
1 
 

Chapter (X): Knowledge Inference Models Used in Adaptive Learning 
Maria Ofelia Z. San Pedro, ACT, Inc. 

Ryan S. Baker, University of Pennsylvania 
 

Abstract 
 
This chapter provides an overview of adaptive learning and examines the student model 

component used in adaptive learning systems. Established and more recent approaches to student 

modeling that infer student knowledge (i.e. what students know at any given moment during the 

learning experience) are discussed, as student knowledge is the most common learner 

characteristic widely assessed in large-scale adaptive systems. This chapter concludes with a 

discussion of the limitations of the current generation of adaptive learning systems, and areas of 

potential for future progress. 
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In recent years, digital environments for learning and assessment have come to provide 

rich opportunities to capture and utilize data on the learning experiences of students, increasing 

the potential to fully personalize learning in these environments. When online learning systems 

use data to tailor to student characteristics and performance, they become adaptive learning 

environments. Although existing systems generally fall short of this idea (see review in Baker, 

2016), an ideal adaptive learning environment would adapt to assessments of a wide range of 

student attributes and constructs influential to the learning experience – student knowledge, 

academic emotions, behavioral engagement and motivation. Successful adaptive learning 

systems can utilize detailed learner activity data in real-time to make inferences which are in turn 

used to automatically provide the learner with individualized support. Such support can come in 

the form of adaptive sequencing in the student’s learning experience by automatically adjusting 
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the sequence of the next content or skills to master (VanLehn (2006)’s “outer-loop”), including 

adjusting difficulty of the items given, and also in adaptive content in response to a student’s 

unique response, such as corrective feedback, context-sensitive hints, supportive messages, 

metacognitive advice (VanLehn’s “inner-loop”)..  

Examples of adaptive learning systems that have successfully emerged over the years 

include intelligent tutoring systems (ITSs), adaptive platforms developed by educational 

publishers, adaptive educational games, adaptive educational hypermedia systems, and adaptive 

online courseware.  The combination of maturing technology and government educational 

initiatives has led to a growth in the number of adaptive learning systems used by schools. 

Increasingly, ITSs designed to teach math skills are being used at large-scale (hundreds of 

thousands of users each year, in schools and districts across the US), including Cognitive Tutors 

from Carnegie Learning, shown to lead to better performance on standardized exams (Pane, 

Griffin, McCaffrey, & Karam, 2014), and subsequent math courses (Koedinger, Corbett, & 

Ritter, 2000); and ALEKS from McGraw Hill Education, shown to increase class attendance and 

math performance when implemented in after-school programs (Craig et al., 2011). Some 

systems have been designed to provide a platform for instructor users to develop and import their 

content and pedagogical practices (e.g. Smart Sparrow, CogBooks, ASSISTments), while others 

provide instructional content created by the provider (e.g. Adapt Courseware, LearnSmart, 

Reasoning Mind).  

The development of adaptive learning systems has in many cases leveraged methods 

from learning analytics (LA) and educational data mining (EDM) (Baker & Siemens, 2014), 

communities that employ machine learning and statistical techniques in the processing and 

modeling of fine-grained data. An alternate paradigm, Computational Psychometrics (CP), aims 
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to integrate data-driven computer science methods (machine learning and data mining, in 

particular) in theoretical psychometric frameworks to support accurate and valid measurements 

of latent abilities in real time (Von Davier, 2017). Computational psychometrics attempts to 

address data dependencies and multidimensionality that are not easily handled by traditional 

psychometric models (e.g., IRT), using psychometric approaches towards handling the hierarchy 

in educational data. Both EDM/LA and CP have the goal of measuring learners’ proficiencies, 

skills, and other attributes. A comprehensive discussion of the differences between EDM/LA and 

CP is, however, outside the scope of this chapter. 

In this chapter, we provide an overview of adaptive learning and describe its essential 

components. In particular, this chapter will focus on several student modeling approaches that 

evaluate what students know (i.e. student knowledge) at any given moment during the learning 

experience, as this is the most common learner characteristic widely assessed in large-scale 

adaptive systems (Pelanek, 2017a). We then look into how these approaches are themselves 

validated, and discuss examples of how adaptive systems tailor learner experiences based on 

those assessments. We conclude with a discussion of the limitations of the current generation of 

adaptive learning systems, and areas of potential for future progress. 

 

What is Adaptive Learning? 

