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Abstract. University-level computer science (CS) courses can be particularly 

challenging for students with limited programming backgrounds. To support 

novice learners, instructors often employ automated assessment systems for pro-

gramming assignments. These systems provide students with feedback on de-

mand as they work through problems online. Outcomes remain mixed, perhaps 

due to differences in the strategies learners use to address different types of cod-

ing errors after receiving feedback. In this study, we used Ordered Network Anal-

ysis (ONA) to explore data from an automated assessment platform used itera-

tively by students in an introductory CS course. We employed a GPT-based ap-

proach to automate the process of qualitative coding on this dataset. Our analysis 

revealed behavioral differences in how high performing and low performing nov-

ice learners changed their code over time, particularly when disaggregated by the 

types of errors they faced (compiler versus non compiler errors). By understand-

ing these patterns, instructors can create interventions that guide students through 

challenges, improving their chances of success in programming tasks. 

Keywords: Computer Science Education, Automated Assessment, Ordered 

Network Analysis, Large Language Models, ChatGPT. 

1 Introduction 

Computer Science (CS) skills have gained attention in education research and practice, 

leading to global efforts to broaden and improve CS education [1, 2]. As part of this 

effort, automated assessment tools have been widely used in CS education to offer per-

sonalized on-demand feedback, which can be helpful when students need multiple at-

tempts to master programming concepts [3, 4]. Although studies generally suggest that 

automated assessments can support learning [3], the benefits often vary, depending on 

how students approach and interact with these tools. However, it is not yet clear pre-

cisely how different behaviors and strategies influence learning outcomes, underscor-

ing the need for more research into the specific activity patterns associated with success 

and failure in programming tasks. 
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We investigate this by using Ordered Network Analysis (ONA) to analyze data from 

an automated programming assessment system used in an introductory CS course, 

where students iterate on specific coding goals while intermittently using the assess-

ment system. By investigating the emergent patterns during their work, we aim to con-

tribute to a deeper understanding of how student actions influence their learning out-

comes in university-level CS education. 

Specifically, we investigate whether we can automatically detect fine-grained and 

meaningful changes in student behavior during programming in a scalable fashion, 

compose them into patterns using ONA, and then investigate which of these patterns 

are associated with better learning outcomes. By doing so, we seek to identify behavior 

patterns in debugging that could inform targeted interventions to support students in 

achieving programming success. 

2 Related Work 

2.1 Automated Assessment in Computer Science Education 

Systems for automated assessment of programming code have become increasingly 

prevalent in computer science education assisting students in many different introduc-

tory programming courses and providing support for a wide range of programming lan-

guages [5, 6]. 

The availability of data originating from such systems has resulted in increased re-

search on areas such as the impact of syntax (compiler) errors on student progress [7], 

automated generation of hints and feedback [8, 9], or early prediction of student per-

formance in a programming course [10]. In contrast to some quantitative research on 

learning to program, qualitative research in this domain has been limited to small sam-

ple sizes [11], as the extensive volume of available data often surpasses the capacity for 

traditional human coding. However, the advent of Large Language Models (LLMs) 

now enables the automated execution of some qualitative research processes at increas-

ingly high quality [12, 13], thereby suggesting a potential for a more thorough analysis 

of programming code and detecting valuable insights at larger scale. 

In CS automated assessment systems, program correctness is checked using a set of 

predefined tests, assuming there are no syntax errors (which makes it possible for the 

code to be compiled and executed). If the code does not compile, compiler errors may 

provide insights into student struggle. For a more detailed analysis of how learners at-

tempt to improve across attempts, programming code can be examined using an Ab-

stract Syntax Tree (AST), which is a simplified representation of the code structure 

[14]. ASTs allow tracking of precise changes between different versions of the code 

[14]. However, ASTs are often not useful until the student is able to produce code that 

compiles without errors, a challenge for many novice students in introductory program-

ming courses who struggle with code syntax. Since an AST represents the syntactic 

structure of code, any part of the code that doesn’t adhere to the language’s syntax 

might not be correctly represented in the tree, or the tree generation might fail entirely. 

This issue is often addressed by including only compiled code in the analysis [15], 

which offers an incomplete picture of novices’ CS understanding. Regular expressions 
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are another alternative for examining changes in students’ attempts by searching for 

specific sequences of characters in those lines where changes are detected [16]. How-

ever, examining such changes based on a mere identification of fixed sequences of 

characters can also offer a limited understanding of those students who struggle with 

code syntax because those types of errors might result in the specific known sequences 

not being present in their code. Therefore, these types of automated approaches can be 

insufficient for fully understanding how students improve their code across attempts. 

2.2 QE Approaches for CS Education 

Given the challenges with existing approaches to automated assessment for studying 

CS learning, some programming education researchers have instead used manual label-

ing of programming code [17]. This often involves researchers coding data sources for 

the presence of relevant qualitative constructs to understand, for example, students’ 

thought processes when creating code comments [18], the acquisition of data science 

skills [11] or patterns of debugging behaviors [19]. 

