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Abstract—Detection of carelessness in digital learning plat-
forms has relied on the contextual slip model, which leverages
conditional probability and Bayesian Knowledge Tracing (BKT)
to identify careless errors, where students make mistakes despite
having the knowledge. However, this model cannot effectively
assess carelessness in questions tagged with multiple skills due
to the use of conditional probability. This limitation narrows
the scope within which the model can be applied. Thus, we
propose a novel model, the Beyond-Knowledge Feature Care-
lessness (BKFC) model. The model detects careless errors using
performance factor analysis (PFA) and behavioral features dis-
tilled from log data, controlling for knowledge when detecting
carelessness. We applied the BKFC to detect carelessness in
data from middle school students playing a learning game
on decimal numbers and operations. We conducted analyses
comparing the careless errors detected using contextual slip to
the BKFC model. Unexpectedly, careless errors identified by
these two approaches did not align. We found students’ post-
test performance was (corresponding to past results) positively
associated with the carelessness detected using the contextual
slip model, while negatively associated with the carelessness
detected using the BKFC model. These results highlight the
complexity of carelessness and underline a broader challenge
in operationalizing carelessness and careless errors.

Index Terms—Carelessness, Affect detection, Contextual slip
model, Digital learning game

I. CARELESSNESS AND CARELESSNESS MEASUREMENT

Academic discussions of carelessness in classrooms date
back to the 1950s [1]. Often viewed as the result of ineffective
self-regulation, carelessness is thought to occur when students
commit hurried or impulsive behaviors that result in mistakes
on problems that could have been answered correctly. By
distinguishing mistakes made due to carelessness from those
caused by other factors, such as lack of knowledge, adaptive

instruction can be provided to engage or reengage students
in the effective use of self-regulation during the process of
problem-solving.

In the last several decades, two streams of work have
run in parallel to investigate carelessness and detect careless
behaviors. The first approach has primarily focused on self-
report to identify carelessness. Grounded in a model of social
problem-solving, D’Zurilla, Nezu & Maydeu-Olivares [2] fo-
cused on examining the cognitive and behavioral aspects of
carelessness. In their investigation, carelessness was treated
as a dysfunctional problem-solving style characterized by
students actively attempting to solve a problem, but making
attempts that are narrow, impulsive, careless, hurried, and
incomplete. Notably, from the social problem-solving model
perspective, carelessness has been found to be associated
with “negative” outcomes; for example, students who reported
higher frequencies of carelessness were found to have lower
GPAs [3].

The other line of research on carelessness has focused
on identifying carelessness from ‘careless’ behaviors. This
research has primarily focused on identifying what students
know and then detecting careless behavior by identifying cases
where students make a mistake despite having the knowledge
to answer correctly (often termed a “slip”). In the first work
along this paradigm, Newman [4] and Clements [5] introduced
a strategy to detect carelessness. In their studies, the same
question items were administered in repeated assessments. An
error was considered as careless if the student correctly solved
the same item on some occasions but incorrectly on other
attempts. As such, it can be inferred that the incorrectness
was likely due to a slip as opposed to lack of knowledge
since students demonstrated the ability to answer the same



question correctly in other attempts. This general approach
was extended to a broader case where carelessness is detected
in different items involving the same skill [6]. Specifically, in
[6], a contextual slip model was proposed and then used by
[7] as an operationalization of carelessness for digital learning
environments. The model estimates student knowledge and
then probabilistically identifies cases where students answer
a question incorrectly despite having the knowledge. As such,
the erroneous answer is considered the result of carelessness
as opposed to lack of knowledge.

In a stark contrast to the results found in [3] which grounds
the operationalization of carelessness in the social problem-
solving model, the carelessness detected using the contextual
slip model is positively associated with academic and profes-
sional achievement [8], [9]. Although these relationships turn
negative in some cases after controlling for student knowledge
[9], this pattern of results suggests that careless errors are more
likely to be observed among otherwise successful students.

When correlating carelessness to other behavioral and af-
fective measures, carelessness (detected using the contextual
slip model) has been found to be positively associated with
engaged concentration, and negatively correlated to gaming
the system, a disengaged behavior in which students attempt
to succeed by exploiting properties of a learning environment
[7], [10]. Additionally, San Pedro et al. [7] discovered a neg-
ative correlation between carelessness and confusion. Taken
together, these results suggest a pattern wherein carelessness is
more prevalent among high-performing and engaged students,
but less common among students who are disengaged or
struggling.

Even though the idea of carelessness is somewhat intuitive
to grasp, there is a subtle difference in how carelessness is
construed in the two streams of research, which may help ex-
plain their differential relationship with academic outcomes. In
specific, there is a distinction in how student knowledge is used
in determining careless errors. Knowledge plays less of a role
in identifying carelessness within the social problem-solving
model, whereas prior knowledge is key to identifying careless
errors in the contextual slip model. This difference in how
carelessness is viewed drives differences in how carelessness
is measured, which likely leads to the contrasting results found
in the two lines of work in terms of the relationship between
carelessness and academic achievement.

