly. 

It was possible, for example, for a player to differentiate the masses of the Red and Blue particles 

correctly but not the White and Light Grey particles. Too few players reached the game levels with 

all 4 colors to test each color (mass) combination directly. For the HLM analyses, if a player had 

any significant differences between two colored particles, we recorded it as evidence of correct or 

incorrect differentiation. Two thirds of players (68%) had no evidence of correct or incorrect 

differentiation, 21% had evidence of correct differentiation only, 5% had evidence of incorrect 

differentiation only, and the remaining 6% had evidence of correct and incorrect differentiation. 

Measures of Implicit Physics Learning in Quantum Spectre 

Student-level measures of gameplay. These measures relied on the automated coding of 

Interaction Networks to identify each game move (action) as a correct move or as a placement, 
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rotation, or puzzle error. To allow for the fact that students (a) used varying numbers of moves to 

solve the puzzles and (b) not all students completed Levels 14 through 23, the percentage of the 

total number of moves that were correct, placement errors, rotation errors, and puzzle errors were 

calculated. The mean error rate across all students was 19% placement errors (S.D. =11%), 7% 

rotation errors (S.D.=6%), and 12% puzzle errors (S.D.=7%). In the HLM models, we used 

standardized (z-scores) error rates.  

Multilevel analysis 

Hierarchical linear models were chosen to account for any common variance in post-

assessment scores due to the clustering of students within classrooms. Using the SPSS MIXED 

linear models procedure, we estimated unconditional 2-level models with students nested within 

classrooms, using Restricted Maximum Likelihood (REML) and unstructured covariances. In 

unconditional 2-level models, a statistically significant percentages of the variance for was 

attributable to classroom level variation for Impulse (15 percent) and Quantum Spectre (36 

percent).  

Sets of covariates were added to the unconditional 2-level models in this order: 

Set 1. Pre-assessment score (standardized) 

Set 2. Study Group (Bridge, Game Only, Control) 

Set 3. Student gender and age (Freshman/Sophomore versus Junior/Senior) 

Set 4. Classroom Level Characteristics: Whether or not they were enrolled in class in which more 

than half of the students completed the study (1=Yes); whether or not they were enrolled in an 

AP/Honors science class (1=Yes); Class duration greater than 9 days (1=Yes, Impulse only); Class 

duration greater than 12 days (1=Yes, Quantum Spectre only). 
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Set 5. Teacher-Level Characteristics: Whether or not more than half of the students in the school 

received free-reduced price lunch (1=Yes); whether or not half of the students in the school were 

from minority groups (1=Yes); whether or not it was a Private school (1=Yes); whether or not the 

teacher was female (1=Yes); whether or not the teacher had more than five years of science 

teaching experience (1=Yes); and whether or not the teacher had prior experience using games in 

the classroom (1=Yes).  

Set 6. In-game measures of (lack of) implicit science understanding (Impulse: Buffer, Stop/Slow 

Down, Float, Correct Differentiation of Mass, Incorrect Differentiation of Mass; Quantum Spectre: 

Percentage of moves that were Science Errors, Percentage of moves that were Puzzle Errors). 

Set 7. Gameplay duration > 1 hour (1=Yes) and highest level completed (Impulse: Level 25 or 

higher versus not; Quantum Spectre: Level 22 or higher versus not) 

Set 8. Interactions between Study Group and measures in Sets 2–7. 

Study group and other statistically significant covariates were retained in the best fitting HLM 

models presented in this paper.  

Results 

For both games, HLM models with the in-game measures of implicit understanding 

provided a significantly better fit than models without them.  Some, but not all, of the in-game 

measures were significantly correlated with improvements in external post-assessments after 

accounting for pre-assessment scores and teacher, classroom, and student characteristics.  

Gameplay duration and achievement was not significantly related to changes in either outcome. 

Impulse gameplay as a valid measure of implicit science learning 

The model with the in-game measures of implicit understanding of Newton’s Second Law 

(Log likelihood=779.9; AIC=784; BIC=791) was a significantly better fit than the model (Log 
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likelihood=789.4; AIC=793; BIC=801) without those measures (X2 [2, N=299]=9.6, p<0.01). The 

model with the sole significant interaction (Log likelihood=773.3; AIC=777; BIC=785) improved 

the fit of the model (X2 [1, N=299]=6.60, p<0.01). The best-fitting HLM model, which accounts 

for 33 percent of the variation at the classroom level, is presented in Table 7. 

Table 7: Best fitting HLM model of estimated fixed effects on standardized Impulse post-assessment 
scores with in-game measures of implicit science learning. 

Parameter Estimate 
Std  
Error df Sig. 