Research in computer science education has also recently begun to employ Quanti-

tative Ethnography techniques such as Epistemic Network Analysis (ENA) to investi-

gate patterns in coding practices, with a particular focus on collaborative learning. In 

K-12 settings, Su et al. [20] and Vandenberg et al. [21] have used ENA to analyze 

interactions within pair programming and across course topics. At the university level, 

ENA has also been utilized to compare computational thinking strategies among novice 

learners, distinguishing between low- and high-performing students during collabora-

tive problem-solving sessions in CS courses [22]. Data sources from these examples 

consisted of transcripts of discourse or student written reflections, which offer insights 

on student mindset, but not direct assessment of programming skill development. 

To address this limitation, Pinto and colleagues [23] qualitatively coded program-

ming actions directly, building epistemic networks to explore debugging patterns in 

code submissions and revealing distinct approaches between experienced and novice 

programmers. The codebook contained constructs describing changes between two 

subsequent code submissions: a) code changes (e.g. changing variable name, massive 

deletion), b) results of the compilation event (new error detected in the compilation 

process), and c) combination of both: code changes and result of the compilation event 

(line with an error deleted). Although their results from the use of these codes high-

lighted differences between experienced and novice students’ debugging behaviors, 

coding novices’ data for more nuanced constructs as those constructs emerge across 

repeated programming attempts might reveal further insights into complex CS learning 

processes. 

Therefore, we develop and apply a set of qualitative codes regarding students’ fine-

grained modifications to programming code, processed efficiently by an LLM. We then 

employ Epistemic Network Analysis (ENA) and Ordered Network Analysis (ONA) 

techniques to delve into the debugging behaviors of novice programmers. By doing so, 

we aim to discern the strategies that correlate with high and low outcomes on final 

examinations, providing deeper insights into the learning processes of students engaged 

with these automated systems. 
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3 Methods 

3.1 Data Collection and Research Context 

The data for this study was gathered during the fall 2022/2023 semester as part of a 

CS1 course, a required first-semester class for computer science students at a large Eu-

ropean university. The dataset includes 1) responses to a questionnaire completed at the 

start of the semester, 2) results from a pre-test taken immediately after the question-

naire, 3) logs of activity on an online platform for automated programming assessment 

throughout the semester, and 4) scores from the final test, which was a graded assign-

ment at the semester’s end. All participants (N=198) provided consent before their data 

was included in the study. 

An automated assessment platform for programming assignments was provided as a 

learning tool within the course. Use of the tool was optional and did not count towards 

the final grade. During the study, 169 students submitted code 44,448 times through the 

platform. They uploaded their C# code for evaluation across 146 tasks, which spanned 

basic programming topics introduced during the semester including types and variables 

(33 tasks), conditional statements (25 tasks), recursion (28 tasks), and arrays and loops 

(60 tasks).  

Directly after each submission, the code was automatically compiled. If compiler 

errors were detected at this stage (which means the code cannot be executed and tested), 

students were presented with a feedback message that listed the detected compiler er-

rors. If compilation succeeded, the code was executed against a set of unit tests that 

verified if the students’ code met the assignment requirements. In this case, students 

were presented with a list of all tests executed on their code. Each test was marked with 

fail or success. To retrieve details about the test execution, students had to click on a 

selected test. As correcting the submitted code requires understanding which test re-

quirements were not met, we only included clicks checking the details of tests that 

failed. 

3.2 Knowledge Self-Reports and Tests 

In this work, we examine the debugging behaviors of learners who self-reported having 

little to no programming experience prior to joining the course. The level of prior pro-

gramming experience was determined based on student responses to a survey item de-

ployed during the first class sessions: “On the scale 1-5, where 1 is zero experience, 

and 5 is a lot of experience, please rate your basic programming knowledge (types, 

variables, conditional statement, recursion, loops, arrays).” We considered students 

who responded with a 1 or 2 (N=110 out of total 198) in the questionnaire to be novices, 

as in past use of this instrument [24], and included them in our analyses. We also ex-

cluded students who did not use the online platform to solve conditional statements 

tasks (69 experienced and 100 novices solved at least one conditional statement task in 

the platform).  

We validated students’ self-reports of expertise by asking students to take a pre-test 

assessing their general programming knowledge (see Table 2). This test was 
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administered immediately after students submitted the questionnaire. At the end of the 

semester, a final test was administered to evaluate student knowledge of the introduc-

tory programming concepts taught in the course. Within the novice group, we further 

categorized students based on their performance. 40 novices with final test scores 

within the highest quartile were assigned to the high-performing group (hp-novices). 

28 novices with scores in the lowest quartile were assigned to the low-performing group 

(lp-novices). The two quartiles were different sizes due to students with the same score 

on the final test.  

In this research, we focus on submissions made on conditional statements tasks, for 

which 10,673 code submissions (7,136 from novices) have been collected on the plat-

form. We chose this specific set of tasks because they are the first module in the semes-

ter that requires a basic understanding of both syntax and programming logic. By ex-

amining the correctness of submissions and debugging behaviors to solve errors in this 

set of tasks, instructors could recognize early in the semester whether some students 

still need to learn some key initial concepts that are critical for future success in pro-

gramming learning. 