Adaptive learning in educational settings is a method for personalizing learning 

experiences for students. Adaptive learning uses technology (typically online systems) and the 

data the system collects to evaluate students’ interactions and performance towards identifying 

their needs and tailoring instruction, remediation, and other aspects of the learning experience to 

aid students to learn the material and succeed. The goal is to provide the best possible learning 
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content and resources for the students’ needs at a particular point in time. While most extant 

systems used at scale adapt to students’ knowledge and limitations in understanding, research 

systems have adapted to other aspects as well, such as affect and motivation (Arroyo et al., 2014; 

D’Mello et al., 2010; Rebolledo-Medez, du Boulay, & Luckin, 2005). Adaptive learning 

leverages findings and methods from cognitive science, educational psychology and artificial 

intelligence, in order to achieve these goals.  Modern adaptive learning systems can identify what 

a student knows and does not know, their skills, and strategies, and can pin down the source of 

the misconceptions. They can in many other cases detect a student’s learning goals, affective 

state, level of engagement, and their motivation to learn.  

It is important to note that adaptive learning is different from adaptive assessment or 

testing.  As mentioned earlier, adaptive testing estimates the student’s proficiency to select the 

next test item to present to the student. The goal of adaptive testing is to maximize the amount of 

information about proficiency gained from the test while minimizing the amount of time required 

to complete the test. In contrast, the goal of adaptive learning is to optimize the student’s 

learning experience by both assessing his or her proficiency or behavior and providing the 

necessary individualized support towards mastery and achievement. This is similar to the 

framework of Reinforcement Learning (RL), which models sequential decisions where an agent 

interacting with an environment learns a policy (a mapping of states to action) that maximizes a 

reward (Sutton and Barto, 1998). In the context of learning and instruction, these states can be 

students’ cognitive states, the actions are instructional activities (e.g., problems, worked 

examples, video content, etc.) that can modify the student’s cognitive state, and the reward can 

be a measure of the quality of the action (e.g., reward for a student learning a skill). 
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One core aspect of most adaptive learning systems is the explicit use of a student model 

(Sottilare, Holden, Graesser, & Hu, 2013; Wenger, 1987; Woolf, 2010) that consists of measures 

of the student’s knowledge, goals, engagement, and other pertinent attributes that enable the 

system to make informed decisions in adapting to individual students. (Note that this use of the 

term “student model” is different from the use seen in the Evidence-Centered Design framework, 

i.e. Mislevy & Riconscente, 2006, and precedes it by a considerable amount of time). Student 

models can contain assessments of each of these constructs, and update them in real time, so that 

they can be used in adaptation or provided to the instructor. It is worthwhile to note that adaptive 

learning systems can be designed to use explicit student models first when deciding on a specific 

adaptation to a student (e.g., model-based RL) or only use data to learn an adaptation without 

any student models (e.g., model-free RL), as we discuss later in this chapter. 

 

Framework for Adaptive Learning Systems 

At their core, online or digital learning systems are made adaptive by being built with 

three major components: a domain model, a student model, and a pedagogical or instructional 

model (Figure 1). This is broadly the same set of components that has been used to describe 

intelligent tutoring systems (ITSs) (Sottilare, Holden, Graesser, & Hu, 2013; Wenger, 1987; 

Woolf, 2010), and similar to the components used to describe adaptive educational hypermedia 

(AEH) (Brusilovsky, Karagiannidis, & Sampson, 2004; Karampiperis & Sampson, 2005). The 

domain model refers to the content domain to be taught by the system, containing the set of 

topics and the corresponding learning objectives or outcomes, skills, knowledge, and strategies 

needed to learn them (Nkambou, Mizoguchi, & Bourdeau, 2010; Sottilare, Holden, Graesser, & 

Hu, 2013; Woolf, 2010). It is a representation of the ideal expert knowledge which can be in the 
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form of content standards, prerequisite knowledge, or common misconceptions that students 

normally exhibit for a skill or content. The student model assesses the student users’ cognitive 

state, as well as other states (such as affective, behavioral and motivational states) based on the 

student’s interaction with the learning system. The information from the student model is what 

adaptive learning systems consider in selecting the content and instruction to present to the 

student user. The pedagogical or instructional model selects the specific content, tutoring 

strategies and feedback for an individual student at a specific time (generally designed based on 

theories in pedagogy and instruction; in RL, it is referred algorithmically as policy or the 

instructional policy). It takes information from the domain and student models as inputs and 

decides the next activity the system will provide to the student user based on that information 

(Sottilare, Holden, Graesser, & Hu, 2013; VanLehn, 2006). While this component allows for 

automated adaptation in terms of deciding what to do next, certain mixed-initiative systems 

allow students to initiate the actions, ask questions or request for help (Aleven, McLaren, Roll & 

Koedinger, 2006). 
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Figure 1. Adaptive Learning Systems Framework. 

