
 

Labeling Implicit Computational 
Thinking in Pizza Pass Gameplay  

Abstract 
Players can build implicit understanding of challenging 
scientific concepts when playing digital science learning 
games [7]. In this study, we examine implicit computational 
thinking (CT) skills of 72 upper elementary and middle 
school students and 10 computer scientists playing a game 
called Pizza Pass. We report on the process of creating 
automated detectors to identify four CT skills from 
gameplay: problem decomposition, pattern recognition, 
algorithmic thinking, and abstraction. This paper reports on 
hand-labeled playback data obtaining acceptable inter-rater 
reliability and 100 gameplay features distilled from digital 
log data. In future work, we will mine these features to 
automatically identify the CT skills previously labeled by 
humans. These automated detectors of CT will be used to 
analyze gameplay data at scale and provide actionable 
feedback to teachers in real-time.  
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Introduction 
Zoombinis [11] is an award-winning, popular learning 
game that elicits computational thinking (CT). Players 
guide Zoombini characters on a journey through a series 
of challenging logic puzzles, leading them to safety in 
Zoombiniville (see Figure 1). The game includes a suite 
of 12 puzzles, each with four levels, and provides 
scaffolded problem-solving for learners ages 8 and 
above. Zoombinis puzzles were designed to develop the 
mathematics concepts necessary for computer 
programming and data analysis such as sets, logical 
relationships, dimensions, mappings, sorting, 
comparing, and algorithms [5]. Currently, we are 
studying gameplay among students in grades 3-8 in 
order to understand how students implicitly learn CT 
during Zoombinis gameplay and how their teachers can 
build upon that knowledge.  

This paper reports on human-labeling of gameplay 
observations from 72 upper elementary and middle 
school students (CT novices) and 10 computer scientists 
(CT experts) playing the first level of one of the puzzles, 
Pizza Pass (see Figure 2). We then calculate over 100 
features from the data. In future work, we will use data 
mining to determine which combination of these features 
can be used to replicate the human labels. The detectors 
developed by our work represent implicit game-based 
learning assessments (GBLA), which may reveal 
knowledge that often goes unexpressed in typical 
assessments [7]. 
 
Implicit Computational Thinking 
Learners may demonstrate knowledge through 
behaviors that they are not yet able to express formally 
[6, 11]. This is referred to as implicit knowledge. Game-
based learning assessments (GBLA) show promise as a 

new method of assessing implicit knowledge by avoiding 
jargon, construct-irrelevant material, and test anxiety 
which can make traditional assessments challenging 
[10].  

As described in [8], we defined a learning progression of 
CT and problem-solving skills in Zoombinis based on 
several definitions of CT emerging in the field [1-4, 12]. 
We used this learning progression to guide our labeling 
of strategies and behaviors in gameplay consistent with 
facets of the progression (Figure 3). Facets of this 
iterative learning progression of CT that we hypothesize 
will be evident in Zoombinis gameplay include: 

1. Problem Decomposition: The reduction of the 
ambiguity or complexity of a problem by breaking it 
into smaller, more manageable parts. This is 
comparable to isolating variables or systems to test.  

2. Pattern Recognition: The recognition that objects 
are arranged following a rule or rules. The 
identification of groups of solutions or characteristics 
of solutions that can be categorized. 

3. Abstraction: The removal of details to identify and 
extract relevant information to define main idea(s) 
or solutions.  

4. Algorithm Design:  The creation of an ordered list 
of instructions for solving a problem or doing a task.  
The creation or explication of general solutions to a 
problem or family of problems. 

In [8], we identified six specific, iterative phases of 
problem solving that are intertwined with expressions of 
CT in Zoombinis gameplay, four of which are evident in 
Pizza Pass (Figure 3): 

The Game: Zoombinis 
 

 

Figure 1. Map of the Zoombinis’ 
journey from Zoombini Isle to 
Zoombiniville.  