II. LIMITATIONS OF THE CONTEXTUAL SLIP MODEL

In student modeling and learning analytics research, the
second conceptualization has been used in several papers to
detect careless errors in digital learning environments. Baker,
Corbett & Aleven’s contextual slip model [6] uses conditional
probability along with Bayesian Knowledge Tracing (BKT;
[11]) to estimate the probability of carelessness on a given
question based on the student’s performance on the next two
questions involving the same skill. In essence, it is more
likely that the first incorrect answer is a careless error if the
student had a high probability of already knowing the skill and
then answers the next two questions containing the same skill

correctly. In some cases, the carelessness estimates detected
from the contextual slip model are used to train a machine-
learned (ML) model which predicts carelessness from learner
behavior (such as time to respond and hint use) without using
future data [6], [7].

However, there are several limitations to using the con-
textual slip model to detect carelessness. Perhaps the most
serious limitation is that this model cannot effectively assess
carelessness in questions involving multiple skills, particularly
those encompassing various subsets of skills. For example,
consider a series of questions, where question 1 (Q1) contains
skills {A, B, C}, Q2 contains skills {A, C}, Q3 contains skills
{A, D}, and Q4 contains skills {B, C, D}. In this example,
multiple skills are tagged in these questions, and the skills
tagged in each question are not identical.

The challenge in detecting carelessness in multiple skill
questions arises from two factors. First, Bayesian Knowledge
Tracing (BKT) cannot easily estimate students’ knowledge
in questions tagged with multiple skills. BKT employs con-
ditional probability to infer student latent knowledge on a
specific skill based on historic observation on that skill [11].
To apply BKT to multiple-skill items, past studies have exper-
imented with splitting multiple-skill questions based on skills,
transforming a multiple-skill question into multiple single-skill
questions [12]. Knowledge is then estimated based on each
skill and aggregated across skills to predict performance on
the multiple-skill item (e.g. [12], [13]). However, with this
modification, the model is likely to overfit due to the repetition
of records, where the total number of records are inflated by
multiple skill items [12].

A critical factor that impedes the contextual slip model’s
ability to detect carelessness when items are tagged with
multiple skills is its reliance on conditional probability. Specif-
ically, the model identifies the performance of the next two
questions involving the same skill and contextually estimates
the probability of carelessness given the performance on these
questions. However, multiple-skill items pose a challenge in
identifying the next two questions with the same skill. For
example, in a scenario where a student got question 1 (Q1)
wrong, which contains skill {A, B, C}, the following questions
that contain some but not all of these skills (e.g., Q2: {A, C},
Q3: {A, D}, or Q4: {B, C, D}) cannot provide a benchmark
to contextually estimate students’ knowledge level on Q1.
Because the skills only partially overlap, the student’s perfor-
mance (i.e. the correctness) on the following two questions (Q2
and Q3) cannot be reliably used for the estimation of students’
knowledge level on Q1. Using the performance of Q2 and Q3
in this case would likely miscalculate the students’ knowledge
level on Q1. Therefore, this approach of contextual estimation
becomes infeasible for detecting carelessness in systems where
items involve multiple skills.

Lastly, and acknowledged in [6], as the model uses the
performance of the subsequent two questions, the model
cannot detect carelessness in the last two questions of each
skill. Therefore, the sample size may reduce significantly in
detecting carelessness with this approach. [6]’s approach to



addressing this was to use the contextual slip labels to train
a second contextual slip model using machine learning, that
does not rely on future data; but this approach does not address
the other limitations discussed above. As such, the contextual
slip model has several limitations that make it less useful for
many cases where carelessness detection could be of interest.

III. THE CURRENT STUDY

Given these limitations, the current paper proposes a novel
model to detect carelessness in digital learning platforms.
Specifically, we utilized Performance Factor Analysis (PFA;
[14]), an alternate knowledge tracing model, to estimate stu-
dents’ knowledge level. Unlike BKT, PFA can be used in cases
where items are tagged with multiple skills. This PFA-based
model also fits carelessness estimates step-by-step, by fitting
a model that can predict carelessness from features of student
actions (such as, for example, their time spent on answering a
question) after controlling for student performance estimates
based on past history of correctness and errors (analogous to
knowledge estimation). By predicting correctness both from
knowledge-related features and other features, we can take the
portion of the estimate based on other features and invert it
to obtain a measure of carelessness — error caused by factors
other than knowledge. Using this combination of knowledge
estimates and behavioral features distilled from log data, we
estimate the probability of carelessness in erroneous attempts.

In contrast to the contextual slip model where carelessness
is estimated primarily based on students’ knowledge (students
make a mistake despite having the knowledge), the model
we propose does not iteratively estimate student knowledge;
instead, behavioral features are used to predict the likelihood
of carelessness in an erroneous attempt. We call this model the
Beyond-Knowledge Feature Carelessness (BKFC) model.
In essence, the BKFC model uses students’ behaviors to
explain the discrepancy between knowledge and performance.
For example, in cases where a student is expected to know
the question (i.e., high knowledge estimation) yet answers it
incorrectly, the behavioral estimate is used to capture the care-
lessness behavior. In the current work, we use PFA to estimate
knowledge; however, any knowledge tracing algorithm that has
the capacity to estimate knowledge in multiple-skill items can
be incorporated in the model.