3.3 Qualitative Coding Procedures 

When coding student data, our objective was to identify and characterize the changes 

made across all pairs of consecutive student submissions for the same task. For a task 

of this detail and a dataset of this size, human qualitative coding of changes across 

submissions is time-consuming, and the regular expression automated approach often 

used in QE (e.g. [25, 26]) is challenging to apply reliably because novice students’ code 

often does not follow syntax rules. With increased availability of large language models 

(LLMs), however, training tools such as GPT-4 to emulate human qualitative coding 

procedures at scale has become more feasible for automated qualitative coding of text 

(e.g., [12]). 

To achieve this, we first employed a difference algorithm (diff) to generate changes 

between all pairs of subsequent code submissions. We created a tool that presents these 

changes in HTML format, incorporating additional fields that allow for labeling each 

identified change (Fig. 1). Two human coders used this tool and initially performed 

qualitative coding on a set of 100 examples of consecutive submissions with differences 

that indicate the actions taken by students to solve the corresponding errors (Table 1). 

 

Fig. 1. A sample of two consecutive pieces of programming codes submitted by a student with 

changes across submissions highlighted. 

Next, we used a prompt engineering approach and employed GPT-4 (gpt-4-turbo-

2024-04-09) for the automated coding of the remaining submissions. Our analysis fo-

cused only on submissions for tasks involving conditional statement (“if”), as this area 

has been previously identified as one of the earliest where differences between high and 

low-performing students become apparent [24, 27].  



6  M. Pankiewicz et al. 

Table 1. Codebook with definitions, accuracy and reliability metrics. 

Code  Definition  Human 1 - GPT Human 1 - Human 2 
Accuracy  Κ Accuracy Κ 

If Header Student submission contains modifica-

tions to the if condition/ header 

0.907 0.808 0.981 0.959 

Function  

Return  

Student submission contains modifica-

tions inside the return statement 

0.928 0.814 0.916 0.748 

Commenting Student commented at least one line in a 

submission 

0.990 0.852 1.000 1.000 

Code Added Student added new code lines in a sub-

mission 

0.979 0.905 0.972 0.854 

Code  

Removed 

Student removed code lines in the sub-

mission 

0.961 0.779 0.991 0.955 

Testing Student modified code inside the Main 

function (section of the code used for 

testing). 

0.918 0.784 0.963 0.907 

No Change Student submission is identical to the 

previous submission 
* * * * 

Other Change Student submission contains changes 

other than those identified above 
* * * * 

Compiler  

Error 
Student submitted code containing a 

compiler error 
* * * * 

Unit Test 

Failed 
Student submitted compiling code but 

failing to pass at least one unit test 
* * * * 

Feedback 

Clicked 
Student requested feedback after submit-

ting code that failed to pass all unit tests. 
* * * * 

* Did not require coding procedures 

During prompt engineering, GPT’s performance increased when it was presented 

with the results of the difference algorithm (e.g., the lines affected by a change as high-

lighted in Figure 1) along with the code. We designed a set of prompts that achieved a 

Cohen’s Kappa over 0.7 with human coders in the initial subset of 100 examples (See 

Table 1). Finally, we applied GPT-based coding to the remaining submissions for the 

“if” set of tasks.  

Several codes included in the analysis did not require qualitative coding techniques. 

Instances of no change across submissions were identified using the diff algorithm; 

changes identified by the diff algorithm that did not fall under the human-identified 

coding categories were grouped into “Other change”. Student responses marked as hav-

ing compiler errors or unit tests that failed were pulled directly from the log data from 

student use of the automated platform, as were instances in which students chose to 

access the platform’s feedback. 

3.4 Data Analysis Procedures 

To compare the debugging behaviors between the two groups (hp-novices vs. lp-nov-

ices), we used Ordered Network Analysis (ONA), which accounts for the order of ap-

pearance of constructs. This technique helped us identify which actions followed an 

unsuccessful submission and what the subsequent steps taken to rectify coding mistakes 
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were. Additionally, ONA examines self-transitions within each construct, enabling us 

to determine whether students repeatedly test a particular debugging strategy and if they 

persist in making the same type of changes when submission contains a compiler error 

or unit tests that failed [7]. 

Using ONA, we conducted a two-stage analysis. First, using a difference model, we 

examined the primary distinctions between high-performing and low-performing 

groups based on all their submissions. This model included the two types of unsuccess-

ful submissions as constructs, as well as the student’s choice to click on feedback, help-

ing us understand how students react to different error types. 

Recognizing that the results of epistemic networks can be influenced by some cate-

gories being much more frequent than others (in this case, submissions with compiler 

errors and failed unit tests), we conducted a second-stage analysis where we compared 

the debugging behaviors specific to each type of an unsuccessful submission. For this, 

we developed separate difference models for 1) submissions immediately following a 

submission with a compiler error and 2) submissions immediately following a submis-

sion containing unit tests that failed. We analyzed the actions taken in the submission 

immediately after an unsuccessful one because these actions represent the students’ 

direct responses to resolve the problem. For the same reason, we used a moving stanza 

window of size one for all models, pairing only two consecutive submissions to identify 

the actions that followed each unsuccessful submission in the primary analysis and the 

action that followed the previous unsuccessful attempt for the same type of error in the 

secondary analysis. 