95% 
Confidence 

Interval 

Lower Upper 
Intercept -0.03 0.19 183 0.88 -0.40 0.34 
Pre-Score (Standardized) 0.22 0.06 291 0.00 0.11 0.33 
Bridge classroom (vs. Game Only) 0.39 0.14 32 0.01 0.11 0.68 
Female Student (1=Yes) -0.39 0.10 290 0.00 -0.59 -0.19 
Half of students complete study (1=Yes) 1.54 0.53 286 0.00 0.50 2.58 
Any Correct Differentiation of Mass 0.25 0.12 289 0.03 0.02 0.48 
Any Incorrect Differentiation of Mass -0.32 0.17 280 0.05 -0.65 0.00 
Half of students complete study* Any Incorrect 
Differentiation (1=Yes) -1.32 0.54 287 0.01 -2.36 -0.26 
  

The intercept coefficient represents the estimated outcome for male students who scored at 

the mean level of the pre-assessment, were in Game Only classrooms with less than half of the 

student participating in the study, and showed no evidence of correct or incorrect differentiation 

of mass. These students would score 0.03 standard deviations below the mean post-assessment 

score. The Pre-Score coefficient reflects the change in number of standard deviations of the post-

assessment for every increase of 1 standard deviation on the pre-assessment. For every standard 

deviation increase on the pre-assessment, students would be expected to score 0.22 standard 

deviations higher on the post-assessment. Even after accounting for study group and pre-

assessment scores, female students scored 0.39 standard deviations lower than male students on 

the post-assessment. Students in classes where more than half of the students completed the study 
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scored 1.54 standard deviations higher on the post-assessment than students in classes where less 

than half of students completed the study.  

Students who correctly differentiated particle masses by adjusting the number of clicks 

they made next to each particle type had post-scores 0.25 standard deviations higher than students 

who did not differentiate correctly. The opposite was also true—students who differentiated 

masses incorrectly (e.g., clicking more frequently next to lighter particles than heavier particles) 

had post-scores 0.32 standard deviations lower than students who did not exhibit that gameplay 

pattern. This pattern was moderated by whether or not students were in classes with the majority 

of students participating in the study. 

Incorrect mass differentiation had a greater negative impact among students in classes with 

less than half of the students participating in the study. This could be because classes with more 

students in the study are more likely or able to dampen mistakes encountered in game-based 

learning.  

Quantum Spectre gameplay as a valid measure of implicit science learning  

For the best-fitting Quantum Spectre model, Sets 3, 5, and 7 had no significant results, 

meaning student gender, teacher/school characteristics, gameplay duration, and highest level 

reached were not significantly related to changes in the percentage correct on the pre- and post-

assessments. The model with the in-game measures of implicit understanding of slope and the Law 

of Reflection (Log likelihood=720.5; AIC=725; BIC=732) were a significantly better fit than the 

model (Log likelihood=728.2; AIC=732; BIC=740) without those measures (X2 [2, N=319] = 7.7, 

p<0.05). The best-fitting HLM model (Log likelihood=715.4; AIC=719; BIC=727), which 

accounts for 74 percent of the variation at the classroom level, is presented in Table 8. This model 
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with a significant interaction between study group and class duration was a marginally 

significantly better fit than the model without the interaction (X2 [1, N=319] = 5.13, p<0.10). 

Table 8: Best fitting HLM model of estimated fixed effects on standardized Quantum Spectre post-
assessment score with in-game measures of implicit science learning. 

         
 

Sig. 

95%  
Confidence 

Interval 

Parameter Est. Std Err df Lower Upper 
Intercept 0.15 0.17 13 0.42 -0.23 0.52 
Pre-Assessment1 0.45 0.05 310 0.00 0.35 0.55 
Bridge (vs. Game Only) 0.67 0.30 21 0.04 0.05 1.29 
Honors/AP (1=Yes) 0.42 0.16 25 0.02 0.08 0.76 
Greater than 12 days (1=Yes) 0.22 0.20 15 0.29 -0.21 0.65 
%Placement Errors1 -0.08 0.04 297 0.07 -0.17 0.01 
%Rotation Errors1 -0.13 0.05 307 0.01 -0.22 -0.04 
Bridge*Greater than 12 Days (1=Yes) 0.80 0.33 21 0.02 0.12 1.48 
1Standardized 
   

 
  

 Overall, after accounting for students’ performance on the pre-assessment, students who 

exhibited more Placement and Rotation errors while playing the game performed more poorly on 

the post than students with lower science error rates. There was no significant impact of puzzle 

rates on post-assessment scores. The intercept reflects students in non-Honors/AP Game Only 

classes that spent fewer than 12 days of science instruction on optics; who had the mean percentage 

correct on the pre-assessment; and who had mean rates of placement errors and rotation errors. 