 

Adapting to Student Knowledge 

Developing a good student model is usually seen as the starting point in the development 

of adaptive learning systems. There has been considerable research to determine which learner 

attributes can form the basis of meaningful and effective intervention, while at the same time 

being tractable to capture within a real-world system (Ahn & Brusilovsky, 2009; Biswas et al., 

2005; Canfield, 2001; Graesser et al., 2007; Hu et al., 2012; Jeremic, Jovanovic, & Gasevic, 

2009; Koedinger et al., 2006; Murray & Arroyo, 2002; Razzaq et al., 2005; VanLehn, 2006). 

While there are several approaches to adaptability, most of current implemented adaptive 

learning systems are characterized by inferring student knowledge, and then adapting in an 

immediate fashion to that inference, for example by providing a hint to a struggling student or by 
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providing mastery learning – giving the student additional practice on a difficult skill until he or 

she demonstrates mastery. Learning systems that adapt based on machine-learning based 

detection of student affect or meta-cognition, while successful in limited studies (Azevedo et al., 

2012; D’Mello et al., 2009; DeFalco, et al., 2018), have not yet scaled the way that knowledge-

based adaptivity has. Systems using mastery learning represent student knowledge as skills, 

facts, or concepts, and track student progress from one problem or activity to the next, building a 

skill mastery profile for the students in order to eventually make decisions about when the 

student should move on to the next topic.  

One core example of an adaptive learning system that uses knowledge estimates within 

mastery learning is the Cognitive Tutor (Koedinger & Corbett, 2006), mentioned above. The 

system makes use of a probabilistic user model that assesses student knowledge in real-time. 

With each student action (e.g., answering correctly or incorrectly, requesting for help) linked to a 

skill (or sometimes referred to as a knowledge component or KC) needed to solve a problem, the 

system evaluates  these actions and aggregates these evaluations into evidence about which skills 

the student has learned or not learned (Corbett & Anderson, 1995), and displays this skills 

progress to students and teachers.  The system then provides the student with practice on the 

current skill until the student demonstrates mastery of that skill.  

Andes is an adaptive learning system that teaches Newtonian physics using coached 

problem solving (VanLehn, 1996) where the system and the student collaborate in solving a 

problem. Its student model uses a Bayesian Network probabilistic framework that assesses a 

student’s plans in solving the problem, predicts the student’s goals and actions, and provides a 

long-term evaluation of a student’s domain knowledge. The tutor updates its student model based 

on the problems the student has worked on and the student’s fine-grained interactions with the 
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system during problem solving, assessing the probability and uncertainty of the student’s 

knowledge state (Conati, Gertner, VanLehn, & Druzdzel, 1997). 

 Another example of an adaptive learning system that evaluates student knowledge in its 

student model is the SQL-Tutor, an intelligent tutoring system used in courses on database 

theory and the SQL database query language (Mitrovic, 1998). It selects a problem based on a 

constraint-based student model (Ohlsson, 1994) that represents correct knowledge in solving a 

problem as a set of constraints – aspects a correct solution must have. If a student’s solution 

violates a constraint, the system intervenes through feedback attached to that constraint. This 

feedback informs the student what is incorrect, why it was incorrect and points out the 

corresponding domain principle attached to that constraint.  

By modeling what a student knows, and updating a student’s skill mastery profile in real-

time, the system can then organize instruction around what the student knows, as well as provide 

feedback on the student’s current state of knowledge. There have been several modeling 

approaches to infer what a student knows at a given time. In this section, we review one widely-

used knowledge inference model, and then discuss other recent approaches to inferring student 

knowledge. 

 

Bayesian Knowledge Tracing 

To model and quantify student learning, many adaptive learning systems employ an 

approach known as Bayesian Knowledge Tracing (BKT) (Corbett & Anderson, 1995). BKT aims 

to infer the latent construct of the student’s knowledge state for a skill (i.e. does a student know a 

certain skill at a given time?) from a student’s pattern of correct and incorrect answers to 

problems or problem steps that require that skill up until that point. The model posits that at any 
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given moment to demonstrate a skill, the knowledge state of a student is either mastered or not 

mastered, with a certain probability that is calculated given the student’s observed performance 

of correct and incorrect responses (Figure 2). It updates its knowledge inference that the student 

has mastered a skill or not on each opportunity of demonstrating that skill (e.g., through an item 

or problem step). Some extensions to Bayesian Knowledge Tracing have also added probabilistic 

correctness on items as well as binary correctness (right, wrong) (e.g. Sao Pedro et al., 2013). 