We note that the BKFC model differs from the contextual
slip model both conceptually and methodologically. On the
conceptual front, the two models differ in what role knowledge
plays in detecting careless errors. Specifically, the contextual
slip model detects instances where students have knowledge
but make a mistake (a “slip”). By contrast, the BKFC model
detects instances where students make a mistake, but the
mistake appears to be unrelated to their level of knowledge. In
other words, in the BKFC model, carelessness can be detected
even when students don’t know the relevant skills, as long
as the specific careless behavior occurs (e.g. the impulsive,
hurried, and incomplete behaviors described in the social
problem-solving model). In contrast, carelessness is unlikely
to be observed in the contextual slip model when students

don’t have the relevant knowledge, given the model’s design.
The methodology used in each model reflects this difference
in conceptualization.

In this study, we investigate the BKFC model and compare
the carelessness detected across three approaches (i.e., the
BKT-based contextual slip model, a machine learning model
that mimics the decisions of the contextual slip model (the
ML contextual slip model), and the BKFC model). To do this,
we collected retrospective data from middle school students
completing decimal numbers and operations items within
a digital learning game, for which post-test data was also
available. We applied each of these three approaches to the
data. We first applied the BKT-based contextual slip model
to detect carelessness in the dataset. We then generated a set
of features to use within the ML contextual slip model and
the BKFC model. For the ML contextual slip model, we used
the identified probabilities of carelessness from the BKT-based
contextual slip model as ground truth, and trained a machine
learning model to predict carelessness. For the BKFC model,
we used the same features as those in the ML contextual slip
model. Full mathematical details are given below.

We then conducted a series of analyses comparing the
carelessness detected across the three approaches. Specifically,
we ran pairwise correlations to examine the relationship be-
tween the carelessness detected using any two of the three
approaches. We also examined the relationship between care-
lessness detected using the three approaches and students’
post-test performance, as well as the relationship between
carelessness and other disengagement and affect measures
(i.e., gaming the system [15] and ’confrustion’—when students
are either confused or frustrated [16]). Note that we originally
developed the BKFC model for systems where the contextual
slip model cannot be used; however, in this study, we apply
BKFC to a system where the contextual slip model can also be
used, for purposes of comparison and as a proof of concept.

IV. METHODS

A. Learning Platforms

We obtained retrospective data from Decimal Point, a
single-player web game designed to motivate middle-school
students to learn decimal concepts [17]. In Decimal Point,
students wander through a virtual amusement park and engage
in a variety of mini-games. Within each mini-game, students
are first asked to solve a decimal question (problem-solving
step: Figure 1.a) and then answer a multiple-choice question
explaining their answer (self-explanation step: Figure 1.b).

Five types of games are featured in the problem-solving
step. Each type of game focuses on teaching (and reinforcing)
one decimal skill and addressing common misconceptions
with that skill. These include (1) ordering decimals (sorting
– see Figure 1a); (2) number line placement (number line);
(3) decimal sequences (sequence); (4) sorting decimals into
’less-than’ and ’greater-than’ buckets (bucket); and (5) adding
decimals (addition).

After a student has successfully completed the problem-
solving step, a self-explanation question is presented. This step



is informed by prior research on the use of self-explanation, in
which self-explanation has been shown to lead to deeper and
more robust learning [18]–[20]. Indeed, the self-explanations
within the game have been shown to improve learning out-
comes [21], [22]. Due to the differences in the knowledge
required to answer questions in the two steps, we consider
the skills in the problem-solving steps differ from the skills in
their corresponding self-explanation steps. Thus, 10 skills are
featured in Decimal Point in total, with 5 skills in the problem-
solving steps and 5 skills in the self-explanation steps.

Fig. 1. Problem-solving and self-explanation step in Decimal Point

B. Data

To construct models that detect carelessness, we obtained
log data from Decimal Point, from a study that was conducted
in 2016. In the log data, we identified the correctness of
students’ initial response to each step of a problem. The binary
indicator reflects whether a student gets the step correct or not
on the first attempt. From here on, given the differences in
skills, we consider each step as a separate question, and use
the word “question” as a general term to refer to each step of
a problem.

The correctness data was used to fit BKT and PFA to
estimate student knowledge level at each question (see section
IV-C and IV-E). Log data with timestamps was used to
extract features, providing additional detail around student
behavior while using the system. These features were first used
to train a contextual slip machine learning model to predict
carelessness (see section IV-D), and were later used in the
Beyond-Knowledge Feature Carelessness (BKFC) model in
estimating the probability of carelessness (discussed more in
section IV-E).

Decimal Point has only one skill per item; we chose
Decimal Point in part because of this feature, which enables
us to compare the novel BKFC model to the previous methods
of carelessness detection. We also chose Decimal Point due to
the availability of knowledge tests. We obtained data from
students’ test scores on a pre-test, post-test, and delayed
post-test. The post-test was administered immediately after
students completed the game, and the delayed post-test was
administered approximately a week after students used the
program.

Each test consisted of 24 multiple-choice questions, com-
prising both questions that are similar to the decimal number

content presented in the game and questions that targeted
underlying concepts related to decimal number operations
which are not explicitly taught in the game. The performance
on the knowledge tests is used to gauge the relationship
between carelessness and learning. Lastly, measures of gaming
the system and confrustion (when a student is either confused
or frustrated) [16], were used to understand the relationship
between carelessness and these constructs.

In total, 181 students used Decimal Point in 2016 and
had valid pre-test, post-test, and delayed post-test scores.
Collectively, they answered 16,649 questions. Among them,
10,641 were answered correctly and 6,008 were answered
incorrectly.