4 Results 

4.1 Descriptive Statistics 

Table 2 shows descriptive statistics for total submissions, the number of tasks attempted 

and correctly solved, incorrect submissions due to a compiler error and failed unit tests, 

and initial and final scores for 4 groups of students: Experienced, Novices, Novices 

with the highest final test score (top quartile) and Novices with low performance in the 

final test (bottom quartile). 

Students who self-reported being novices had much lower pretest scores 

(Mdn=16%) than the other students (Mdn=65%), p<0.001, U=452 for a Mann-Whitney 

U test. The primary distinction between these groups in their use of the online platform 

was in the number of submissions, which was statistically significantly different, 

U=2214, p<0.001, despite these two groups having a nearly identical total number of 

attempted and correctly completed tasks. This difference is the result of the higher num-

ber of submissions containing compiler errors (Mdn=19.0) and failed unit tests 

(Mdn=20.0) that novices made compared to experienced students (Mdn of 11.0 and 

10.0 for compiler errors and failed unit tests, respectively).  

The difference between experienced and novice students is reduced in the final 

scores at the end of the semester, although still statistically significant (Mdn of 67% 

and 56%, respectively, p<0.001, U=2228.5 for a Mann-Whitney U test). This result 

indicates that even though they started the semester with lower prior knowledge, some 
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novices were able to close that knowledge gap, while other novices had much poorer 

learning (the low-performing group of novices had a Mdn of 22% on the final exam). 

This sharp contrast between outcomes for the novice groups underscores the im-

portance of recognizing the differences in the interaction with the platform that might 

help explain these differences in the learning outcome. 

Though the two groups of novice students (high-performing and low-performing) 

achieved different outcomes on the post-test (by definition, given how the two groups 

were selected), the two groups started with a similar pre-test score (Mdn of 18% and 

16%, p=0.15, U=444.5 for a Mann-Whitney U test). This indicates that the difference 

in their final score is not a consequence of having different levels of prior knowledge 

of the course content. 

Table 2. Descriptive statistics comparing experienced students and novice students with high 

and low learning gains. 

Variable   Experienced 

(N=69) 
Novices 
 (N=100) 

Novices High 

Score (N=40) 
Novices Low 

Score (N=28) 
Mdn Avg (SD) Mdn Avg (SD) Mdn Avg (SD) Mdn Avg (SD) 

Submissions 46.0 51.0 (27.3) 64.0 71.3 (41.0) 57.0 64.3 (31.6) 73.0 79.8 (49.4) 

Comp. Errors 11.0 14.7 (12.7) 19.0 26.6 (24.8) 16.0 21.1 (18.6) 26.0 35.4 (32.4) 

Tests failed 10.0 13.7 (11.7) 20.0 21.7 (15.7) 17.5 20.0 (14.3) 21.5 22.7 (15.6) 

Tasks 25.0 21.4 (6.6) 25.0 21.9 (5.8) 25.0 22.5 (5.0) 25.0 21.4 (6.5) 

Correct Tasks 24.0 21.0 (6.5) 24.0 21.2 (5.9) 25.0 22.1 (4.9) 24.0 20.3 (6.6) 

Pre-Test  65% 64% (0.21) 16% 20% (0.18) 18% 25% (0.20) 16% 16% (0.13) 

Final Test  67% 67% (0.2) 56% 51% (0.22) 67% 73% (0.09) 22% 21% (0.1) 

4.2 Differences between High and Low-Performing Novices 

Figure 2 shows the ONA model of the most commonly occurring codes for all the 100 

novices (left) and a difference model comparing the actions of the two groups of nov-

ices described in the previous section (right). Table 3 shows the line weights (lw) of the 

highest differences found when comparing these two groups (differences higher than 

0.02). Along the X axis (MR1), a Mann-Whitney U test showed significant differences 

across both groups (U=319, p=0.005). The most substantial difference between the two 

groups of novices is observed for the compiler errors code. The difference model indi-

cates that low-performing novices are more likely to repeatedly submit code with com-

piler errors (lw=0.27) than their high-performing counterparts (lw=0.18). This associa-

tion reverses for submissions with failed unit tests, where high-performing novices 

(lw=0.17) seem to have a slightly higher tendency to submit another code with a failed 

unit test compared to the low-performing group (lw=0.14). It is worth noting that this 

difference in the line weights for submissions with failed unit tests does not imply that 

high-performing students make more errors of this type (See Table 2). It instead indi-

cates that these students require fewer attempts to reach a correct submission, and 
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therefore, these students have a higher percentage of submissions with failed unit tests 

than the low-performing novices do. 

       

Fig. 2. A summary ordered network considering all novices (left) and a difference model com-

paring novices with high (blue) and low (red) final test scores (right). Only connections with 

weights over 0.02 are shown to enhance the clarity of the visualization. 