Those students scored 0.15 standard deviations above the mean post-assessment score. For every 

standard deviation increase in their pre-assessment score, students scored 0.45 standard deviations 

higher on the post-assessment. Students in Bridge classes scored 0.67 standard deviations higher 

on the post-assessment than students in Game Only classes. Students in Honors/AP classes scored 

0.42 standard deviations higher on the post-assessment than students in non-Honors/AP classes. 
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For every standard deviation increase in their placement error rate, students lowered their 

post-assessment score by 0.08 standard deviations. Similarly, for every standard deviation increase 

in their rotation error rate, students decreased their post-assessment score by 0.13 standard 

deviations. Students in classes that spent greater than 12 days on science instruction around optics 

scored 0.22 standard deviations higher on the post-assessment than students in classes with less 

science instruction, but this effect is moderated by whether or not it was a Bridge or Game Only 

class. Students in Bridge classes who spent more than 12 days on optics instruction scored 0.8 

standard deviations higher than all classes that spent less time. There was no significant difference 

between Bridge and Game Only classes with more than 12 days of optics instruction.  

Limitations of the Study 

 There are several study limitations to bear in mind when interpreting these findings. Most 

important is the low internal consistency of the Impulse assessments (Cronbach’s alpha was 0.48 

for the pre; 0.58 for the post). When the items were combined, the alpha was 0.66. This is likely 

due to the small number of items necessitating combining items measuring Newton’s First and 

Second Laws in one scale. The sample in this study was skewed toward high scores on the pre-

assessment which restricts the range of learning gains. Both of these limitations work against 

finding significant relationships between the external assessments and the in-game measures. Both 

Newton’s Second Law measures were significantly related to gains in these measures, but the 

Newton’s First Law items were not.  

Second, this study used a quasi-experimental design with a convenience sample. As 

described in Rowe, Asbell-Clarke, Bardar, and Edwards (2017), we balanced teachers assigned to 

each study group in terms of the school, teacher, and classroom characteristics described in the 

Methods section (public vs. private school, % of students receiving free or reduced-price lunch, 
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etc.). With only 10 teachers needed per group for sufficient statistical power, there were too few 

teachers to match them across all of the characteristics and then randomize the assignment. The 

goal was to have each study group have comparable demographics for a fair comparison between 

the three study groups. Of the 42 Impulse teachers assigned to groups, 23 teachers (55 percent) 

completed all requirements for the implementation study. Similarly, 27 of the 63 Quantum Spectre 

teachers (43 percent) completed the study requirements. While the groups were balanced 

demographically at the beginning of the study, this attrition led to unbalanced demographics seen 

in Supplementary Tables 1 and 2.2 These imbalances are a concern for the generalizability of the 

findings to populations underrepresented in this sample. 

The final limitation is the complexity of the EDM techniques—detectors and interaction 

networks—can make it difficult for other researchers to replicate the findings exactly.3 Whether or 

not another classroom implementation study would produce the same results of course depends on 

study-specific factors such as coding quality and reliability. Results would also depend on 

comparability of samples, gameplay duration, and variability in classroom implementation as 

would a replication of any naturalistic study, not solely studies with complex EDM techniques. 

The fact that we have used an emergent approach to the development of stealth assessment to 

produce valid measures in two games, not just one, suggests the viability of paying close attention 

to natural gameplay and building assessment mechanics from those observations. 

Discussion & Implications 

                                                
2 Supplementary materials can be found at 
https://edge.terc.edu/display/EDGE/Supplementary+Materials 
3 We are happy to share the video coding manual, classification algorithms, and coordinates for 
science and puzzle errors with other researchers. 
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The GBLA methods using EDM in the studies of Impulse and Quantum Spectre show 

evidence of valid assessment of implicit physics learning. Using these techniques to understand 

how players behave in simulated ideal physics contexts enables stealth assessment and may reveal 

knowledge to educators and designers even before learners can articulate that knowledge through 

text or other formalisms.  

In physics, implicit knowledge may be particularly important for educators because what 

is taught and tested in school may be counter to a learner’s everyday experience are different. 

Motivated by the misconception literature in Physics education (e.g., McCloskey, 1983a, 1983b; 

Minstrell, 1982), the game Impulse, was able to reveal when and how players adopted strategies 

consistent with implicit understanding of Newton’s First and Second Laws of Motion.  

 Researchers used the detectors built to study Impulse gameplay and were able to show that 

players who treated heavier mass particles with lighter particles performed better on external 

pre/post assessments of the salient phenomena of Newton’s first and second laws of motion. 