C. BKT-Based Contextual Slip Model

Several previous papers have operationalized carelessness as
contextual slip and used the BKT-based contextual slip model
[6] to detect careless errors [7], [9], [10], [23]. Using the BKT-
based contextual slip model, we estimate the probability of
carelessness in two steps. First, we calculate the knowledge
estimates of each of the 10 skills that students in our dataset
practiced using the baseline BKT model. A brute-force grid
search was performed to fit the parameters for the BKT models
for each skill, a common approach for fitting BKT [24].
From this baseline model, we next calculate the estimates
of whether the student knew the skill at each step based on
the performance on the following two questions involving
the same skill using Equation (1). The model contextually
estimates the probability that an incorrect answer by a student
at a specific time N is the result of slipping (or carelessness)
by considering their performance on the next two questions
at time N+1 and N+2 and their prior knowledge estimates.
Mathematically, it is defined as a conditional probability and
is directly obtainable from the probability that the student
knew the skill at time N (Ln) given information about two
subsequent actions (AN+1,N+2).

P (AN is a Slip | AN is incorrect) = P (LN | AN+1,N+2)
(1)

The underlying logic here is that if the students’ knowledge
estimates for a skill was previously high and the student
answers the next two questions correctly, then it is more likely
that the first incorrect answer is a careless error. However, if
the students’ knowledge estimates for a skill was previously
low and they answer the next two questions incorrectly, then
it is more likely the first incorrect answer is due to a lack
of understanding. Readers are referred to [6] for full mathe-
matical details. Through applying the model, we obtained a
probability of carelessness for each incorrect answer (except
for the last two questions of each skill).

D. Machine-Learned Contextual Slip Model

As previously mentioned, the BKT-based contextual slip
model relies on future performance, making the detection in
real-time impossible. To address this issue, [6] use machine



learning (ML) to predict carelessness in real-time using behav-
ioral patterns. In this approach, features such as time taken
and hint use are distilled to train models that predict the
probability of carelessness, using machine learning algorithms.
This approach successfully predicted new carelessness labels
for new students [6].

1) Feature Engineering: To train models that detect care-
lessness, we analyzed the log data and distilled a set of features
to reflect students’ behavioral patterns, drawing inspiration
from features used in previous research (e.g. [6], [9], [23]).
As the version of the game used in this study does not
provide hints, features related to hints, which have been used
in previous carelessness detection papers, were not included
in this study.

In the current analysis, we extracted 17 features, which
were similar to those used in previous studies and could be
distilled from the existing log data. These features include:
1) the duration of a student answering a question. Using
this duration, we generated features that indicate the speed
of the response. Specifically, we compared the duration to
the average duration of 2) other students answering the same
question and 3) other students answering questions involving
the same skill. A z-score was computed for each of the two
comparisons. In this case, a higher z-score indicates that it took
a student longer to answer a question. To examine differences
in duration within individual students, we calculated 4) the
difference between the duration of the current question and the
student’s average duration for answering all questions so far,
regardless of skill. A negative value indicates that the student
answered the question faster than their average duration, while
a positive value indicates a slower response. Using the duration
of each question, we also calculated 5) the total time a student
spent answering all questions so far, 6) the total time spent
answering questions involving the same skill, 7) the time spent
answering the previous question, 8) the time spent answering
the previous two questions, and 9) the standard deviation of
the duration for the last three questions involving the current
skill.

Additionally, we counted 10) the number of questions
attempted so far and 11) the number of questions attempted
so far involving the same skill. Three features related to stu-
dents’ performance were extracted. Specifically, we identified
12) whether the previous question (regardless of skill) was
answered correctly, 13) the number of correct responses in
the two preceding questions, regardless of skill, and 14) the
percentage of previous problems involving the same skill that
were answered incorrectly (percent errors).

Lastly, three features were extracted that describe how
students interact with different types of questions within the
learning environment. Specifically, we identified 15) the input
type, which refers to the format in which students provide
their response (e.g., dragging a slider on a number line,
clicking a radio button, or entering text, 16) the number
of actions required to complete the question, which could
involve either a single action or multiple actions, and 17)
the availability of gaming options, which indicates the degree

to which students can exploit the feedback system to guess
or adjust their answers. We define gaming options as either
multiple or limited, based on the extent to which students
can modify their responses using immediate feedback. For
instance, when feedback is provided after each action, enabling
students to make successive corrections, the gaming options
are considered multiple. In contrast, when opportunities for
iterative guesses or adjustments are restricted, such as in open-
response formats, the gaming options are classified as limited.

2) Training Machine Learning Model: Using the 17 fea-
tures distilled and ground-truth labeled using the BKT-based
contextual slip model, we trained a machine learning model
to detect carelessness. As opposed to the linear regression
employed in the original study [6], we used random forest
regressors to fit the data, as that algorithm demonstrated
better performance for carelessness detection, a finding also
obtained within a different data set in [23]. The model was
implemented using the Scikit-learn library [25] with default
parameters. Since the labels are numerical probabilities, we
used Root Mean Squared Error (RMSE) to evaluate model
performance. With 5-fold student-level cross-validation, we
found that the model is successful at predicting the probability
of carelessness, achieving an RMSE of 0.200. This result also
suggests that the features selected in the model are capable at
detecting carelessness behaviors, supporting the inclusion of
these features in the following BKFC model.