Table 3.  Line weights for the summary model and the difference model contrasting novices 

with high and low scores in the final test. Associations are listed based on the magnitude of the 

difference between the two groups. 

Association Summary Model Difference Model 
High Low Diff 

Compiler Error → Compiler Error 0.22 0.18 0.27 -0.08 
Feedback Clicked → Unit Test Failed 0.26 0.29 0.22 0.07 
Unit Test Failed → Feedback Clicked 0.25 0.28 0.22 0.06 
If Header → Compiler Error 0.14 0.12 0.18 -0.06 
Compiler Error → Other Change 0.13 0.11 0.17 -0.06 
Feedback Clicked → If Header 0.17 0.19 0.14 0.05 
If Header → Unit Test Failed 0.16 0.18 0.13 0.05 
If Header → Feedback Clicked 0.13 0.15 0.10 0.05 
Unit Test Failed → If Header 0.21 0.23 0.19 0.04 
Compiler Error → If Header 0.14 0.12 0.16 -0.04 
Compiler Error → Code Added 0.11 0.10 0.14 -0.04 
Unit Test Failed → Unit Test Failed 0.16 0.17 0.14 0.03 
Code Added → Compiler Error 0.10 0.09 0.12 -0.03 
Feedback Clicked → Feedback Clicked 0.10 0.11 0.08 0.03 
Other Change → Compiler Error 0.10 0.08 0.11 -0.03 
Code Added → Code Added 0.04 0.03 0.05 -0.03 
Compiler Error → Code Removed 0.08 0.07 0.09 -0.02 
Compiler Error → Return 0.19 0.18 0.20 -0.02 

This contrast in the base rates of submissions with a compiler error and submissions 

with failed unit tests influences most of the observed differences in the Ordered Net-

work. Although both groups of novices frequently edit the If Header following 
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submissions containing a compiler error or failed unit tests (lw=0.14 and lw=0.21, re-

spectively), this behavior is more pronounced among low-performing novices for com-

piler errors (lw=0.16) and among high-performing novices for failed unit tests 

(lw=0.23). In both cases, this temporal association with the If Header construct is bidi-

rectional mainly because students’ subsequent submissions after experiencing a com-

piler error also often contain compiler errors. Also, in the event that a submission con-

tains a failed unit test, it usually takes several attempts until fully correct code is sub-

mitted (as also shown by the self-transition weights of these two constructs). 

Following compiler errors, low-performing novices often make additional changes 

to their code that do not involve the If Header, Return Statement, Testing, or Adding or 

Removing lines of code (lw=0.17), unlike their high-performing counterparts 

(lw=0.11). Additionally, low-performing novices are more likely to Add code 

(lw=0.14) or Remove code (lw=0.09) compared to high-performing novices (lw=0.10 

and lw=0.07, respectively), although these differences are weaker than the former. Both 

behaviors are unexpected responses to compiler errors and suggest that these students 

may have a misunderstanding of what a compiler error means. 

Across all novice students, there is a stronger connection between a submission con-

taining a failed unit test and consulting feedback to identify which unit test failed in the 

previous submission (lw=0.25). This behavior suggests that students frequently request 

feedback, but, as also demonstrated by the self-transitions of both error-related con-

structs, students’ submissions containing a compiler error are often followed by another 

submission with a compiler error. Also, when a student makes a submission with failed 

unit tests, subsequent submissions often also contain failed unit tests. Although all nov-

ices show this behavior (requesting feedback after a submission with failed unit tests), 

the difference model reveals that high-performing novices (lw=0.28) engage in this ac-

tion more frequently than their low-performing counterparts (lw=0.22). This indicates 

that students in the low-performing group may sometimes avoid or forget to request 

detailed feedback about the failed unit tests from their last submission. 

4.3 Specific Differences between High and Low Performing Students for each 

Type of Error 

To account for the specific differences in the frequency of submissions containing a 

compiler error and failed unit tests between each group, we conducted a secondary 

analysis and developed separate difference models for each error type, as shown in 

Figure 3 and Table 4. Along the X axis (MR1), the two groups were statistically signif-

icantly different for submissions following a compiler error (U=270, p<0.001) and for 

submissions following failed unit tests (U=334, p=0.009). For compiler errors, the dif-

ference model shows that high-performing novices tend to repeatedly modify the Re-

turn statement more frequently (lw=0.31) than low-performing novices (lw=0.24), alt-

hough this is still the strongest association for both groups. Additionally, high-perform-

ing novices more often adjust the If Header after modifying the Return statement 

(lw=0.15) and alter the Return statement following other types of code changes 

(lw=0.12) more than the low-performing groups (lw=0.12 and lw=0.08, respectively). 
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Fig. 3. Difference models comparing high (blue) and low (red) performing novices after the sub-

mission containing compiler errors (left) and failed unit tests (right). Only connections with 

weights over 0.02 are shown to enhance the clarity of the visualization. 