Students who did not correctly differentiate their game behaviors to match the mass of the particles 

performed significantly worse on the post assessments. There was no relationship between the 

strategic moves thought to reflect an implicit understanding of Newton’s First Law and external 

pre-post assessments. This may be due to the strong correlation between detectors of Newton’s 

first law and second law of motion. This is understandable because the first is actually a specific 

case of the second. Newton’s second law states that the magnitude of the Force required to 

accelerate an object equals the mass of object times the resulting net acceleration (F= ma). 

Newton’s first law is just the explication of this law when the Force is zero. In the absence of a net 

force, the acceleration is zero and so the object stays in constant motion (or at rest). The game-

based evidence used to assess Newton’s first law (e.g. the absence of an imparted force followed 
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by an opposing force when necessary) were less clear than the evidence used to assess Newton’s 

second law, which was simply tracking the amount of force they applied for the different mass 

particles. This directness of the evidence was apparent in both the higher reliability of the detectors 

for Newton’s second law and the greater the tie to explicit learning shown on the pre/post 

assessments. 

 In Quantum Spectre, Interaction Networks analysis reduced the wide array of player 

solutions to a manageable set of solution types that researchers and designers could interpret and 

human code. The different types of non-correct solutions were grouped into puzzle errors where 

the player did not understand how to solve the puzzle, and science errors that are consistent with 

the player not understanding the salient phenomenon. The science errors were further separated 

into (a) rotation errors that are consistent with lack of implicit understanding of the law of 

reflection and (b) placement errors that are consistent with lack of implicit understanding of the 

slope. Researchers related the percentage of science errors made by each learner with the learners’ 

gains external pre/post-assessment items. The percentage of science errors players made in a 

puzzle were negatively related to their pre/post gains on related items, while the percentage of 

puzzle errors players made no difference, suggesting that science errors in Quantum Spectre are 

predictive of related lack of implicit science learning. 

In studies of both Impulse and Quantum Spectre, HLM studies showed that the in-game 

measures of implicit learning developed through the use of data mining technique were correlated 

with external learning measures. Pre/post measures designed to measure implicit knowledge were 

used for each game, and in both cases learning gains could be predicted by players’ patterns of 

game behavior. Teachers’ use of bridging activities to connect game-based learning to explicit 

science content was a factor in student learning, suggesting that the game prepares learners with 
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implicit knowledge and that teachers are able to leverage that implicit knowledge for improved 

classroom learning through bridging. Also meaningful were the lack of relationships between other 

measures of game performance (duration and highest level) and pre/post assessment changes in 

both games, suggesting that it is how that player plays the game that is a unique measure of implicit 

understanding.   

These findings suggest implicit learning can be measured through behaviors, what players 

do, as suggested by Cook and Brown (1999), and providing the “transfer in” that may be useful 

for the preparation for future learning as described by Bransford and Schwartz (1999). These 

emergent forms of learning assessment show promise to alleviate some of the constraints imposed 

by an ECD model of assessment that relies on the prediction of learning trajectories, a priori, by 

the designers. When game-based learning assessments rely on preselected events, there is little 

room left to observe emergent strategies that learners exhibit that were unpredicted (or which are 

hard to exactly specify) but may reveal implicit understanding of the salient phenomena.  

 The results of this research also suggest that it may be possible to deploy richer, data-driven 

learning assessments in the future, mitigating some of the limitations of the current generation of 

assessments. When learning can be identified through behaviors, rather than through textual or 

verbal representations, we may be able to better measure knowledge in the full diversity of 

learners. This may be particularly helpful for learners with ADHD, ASD, and dyslexia who often 

have a wealth of implicit knowledge that is not articulated on assessments because construct-

irrelevant factors including language processing difficulties and executive function challenges 

routinely impact the performance of students with disabilities on assessment instruments 

(Haladyna & Downing, 2004). Game-based learning research, and the measurement of learning 

within games may be boosted by the current emergence of neurophysiological sensors, such as 
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wireless dry-electrode EEG devices. The coming of age of these portable and relatively 

inexpensive devices is making the observation of cortical activity associated with learning much 

more practical (Chi et al., 2013). 

 Finally, it should be noted that implicit learning assessments are only helpful when they 

inform educators and designers on how best to leverage the implicit knowledge for explicit 

learning, in the classroom or elsewhere. Implicit game-based learning that remains unarticulated 

may produce better game-play, but has little educative value. On the other hand, when that implicit 

knowledge is revealed and bridged by a teacher, it can be a valuable resource for learning. 

Similarly, game designers could use players’ patterns of play to predict learning and produce real-

time adaptations of games keeping players in their optimal learning zone, similar to Vygotsky’s 

Zone of Proximal Development (Vygotsky, 1978). These are all exciting new affordances of data-

driven implicit learning assessments, and thus further the call for more research in the design and 

validation of these powerful new tools (Shute & Ramini, 2017). 
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