E. PFA-Based Beyond-Knowledge Feature Carelessness
(BKFC) Model

As previously described, the conceptualization of careless-
ness has a subtle difference between the contextual slip model
and the BKFC model we propose. In the BKT-based contextual
slip model, carelessness is detected using conditional proba-
bility, which operationalizes carelessness as instances where
students make a mistake despite having the knowledge.

In the BKFC model we propose here, we operationalize
carelessness as instances where students make a mistake, but
the mistake appears to be unrelated to their level of knowledge.
In other words, students may have the knowledge to answer
the questions correctly, yet they made a mistake. However,
within this operationalization, a careless error can occur even
if the student does not have knowledge, if the same careless
behavior occurs. Given this operationalization, we developed
a model that detects carelessness utilizing PFA. The model
uses students’ behaviors to explain the discrepancy between
knowledge and performance, but distills this into a set of
features that can apply regardless of whether knowledge is
high or low.

Detecting carelessness with the BKFC model involves sev-
eral steps. First, we estimated the student’s knowledge level at
each question using PFA; within PFA, this estimate takes the
form of a prediction of the probability of student correctness.
Second, we used the set of features distilled for the ML
contextual slip model, which reflect the behavioral aspect
of students answering a question. For example, we distilled
features such as how fast students answered a question and



if the immediately previous question was answered correctly.
We then fit a model using the performance estimate from step
one and the behavioral features from step two to estimate the
correctness of the question. This step allows us to examine
how the behavioral factors influence the performance; it finds
which behavioral factors are associated with performance
after controlling for knowledge. We then used the behavioral
features and parameters obtained from the model to estimate
the probability of carelessness for incorrect questions; the
initial model predicts correct answers, so we invert it to predict
incorrect answers.

1) Performance Factor Analysis: As previously discussed,
one shortcoming with the standard BKT model is its inability
to estimate student knowledge for questions tagged with mul-
tiple skills. To address this issue, Pavlik et al. [14] proposed
Performance Factors Analysis. PFA identifies the skills (also
known as knowledge components; KCs) required in a question
and counts the number of times a student answered these skills
correctly and incorrectly in previous questions. By tracking the
number of success and failures on skills in previous questions,
and fitting parameters weighting each of these, PFA estimates a
student’s knowledge level on the set of skills that are involved
in the current question. PFA is computed using Equations (2)
and (3).

In Equation (2), m is a logit value that represents the
accumulated learning for student i using one or more KCs
j. S counts the prior successes for the KC for the student, and
f counts the prior failures for the KC for the student. The β
parameter reflects the difficulty of each KC (item difficulty
variants of PFA also exist). γ and ρ are parameters that scale
the effect of the success and failure counts. In the current
analysis, expectation-maximization algorithm was used to fit
the parameters β, γ, and ρ. With the parameters, we computed
the value m for each question.

m(i, j ∈ KCs, s, f) =
∑

j∈KCs

(βj + γjsi,j + ρjfi,j) (2)

With the m value computed from Equation (2), Equation
(3), a logistic function, is then used to convert the m values
to a probability. The probability indicates the likelihood of a
student that has the knowledge on KCs in order to get the
question correct.

p(m) =
1

1 + e−m
(3)

2) Detecting Carelessness: As previously stated, in the
Beyond-Knowledge Feature Carelessness (BKFC) model, we
detect carelessness by analyzing behavioral factors and exam-
ining how they account for performance, after controlling for
knowledge. For instance, if a student’s knowledge estimation
for a question is 0.8 but they answer it incorrectly, one
plausible explanation could be that the error was careless.
Given this, behavioral factors that are indicative of carelessness
can be used to adjust (i.e. reduce) the prediction of student
performance. In this example, when taking behavioral factors

into account, the predicted performance is expected to be
lower.

With this conceptualization, a model was constructed to
depict the relationship between students’ performance, knowl-
edge level, and behaviors. Student performance (i.e., whether
a question is answered correctly) was used as the depen-
dent variable. Knowledge and behaviors were used as the
independent variables. As shown in Equation (4), the model
includes two parts – a knowledge estimation, p(m), and a
behavioral function, ω. The behavioral function is used to
estimate how various behaviors contribute to the success of
answering a question. Seventeen features are included in the
behavioral function, as shown in Equation (5). We fit the
model using logistic regression, for compatibility with PFA;
the performance prediction from PFA and behavioral features
were used jointly to estimate the probability of a student
answering a question correctly.

logit(pcorrect) = β0 + β1p(m) + ω (4)

ω = β2(Duration) + β3(Z problem) + β4(Z skill) + . . .

+ β18(GamingOption) (5)

With the fitted model, we used coefficients derived in the
behavioral function to estimate carelessness (see Table I) in
cases where students answered incorrectly. Specifically, for
incorrect questions, we computed the value ω, and multiplied
it by -1. This was done to invert the estimation to identify
careless errors. We then applied a cumulative distribution
function to convert the value to a probability, given that the
data is normally distributed. The probability indicates the
likelihood of carelessness.