Table 4. Line weights of difference models contrasting behaviors after the submission contain-

ing compiler errors and failed unit tests of novices with high and low scores in the final test. 

Associations are listed based on the magnitude of the difference between the 2 groups for com-

piler errors. Differences greater than 0.03 are shown in bold. 

 Compiler Errors Failed Unit Tests 
Association High Low Diff High Low Diff 

Return → Return 0.31 0.24 0.07 0.18 0.22 -0.04 
Code Added → Testing 0.03 0.10 -0.07 0.05 0.06 -0.01 
Other Change → Return 0.12 0.08 0.04 0.03 0.06 -0.03 
Testing → Code Added 0.05 0.09 -0.04 0.05 0.06 -0.01 
Return → If Header 0.15 0.12 0.03 0.20 0.24 -0.04 
Code Removed → Return 0.12 0.15 -0.03 0.08 0.09 -0.01 
Code Added → Code Removed 0.11 0.14 -0.03 0.09 0.10 -0.01 
Code Added → If Header 0.13 0.10 0.03 0.18 0.16 0.03 
Code Added → Code Added 0.08 0.11 -0.03 0.08 0.10 -0.02 
Code Removed → Testing 0.01 0.04 -0.03 0.02 0.02 0.00 
Other Change → Code Removed 0.05 0.07 -0.03 0.02 0.02 0.00 
Code Removed → Code Added 0.12 0.14 -0.03 0.08 0.09 -0.01 
Other Change → Other Change 0.13 0.15 -0.02 0.06 0.03 0.03 
Return → Code Removed 0.10 0.12 -0.02 0.09 0.10 -0.01 
Other Change → If Header 0.09 0.11 -0.02 0.07 0.06 -0.01 
Return → Code Added 0.20 0.21 -0.01 0.15 0.20 -0.04 
If Header → Code Added 0.10 0.11 -0.01 0.23 0.15 0.07 
If Header → Other Change 0.11 0.10 0.01 0.05 0.07 -0.02 
Other Change → Code Added 0.08 0.09 0.01 0.04 0.06 0.02 
If Header → If Header 0.21 0.21 0.00 0.44 0.34 0.10 

The difference model for submissions with compiler errors shows that the primary 

action more prevalent among low-performing novices than high-performing ones is 
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modifying the Testing section of the code after Adding more lines (lw=0.10 for low-

performing vs. lw=0.03 for high-performing). Similarly, low-performing novices are 

more likely to alter the Testing section after Removing Code (lw=0.04) and exhibit more 

frequent fluctuation between Adding and Removing Code (lw=0.14 for removing after 

adding, and lw=0.11 for adding after removing). Low-performance novices also modify 

the Return statement more frequently (lw=0.15) than the high-performance group 

(lw=0.12), particularly after Removing Code. 

In summary, high-performing novices are more likely to act upon an apparent un-

derstanding that the most frequent sources of compiler errors (at least for the specific 

tasks considered here) are the If Header and Return statements, which are the sections 

they primarily modify in their submissions. While low-performing students also focus 

on these two code sections, they are more inclined to also add or remove code within 

the function body, testing, or other sections of code that are less likely to resolve a 

compiler error. 

For submissions containing failed unit tests, the high-performing group predomi-

nantly focuses on recurrently modifying the If Header (lw=0.44), possibly recognizing 

it as the primary section of the code where a mistake in logic could appear and cause 

their submissions to fail some unit tests. This is particularly true for the tasks considered 

in this study, which focus on conditional statements. High-performing novices also 

more frequently add lines of code after adjusting the If Header (lw=0.23) when failed 

unit tests have been identified in the submission, which is typical debugging behavior 

for addressing issues in conditional statement tasks. 

Although low-performing novices also frequently modify the If Header (lw=0.34) 

and add lines of code afterward (lw=0.15), they do so less often than their high-per-

forming counterparts. Occasionally, they shift to other types of changes (lw=0.07) such 

as introducing new variables or modifying existing expressions. They also sometimes 

choose to first modify the Return statement and then adjust the If Header (lw=0.24) or 

add new lines of code (lw=0.20). Given the cumulative nature of programming learning 

across tasks, it is possible that low-performing novices were trying to apply actions 

from prior coding tasks that they had not yet mastered. Although high performers also 

engage in these behaviors (lw=0.20 and lw=0.15, respectively), their strategies tend to 

focus more directly on the If Header. 

Examination of the two difference models reveals contrasting behaviors for each 

novice group when they encounter failed unit tests versus compiler errors. When deal-

ing with compiler errors, the transition from modifying the Return statement to the If 

Header is more prevalent among high-performing novices, indicating their recognition 

that many of these errors may stem from simple typos in the Return statement (e.g., 

missing a semicolon, improper operator usage, etc.). For submissions with failed unit 

tests, high performers recognize that primary logic issues can often be resolved by ad-

justing the If Header. Low-performing novices instead tend to make this transition from 

modifying the Return statement to the If Header more frequently for submissions with 

failed unit tests. This suggests that they might not have the same level of discernment 

between the types of errors as their high-performing peers, leading them to adopt strat-

egies that may not be as effective in resolving the issues in their program code. 
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5 Discussion and Conclusion 

In this study, we investigated patterns of fine-grained changes in novice learners’ de-

bugging behaviors when using an automated assessment tool, and the association be-

tween these changes and learning outcomes. Given that manually labeling a complete 

dataset with thousands of submissions is highly time-consuming to do manually, we 

used GPT-4 turbo to automate the process of identifying differences in students’ pro-

gramming code across multiple submissions. Next, we employed these automatically 

labeled examples to track code modifications made by students and used ONA to iden-

tify the differences in coding behaviors between groups of novice programmers who 

ultimately achieved high final scores and those who performed poorly. 