 

The Puzzle: Pizza Pass 
 

 

Figure 2. Zoombinis must present 
pizzas and sundaes with certain 
toppings to appease trolls at 
Pizza Pass. (Source: [8]) 



 

1. Trial & Error:  No evidence of testing hypotheses in 
an ordered, planned way. Actions are independent  
of prior actions or do not build off prior actions in a 
productive way.  

2.  Systematic Testing:  Testing hypotheses about 
underlying rule in an ordered, planned way.  Next 
action depends on previous action. Goal of this 
phase is finding a working solution to implement.   

3. Systematic Testing with a Partial 
Solution:  Testing hypotheses about a second 
dimension of the underlying rule when the first 
dimension is known. 

4. Implementing a Full Solution:  Completing the 
pattern once a working solution for all dimensions of 
the puzzle has been found. 

These facets of CT are demonstrated in their progression 
from Trial and Error, where there is no productive 
systematic pattern to the behaviors, towards 
Systematic Testing, typically involving problem 
decomposition. When players recognize patterns in 
solutions to the smaller problems, they abstract to 
general rules so that they can then move to 
Implementing a Solution to the larger puzzle. When 
learners encounter new puzzles that require similar 
solutions, they may begin to Generalize Solutions 
leading toward demonstrating algorithm design.  

Pizza Pass   
As shown in Figure 2, the Zoombinis’ path is blocked by 
one or more trolls that demand a meal (pizza, or pizza 
and sundae) with a specific set of toppings. The player 
selects a combination of toppings via buttons on a 
machine, and a Zoombini delivers the meal to the 
troll(s). However, the troll(s) only say whether (a) they 
want more toppings, (b) don’t like at least one of the 

toppings, or (c) the meal is perfect. The troll throws 
incomplete meals to the side of the path, while meals 
that all trolls reject are thrown into a pit. Once all trolls 
are satisfied, they (noisily) eat their pizzas and let the 
remaining Zoombinis through. The central question this 
research addresses is: How can we validly and 
reliably measure implicit computational thinking in 
Pizza Pass gameplay? 

Methods 
Similar to our previous modeling of learner 
understanding of Newtonian mechanics in the physics 
game, Impulse [7], and scientific inquiry skill in 
simulations [9], we are building automated tools that can 
use gameplay data to provide information about players’ 
implicit CT learning in Pizza Pass play: 

1. Hand-label Zoombinis gameplay to capture the 
variety of strategies used to solve the puzzles. 

2. Merge labels with gamelog data 
3. Distill log data into features useful for measuring 

strategies that appear in the videos, focusing on the 
strategies that are consistent with CT. 

4. Build detectors of players’ CT strategies in the 
gameplay log, grounded in human labeling. 

5. Validate the detectors as formative assessments of 
implicit CT by comparing the performance of 
learners on external pre/post assessments of similar 
content. 

This paper reports on progress in the first three steps of 
this process, including reliability data from the labeling 
completed to date and the 100+ features engineered to 
model that human labeling.  

 

Computational Thinking 
Learning Progression 
 

 

Figure 3. A learning progression of 
computational thinking 
operationalized in Zoombinis 
gameplay. (Source: [8]) 



 

  

Sample and Context 
Pizza Pass gameplay data have been collected from 36 
upper-elementary children in grades 3-5 (17 females, 19 
males), 36 middle school children in grades 6-8 (19 
females, 17 males), and 10 computer scientists (4 
females, 6 males). Playtesting sessions last 
approximately 1 hour, and involve gameplay across 
multiple Zoombinis puzzles. Child participants were 
recruited from local schools and clubs, as well as after-
school programs. Adult participants were recruited 
through personal social networks. 

Human Labeling 
When developing the labeling system, we noticed that 
many players are focused solely on learning the game 
mechanic (i.e., how the game works) the first time they 
play the game making it difficult to discern any CT or 
problem-solving skills.  For this reason, labeling begins 
at Round 2 in Level 1 for all players. All subsequent Level 
1 play is labeled independently by the same two 

researchers with an inter-rater reliability check-in after 
every tenth player. 