TABLE I
COEFFICIENTS OF ω

Features Unstandardized Beta Coefficients
1. Duration -0.013***
2. Z-score problem -0.032***
3. Z-score problems with same skill 0.122***
4. Student difference 0.002*
5. Total duration <0.001
6. Total duration on the skill so far <0.001
7. Duration prev question 0.002***
8. Duration prev 2 questions 0.001
9. Standard deviation of the last 3 questions 0.003***
10. Number of questions attempted 0.001
11. Number of questions attempted on the skill 0.013***
12. Previous correct 0.006
13. Previous two questions correct 0.051***
14. Percent errors 0.528***
15a. Input type radio button 0.097***
15b. Input type text 0.099***
16. Action require one -0.066***
17. Gaming option multiple 0.199***

F. Comparing Carelessness to Learning and Other Measures

After obtaining the carelessness estimates from the three
approaches for the incorrect answers, we averaged the care-
lessness estimates at the student level and conducted a series of



analyses to examine the attributes of carelessness by relating
them to learning, another disengagement measure (i.e., gaming
the system [24]), and an affect measure (i.e., confrustion –
when students are either confused or frustrated [16]).

To examine the relationship between carelessness and learn-
ing, we conducted a regression analysis. In the analysis,
average carelessness was used to predict students’ post-test
and delayed post-test performance while controlling for the
final knowledge level. The average p(Ln) on the last question
of each skill was calculated to reflect students’ final knowledge
level in the regression model where carelessness was detected
using the BKT-based contextual slip model or the ML con-
textual slip model. The average p(m) on the last question of
each skill was computed to reflect the final knowledge level
of a student in the regression model where carelessness was
detected using the BKFC model.

Additionally, Spearman correlations were used to examine
the relationship between carelessness and existing Decimal
Point detectors [16] of gaming the system and confrustion,
respectively.

V. RESULTS

A. Carelessness Detected Using the Three Approaches

Of the 6,008 incorrect first responses on items, 4,880 could
be estimated for carelessness using the BKT-based contextual
slip model, as the last two questions of each skill could
not be estimated [6]. For the purpose of comparison, we
only included the incorrect attempts that could be estimated
by the BKT-based contextual slip model. As such, 4,880
incorrect answers were included in the following analysis, and
their carelessness estimates were compared across the three
approaches.

Carelessness Detected Using the BKT-Based Contextual
Slip Model. Using the BKT-based contextual slip model, we
estimated the probability of carelessness for the 4,880 incorrect
attempts. The average probability of carelessness was 0.469,
with a standard deviation of 0.373. However, this average is
not very meaningful, given the distribution of carelessness
values shown in Figure 2.a. The bimodal distribution in Figure
2.a suggests that most of the predictions were found at the two
ends of the scale.

Carelessness Detected Using the Machine Learning
Contextual Slip Model. The average carelessness estimate
detected by the ML contextual slip model is 0.393 with a
standard deviation of 0.323. Since the ML model was trained
to predict the ground truth (carelessness) identified by the BKT
contextual slip model, the distribution of the ML carelessness
estimates generally follows that of the carelessness detected
by the BKT contextual slip model. Specifically, a bimodal
distribution is observed; however, the difference between the
two ends of the scale and the range in between was not as
extreme (see Figure 2.b).

Carelessness Detected Using the Beyond-Knowledge Fea-
ture Carelessness Model. The average probability of careless-
ness in this sample was 0.473, with a standard deviation of
0.035. As shown in Figure 2.c, the probability of carelessness

detected using this approach mostly resides within the range of
0.4 and 0.6, and is normally distributed; a very different pattern
than seen for the other two types of carelessness estimation.
We explain this difference in the discussion section and discuss
the implications of the difference between these approaches.

Fig. 2. Distribution of carelessness across the three models: BKT contextual
slip (left), ML contextual slip (middle), BKFC (right).

B. Correlation between the Three Carelessness Estimates

Pairwise Spearman correlation was conducted to estimate
the relationships between any two of the three carelessness
estimates. As shown in Table II, carelessness detected by
the BKT-based contextual slip model and the ML contextual
slip model is positively and significantly correlated. This is
expected as the ML model was trained to mimic the decisions
of the contextual slip model. However, carelessness detected
by the BKFC model is negatively correlated with carelessness
detected by either the BKT-based or ML contextual slip model.

TABLE II
PAIRWISE CORRELATION BETWEEN THE THREE CARELESSNESS

ESTIMATES

Comparison ρ p
BKT contextual slip ˜ ML contextual slip .849 <.001
BKT contextual slip ˜ BKFC -.21 <.001
ML contextual slip ˜ BKFC -.23 <.001

C. Comparing Carelessness to Learning

Regression analysis was conducted to examine how care-
lessness detected using each of the three approaches was
associated with learning, controlling for the final knowledge
level. Specifically, average carelessness was used to predict
students’ post-test and delayed post-test scores. The average
p(Ln) or p(m) on the last question of each skill was calculated
to reflect students’ final knowledge level.

As shown in Table III, when predicting post-test scores,
we found that carelessness (however measured) and final
knowledge level together explained a significant proportion of
the variance in post-test scores. Specifically, the two variables
explained 43%, 44%, and 47% of the variance in post-test
scores in models that utilized carelessness detected from the
BKT contextual slip, ML contextual slip, and BKFC models,
respectively. Comparing the three regression models, we found
that students’ final knowledge level was positively associated
with their post-test scores in all three models, indicating
that the higher the final knowledge level, the higher the
post-test scores. However, carelessness, as detected using the
BKT-based contextual slip model or the ML contextual slip



model, was positively and significantly associated with post-
test scores, whereas carelessness detected using the BKFC
model was negatively and significantly associated with post-
test scores. Similar results were found when predicting delayed
post-test scores, where carelessness detected using either the
BKT-based contextual slip or the ML contextual slip model
was positively and significantly associated with delayed post-
test scores, while carelessness detected using the BKFC model
was negatively associated with them (but not significantly).