Our findings indicate that both groups began the course with similar incoming 

knowledge, and both groups demonstrated similar rates of activity, correctly solving 

approximately the same number of tasks involving conditional statements. When ex-

amining the complex patterns of behaviors using ordered networks, however, we ob-

served nuanced differences in how each group interacted with the code. These differ-

ences became apparent early in the semester. 

In particular, students who eventually scored well on the final exam tended to make 

changes involving key concepts relevant to the current stage of the learning path, such 

as conditional statements and the use of the return keyword. In contrast, students who 

scored low on the test frequently made changes unrelated to these core topics. This 

pattern suggests that, already at an early stage, the lower-performing students likely had 

a weaker grasp of key initial topics such as types and variables. 

Although future research still needs to investigate how these differences in debug-

ging behaviors also manifest for more advanced tasks throughout the semester (such as 

loops or recursion), they appeared to have a lasting impact on students’ progress. De-

spite visible engagement with the tasks, these foundational misunderstandings seemed 

to propagate throughout the course, culminating in lower final scores. This study high-

lights the critical role of early diagnostic and intervention strategies in programming 

courses where early foundational understanding is crucial for later success. Scaffolds 

could include tailored messages that can help indicate where errors can originate, or 

hints or notes to remind students of key concepts. 

GPT-based models have previously been employed to generate personalized feed-

back for students by analyzing the submissions that led to their most recent errors [9]. 

These models have demonstrated promising results in helping students learn to produce 

correct solutions, even after the feedback is turned off. Our findings suggest that these 

types of interventions can be further refined to not only consider students’ recent errors, 

but also to scaffold the behaviors they adopt while addressing compiler errors or failed 

unit tests, specifically helping them learn to focus on modifying the right sections of 

their programs. Additionally, it may be beneficial for instructors to analyze the individ-

ual ordered network models for each student as well as the overall classroom model to 

identify whether certain students or a significant portion of the class lacks foundational 

knowledge. By supporting students in learning to focus their debugging in the right 

areas, and addressing foundational knowledge gaps promptly, we may be able to miti-

gate the difficulties that students encounter later in the semester. 



14  M. Pankiewicz et al. 

Acknowledgments. Andres Felipe Zambrano thanks the Ministerio de Ciencia, Tecnología e 

Innovación and the Fulbright-Colombia commission for supporting his doctoral studies through 

the Fulbright-MinCiencias 2022 scholarship. 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article. 

References 

1. Ou, Q., Liang, W., He, Z., Liu, X., Yang, R., Wu, X.: Investigation and analysis of the current 

situation of programming education in primary and secondary schools. Heliyon. 9, (2023). 

2. Vegas, E., Hansen, M., Fowler, B.: Building skills for life: how to expand and improve com-

puter science education around the world (2021). 

3. Paiva, J.C., Leal, J.P., Figueira, Á.: Automated assessment in computer science education: A 

state-of-the-art review. ACM Transactions on Computing Education (TOCE). 22, 1–40 (2022). 

4. Pankiewicz, M., Baker, R., Ocumpaugh, J.: Using intelligent tutoring on the first steps of 

learning to program: affective and learning outcomes. In: International Conference on Artificial 

Intelligence in Education. pp. 593–598. Springer (2023). 

5. Lobb, R., Harlow, J.: Coderunner: a tool for assessing computer programming skills. ACM 

Inroads. 7, 47–51 (2016). 

6. Edwards, S.H., Murali, K.P.: CodeWorkout: Short Programming Exercises with Built-in Data 

Collection. In: Proceedings of the 2017 ACM Conference on Innovation and Technology in Com-

puter Science Education. pp. 188–193. (2017). 

7. Jadud, M.C., Dorn, B.: Aggregate Compilation Behavior: Findings and Implications from 

27,698 Users. In: Proceedings of the Eleventh Annual International Conference on International 

Computing Education Research. pp. 131–139. Association for Computing Machinery, New 

York, NY, USA (2015). 

8. Rivers, K., Koedinger, K.R.: Data-Driven Hint Generation in Vast Solution Spaces: a Self-

Improving Python Programming Tutor. International Journal of Artificial Intelligence in Educa-

tion. 27, 37–64 (2017). 

9. Pankiewicz, M., Baker, R.S.: Large Language Models (GPT) for Automating Feedback on 

Programming Assignments. In: International Conference on Computers in Education. pp. 68–77 

(2023). 