Results 
Pizza Pass Labeling 
Figure 4 is an idealized, annotated labeling of one round 
of Pizza Pass play in Level 1. In this round, the player is 
demonstrating what we label as a One-at-a-time 
strategy—the player tries one topping at a time and, 
after trying all toppings, combines only those the troll 
likes. This strategy provides evidence of systematic 
thinking, problem decomposition, pattern recognition, 
and abstraction. Evidence of algorithmic thinking in this 
case occurs when players repeat the same strategy 
across multiple rounds.  

We also identified two other common strategies:  
additive and winnowing.  In the additive strategy, 
players try each topping at a time and on subsequent 
deliveries retain only those toppings the troll likes at the 



 

end.  For the winnowing strategy, players try all toppings 
at once then remove one at a time.  Human labelers also 
rate each round on the overall efficiency of the 
gameplay—low (a lot of trial and error), moderate 
(defined strategy with a few mistakes), high (defined 
strategy with no more than one mistake).  

Table 1 presents inter-rater reliability results from these 
82 players. A total of 288 rounds of gameplay with 2010 
delivery events were labelled.  

Label Reliability 

Phases of Problem Solving   

1. Trial and Error 0.87 

2. Systematic Testing 0.82 

3. Sys. Testing w/Partial Solution 0.90 

4. Implementing a Full Solution 0.78 

Computational Thinking  
1. Problem Decomposition 0.85 

2. Pattern Recognition 0.90 

3. Abstraction 0.76 

Strategy  

1. One-at-a-Time 0.78 

2. Additive 0.83 

3. Winnowing 0.62 

Gameplay Efficiency 0.95 
Table 1:  Reliability of Pizza Pass Labeling (Cohen’s 
Kappas for Phases, CT, and Strategies; Cronbach’s 
Alphas for Gameplay Efficiency) 

For all labels except gameplay efficiency, Cohen’s 
Kappas are reported to account for chance agreement.  
Gameplay efficiency is an ordinal rating, so a Cronbach’s 
alpha is reported. These reliabilities provide an upper 
bound on the quality of the detectors.  Therefore, only 
labels with reliabilities higher than 0.60 will be retained 
for the creation of automated detectors. 

Feature Engineering 
Informed by the experience developed through creating 
and implementing the hand labeling scheme, we 
calculated 100+ features from the raw data logs that 
represent potentially meaningful evidence of implicit 
computational thinking. These features fall into six main 
categories. Sample features in each category include: 

1. Overall Gameplay:  Duration of play; Number of 
rounds played; Percentage of Zoombinis exiting 
level at the end of each round; 

2. Topping Duplicates: Number of repeated topping 
combinations delivered; number of consecutive 
repeated topping combinations; 

3. Topping Futzes: Number of topping changes 
before delivery; Relative time between changes 
(speeding up/slowing down); 

4. Topping Selection: Number of deliveries in this 
round; Number of deliveries with one topping 
change since last delivery; Number of unique 
topping combinations tried; 

5. Timing: Number of topping selections before any 
feedback has been given; Number of topping 
selections before all feedback has been given; 
Average time between deliveries; 

6. Troll Satisfaction: Number of deliveries rejected 
by all trolls; Number of deliveries rejected by one 
troll; Number of consecutive rejections by one troll; 



 

The next step will be to use these features to model the 
human labeling through the creation of automated 
detectors.   

CONCLUSION 
In this paper, we outlined a process for creating 
automated assessments of implicit computational 
thinking from gameplay behaviors. Reliability of the 
human labeling and sample distilled features were also 
discussed. This work sets a model for implicit GBLA that 
can be used to reveal knowledge and skills through 
activity rather than relying on what learners can express 
on typical assessments. This work may ultimately inform 
how researchers and educators can assess learning from 
a more cognitively diverse set of learners, revealing and 
unleashing otherwise untapped everyday knowledge.  
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