TABLE III
PREDICTING POST-TEST AND DELAYED POST-TEST PERFORMANCE

Model Post-test Delayed post-test
BKT-based contextual slip r2 = .43, F (2, 157) = 60.43, p < .001 r2 = .47, F (2, 157) = 70.43, p < .001
Final knowledge level b = 16.18, t(157) = 2.64, p = .009 b = 23.44, t(157) = 3.94, p < .001
Carelessness b = 15.43, t(157) = 3.20, p = .002 b = 11.04, t(157) = 2.36, p = .02
ML contextual slip r2 = .44, F (2, 157) = 63.59, p < .001 r2 = .47, F (2, 157) = 71.61, p < .001
Final knowledge level b = 17.02, t(157) = 3.23, p = .002 b = 24.56, t(157) = 4.76, p < .001
Carelessness b = 18.28, t(157) = 3.75, p < .001 b = 12.49, t(157) = 2.61, p = .01
BKFC r2 = .47, F (2, 157) = 70.97, p < .001 r2 = .51, F (2, 157) = 83.39, p < .001
Final knowledge level b = 67.77, t(157) = 10.78, p < .001 b = 73.33, t(157) = 12.06, p < .001
Carelessness b = −74.88, t(157) = −2.31, p = .02 b = −48.83, t(157) = −1.56, p = .12

D. Comparing Carelessness to Engagement and Affect Mea-
sures

Using Spearman correlations, as shown in Table IV, we
found carelessness detected using either the BKT-based con-
textual slip model or the ML contextual slip model is neg-
atively associated with gaming the system. This result aligns
with findings from previous studies, which found that students
who made more careless errors were more engaged and were
less likely to game the system [9], [10].

Additionally, we found that carelessness (again detected
using either the BKT-based contextual slip model or ML
contextual slip model) is also significantly and negatively
associated with confrustion. Similar results were found in
[9], where students who were more careless demonstrated
less confusion. However, no significant correlation was found
between carelessness and frustration in that study.

However, we found carelessness detected using BKFC is
positively correlated to gaming the system, the opposite of the
pattern seen for the other two models. Additionally, a positive
correlation is found between carelessness and confrustion,
again the opposite of the pattern seen for the other models.

TABLE IV
CORRELATION BETWEEN CARELESSNESS AND OTHER ENGAGEMENT AND

AFFECT MEASURES

Model Gaming the system Confrustion
BKT-based contextual slip r(158) = −.86, p < .001 r(158) = −.87, p < .001
ML contextual slip r(158) = −.84, p < .001 r(158) = −.86, p < .001
BKFC r(158) = .22, p = .005 r(158) = .27, p < .001

VI. DISCUSSION

A. Main Findings

In the current work, we proposed a novel model to detect
carelessness. A key benefit to this model is that it can be
used in a broader set of situations compared to previous

methods used to detect carelessness in digital learning plat-
forms. The Beyond-Knowledge Feature Carelessness (BKFC)
model we propose here estimates students’ knowledge level
and identifies behavioral factors that cause the error other
than knowledge. For example, in cases where a student is
expected to know the question (i.e., high knowledge esti-
mation) yet answers it incorrectly, the behavioral estimate
is used to capture the carelessness behavior that resulted in
the incorrect attempt. In this paper, we used Performance
Factor Analysis to estimate students’ knowledge and distilled
seventeen behavioral features to capture carelessness.

To compare this approach with previous models that detect
carelessness (i.e., the BKT-based contextual slip model and
the ML contextual slip model - a machine learning model
that mimics the decisions of the BKT-based contextual slip
model), we used all three approaches to detect careless errors
in single-skill questions, where the BKT-based contextual slip
model can be applied. Unexpectedly, compared to the previous
approaches to detect carelessness, careless errors identified
by the BKFC model had different data distributions, and
differed drastically in their relationship to learning and other
behavioral and affect measures. In the following paragraphs,
we summarize and explain these differences and discuss the
implications of these carelessness models.

First, the estimation of carelessness differs in distribution
between the three approaches. Using the BKT-based contextual
slip model, we observed a bimodal distribution for carelessness
estimates, such that there were two “modes” (in terms of
central tendency) at the two ends of the probability scale (i.e.
0 and 1). Similar distribution was observed with carelessness
estimated by the ML contextual slip model. This is expected as
the ML model was trained to mimic the decision of careless-
ness cases identified by the BKT-based contextual slip model.
By contrast, carelessness estimated using the BKFC model
follows a normal distribution. This difference may be because
the contextual slip model’s estimates might have been driven
to extremes, either because of the conditional probability
approach or because of the use of future data. On the other
hand, in the BKFC model, carelessness was detected using
behavioral parameters, which were derived from a logistic
regression. As the behavioral parameters essentially fit to the
residuals of the knowledge with performance, if these residuals
were normally distributed, this may have caused the BKFC
model to adopt a normal distribution.