10.  Pereira, F.D., Fonseca, S.C., Oliveira, E.H.T., Cristea, A.I., Bellhäuser, H., Rodrigues, L., 

Oliveira, D.B.F., Isotani, S., Carvalho, L.S.G.: Explaining Individual and Collective Program-

ming Students’ Behavior by Interpreting a Black-Box Predictive Model. IEEE Access. 9, 

117097–117119 (2021). 

11. Theobold, A.S., Wickstrom, M.H., Hancock, S.A.: Coding Code: Qualitative Methods for 

Investigating Data Science Skills. Journal of Statistics and Data Science Education. 32, 161–173 

(2024). 

12.  Zambrano, A.F., Liu, X., Barany, A., Baker, R.S., Kim, J., Nasiar, N.: From ncoder to 

chatgpt: From automated coding to refining human coding. In: International Conference on 

Quantitative Ethnography. pp. 470–485. Springer (2023). 

13.  Barany, A., Nasiar, N., Porter, C., Zambrano, A.F., Andres, A., Bright, D., Choi, J., Gao, S., 

Giordano, C., Liu, X., Mehta, S., Shah, M., Zhang, J., Baker, R.S.: ChatGPT for Education 



 How we Code Code 15 

Research: Exploring the Potential of Large Language Models for Qualitative Codebook Devel-

opment. In: International Conference on Artificial Intelligence in Education. Springer (2024). 

14. Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained and accu-

rate source code differencing. In: Proceedings of the 29th ACM/IEEE International Conference 

on Automated Software Engineering. pp. 313–324. (2014). 

15.  Liu, K., Kim, D., Bissyandé, T.F., Yoo, S., Le Traon, Y.: Mining Fix Patterns for FindBugs 

Violations. IEEE Transactions on Software Engineering. 47, 165–188 (2021).  

16.  Ade-Ibijola, A., Ewert, S., Sanders, I.: Abstracting and Narrating Novice Programs Using 

Regular Expressions. In: Proceedings of the Southern African Institute for Computer Scientist 

and Information Technologists Annual Conference 2014. pp. 19–28. (2014).  

17.  De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling source code 

with information retrieval methods: an empirical study. Empirical Software Engineering. 19, 

1383–1420 (2014). 

18.  Mohammadi-Aragh, M.J., Beck, P.J., Barton, A.K., Reese, D., Jones, B.A., Jankun-Kelly, 

M.: Coding the Coders: A Qualitative Investigation of Students’ Commenting Patterns. In: 2018 

ASEE Annual Conference &amp; Exposition. ASEE Conferences, Salt Lake City, Utah (2018). 

19. Lewis, C.M.: The importance of students’ attention to program state: a case study of debug-

ging behavior. In: Proceedings of the Ninth Annual International Conference on International 

Computing Education Research. pp. 127–134. (2012). 

20.  Su, Y.-S., Wang, S., Liu, X.: Using Epistemic Network Analysis to Explore Primary School 

Students’ Computational Thinking in Pair Programming Learning. Journal of Educational Com-

puting Research. 62, 559–593 (2024). 

21. Vandenberg, J., Lynch, C., Boyer, K.E., Wiebe, E.: “I remember how to do it”: exploring 

upper elementary students’ collaborative regulation while pair programming using epistemic net-

work analysis. Computer Science Education. 33, 429–457 (2023). 

22. Wu, B., Hu, Y., Ruis, A.R., Wang, M.: Analysing computational thinking in collaborative 

programming: A quantitative ethnography approach. Journal of Computer Assisted Learning. 35, 

421–434 (2019). 

23.  Pinto, J.D., Liu, Q., Paquette, L., Zhang, Y., Fan, A.X.: Investigating the Relationship Be-

tween Programming Experience and Debugging Behaviors in an Introductory Computer Science 

Course. In: International Conference on Quantitative Ethnography. pp. 125–139. (2023). 

24.  Zambrano, A.F., Pankiewicz, M., Barany, A., Baker, R.S.: Ordered Network Analysis in CS 

Education: Unveiling Patterns of Success and Struggle in Automated Programming Assessment. 

In: International Conference on Innovation and Technology in Computer Science Education. pp. 

443–449. Association for Computing Machinery (2024). 

25. Cai, Z., Siebert-Evenstone, A., Eagan, B., Shaffer, D.W., Hu, X., Graesser, A.C.: nCoder+: 

A Semantic Tool for Improving Recall of nCoder Coding. In: Eagan, B., Misfeldt, M., and 

Siebert-Evenstone, A. (eds.) Advances in Quantitative Ethnography. pp. 41–54. (2019). 

26.  Dubovi, I., Tabak, I.: Interactions between emotional and cognitive engagement with science 

on YouTube. Public Understanding of Science. 30, 759–776 (2021).  

27.  Izu, C., Denny, P., Roy, S.: A Resource to Support Novices Refactoring Conditional State-

ments. In: Proceedings of the 27th ACM Conference on on Innovation and Technology in Com-

puter Science Education Vol. 1. pp. 344–350.  

 