Second, compared to the carelessness detected using the
two previous approaches, carelessness detected using the
novel BKFC model differs in its relationship to learning
outcomes and two other measures. We found that even when
controlling for students’ final knowledge level, carelessness
detected using either the BKT-based or the ML contextual
slip model is positively associated with post-test and delayed
post-test scores. Additionally, carelessness identified using the
same approaches was found to be negatively associated with
gaming the system (a disengagement measure) and negatively
associated with confrustion. These results align with previ-
ous findings in [9], [10], showing that carelessness is more



frequently observed in high-performing and more engaged
students. This is possibly because, within the contextual slip
approach (either the BKT-based or the ML-based), an error is
only likely to be considered as carelessness after the student
has acquired the skill.

In a strong contrast, carelessness detected using the BKFC
model was negatively correlated with post-test and delayed
post-test performance and was positively associated with
gaming the system and confrustion. This suggests that the
more a student games the system or becomes confused or
frustrated, the more likely it is for the student to make careless
errors. Similarly, a dissociable relationship was observed for
performance measures, such that more careless errors were
associated with worse scores on both post-test measures.

We suspect that these contrasting results in terms of the re-
lationship between carelessness, learning outcomes, and other
measures stem from a subtle difference in how carelessness
is operationalized. Specifically, there is a distinction in how
knowledge is leveraged to detect carelessness in these ap-
proaches. Specifically, the contextual slip model (either BKT-
based or ML-based) detects instances where students make
a mistake despite having the knowledge, whereas the BKFC
model detects instances where students make a mistake, but the
mistake appears to be unrelated to their level of knowledge. In
other words, in the BKFC model, carelessness can be detected
even when students don’t know the relevant skills if the same
careless behavior occurs. In contrast, carelessness is unlikely
to be observed in the contextual slip model when students
don’t have the relevant knowledge given the model’s design.

Given the difference in the operationalization, the contextual
slip model may only be able to identify carelessness within
high-performing students as the model is essentially only
able to detect carelessness when students have relatively high
levels of knowledge. This requirement may directly lead to
the positive relationship between carelessness and academic
performance, as found in the current paper and previous
research [7], [9], [10]. However, the same careless behaviors
can occur when students don’t have the knowledge but make
impulsive, careless, and hurried attempts, as described in the
social problem-solving model [2]. The BKFC model is able to
correctly capture these relationships, which presumably leads
to the contrasting results seen for this method.

B. Limitations and Future Work

Despite being derived from two theoretically sound models,
the carelessness detected from the contextual slip model and
the novel BKFC model had very different characteristics
and correlations. These contrasting results reveal a broader
challenge surrounding the issue of detecting carelessness,
which is deciding exactly what carelessness is and how to
operationalize it.

It is difficult to know which operationalization is correct,
as there is no easy way to obtain ground truth. External
observers have been unable thus far to confidently identify
carelessness from screen replays, text replays, or field obser-
vations. Teachers often feel that they recognize when a student

is being careless, but only when they can directly inspect
step-by-step work processes to understand errors, and it is
uncertain what proportion of careless errors such a procedure
would capture. Self-report may provide some insight, but may
also be vulnerable to demand or self-presentation effects,
in unpredictable ways. There may still be value to asking
students open-ended questions immediately after an incorrect
attempt, to have students reflect on the reason for the error.
These responses may serve as additional evidence of detecting
carelessness, acting as a source of ground truth.

In future work, we anticipate applying the BKFC model to
detect carelessness in other platforms. Specifically, the primary
original motivation for proposing and developing the BKFC
model was to be able to detect carelessness in questions tagged
with multiple skills. In these platforms, we can study this
operationalization of carelessness’s relationship to other con-
structs, and use it within interventions that encourage students
to work carefully and use appropriate self-regulated learning
strategies. This operationalization’s clear negative relationship
to learning outcomes makes it potentially appropriate for this
type of usage. It may also be valuable to control for gaming
the system and other known disengaged behaviors in future
modeling work along these lines, to ensure that the most
appropriate possible feedback is given.

Additionally, we hope to explore the possibility of using
other knowledge tracing models in the BKFC models. Knowl-
edge tracing models that leverage deep learning have demon-
strated better performance than PFA at predicting students’
performance. Incorporating these models may potentially im-
prove the precision of carelessness detection and make it useful
in situations where PFA is not feasible (such as cases where
there is not a trusted item/skill mapping).

C. Conclusion

In this paper, we proposed and described the Beyond-
Knowledge Feature Carelessness (BKFC) model, a new model
of carelessness that can be used when items are tagged with
multiple skills. The BKFC model differs from the contextual
slip model in operationalization, detecting carelessness in
cases where a student makes a mistake, but the mistake
appears to be unrelated to their level of knowledge. There-
fore, compared to the contextual slip model, which can only
detect carelessness in cases when students have the necessary
knowledge, the BKFC model can detect carelessness in a
broader range of cases — even when students may not have the
knowledge, provided that the same careless behavior occurred.
Along with the ability to detect carelessness in multiple-skill
questions, the BKFC model will enable us to broaden the
scope for detecting carelessness, thereby increasing its utility
and capability in evaluating instances of carelessness in a
broader context. Work remains to fully understand this model,
but it seems to have the potential to detect carelessness in
more situations and therefore to enable intervention in those
situations.
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