 

Figure 2. Corbett and Anderson’s model of Bayesian Knowledge Tracing. 

 

In its original formulation, only the first attempt at an opportunity to practice or 

demonstrate a skill (sometimes referred to as a practice opportunity) is considered, and each item 

or problem step corresponds to only a single skill. A set of four parameters is fit for each skill, 

and these four parameters remain invariant across the entire context of using the learning system: 

two learning parameters, P(L0) or initial knowledge (initial probability of knowing the skill) and 

P(T) or probability of learning the skill (at each opportunity to make use of the skill), together 

with two performance parameters P(G) or guess (probability that the student will give a correct 

answer despite not knowing a skill) and P(S) or slip (probability that the student will give an 



11 
 

incorrect answer despite knowing the skill). Both the expectation maximization algorithm and 

grid search have been used to estimate the parameters from training data. The assumption is 

made that students do not forgot a skill once they have learned it. Another assumption is that all 

items, within the same skill, have the same difficulty, and that no contextual factors (beyond 

what skill it is) impact student performance or learning. Reye (2004) shows how BKT equations 

could be derived from a Hidden Markov Model or Dynamic Bayesian Network. Several 

algorithms have been used to estimate the parameters from training data, with approximately 

equal performance; several packages are available on the web to fit BKT parameters. 

Using Bayesian analysis below, the system continually updates the estimate that a student 

knows a skill, whenever a student gives a first response to an item or problem step (correct or 

incorrect, bug, help request; help requests are treated as evidence that the student does not know 

the skill). This is done by first re-calculating the probability that the student knew the skill before 

making that first attempt (equations 1 and 2), and then updating the probability based on the 

possibility  that the student learned the skill at the current item or problem step (equation 3). 

)(*))(1())(1(*)(

))(1(*)(
)|(

11

1
1 GPLPSPLP

SPLP
CorrectLP

nn

n
nn




 


  (1) 

))(1(*))(1()(*)(

)(*)(
)|(

11

1
1 GPLPSPLP

SPLP
IncorrectLP

nn

n
nn 





  (2) 

))(*))|(1(()|()|( 11 TPActionLPActionLPActionLP nnnnnn    (3)    



12 
 

Two common parameter fitting methods for standard BKT1 uses Expectation-

Maximization (EM)2 and brute force grid search3.  

One of the key assumptions of BKT is that its parameters vary by skill or knowledge 

components but remain constant for all other factors. In recent years, significant research have 

been conducted to remove or modify this assumption – either by relaxing one of its assumptions 

or considering additional information. For example, researchers have contextualized the 

parameter estimates of guess and slip using number of attempts and time spent (Baker, Corbett, 

& Aleven, 2008), contextualized the four original parameters with the use of help (Beck et al., 

2008), individualized the initial probability of mastery (prior per-student) (Pardos & Heffernan, 

2010), added item-level parameters difficulty in BKT (Pardos & Heffernan, 2011; Khajah et al., 

2014; Gonzalez-Brenes et al., 2014), and have accounted for student differences in terms of 

initial mastery probabilities and skill learning probabilities (Yudelson et al., 2013). 

Performance Factor Analysis 

Another relatively prominent model for student knowledge inference in ITSs is 

Performance Factor Analysis (PFA) (Pavlik, Cen, & Koedinger, 2009). In PFA, the student’s 

skill estimate is represented by estimating the probability that a student will get the item related 

to that skill correct. PFA employs a logistic regression model to predict student performance for 

a new item in terms of the number of success and failures (correctness or incorrectness) attained 

for the skills involved in that item so far. Unlike BKT, PFA assumes each item may involve 

multiple latent traits or skills. Each skill in the PFA model has the following parameters:  

 
 

1 A scalable code written in C/C++ that fits Hidden Markov Models (BKT specifically) at scale can be found at 
https://github.com/myudelson/hmm-scalable  
2 EM used in modeling BKT with Bayes Net Toolbox for Student Modeling (BNT-SM). Matlab code can be found 
at http://www.cs.cmu.edu/~listen/BNT-SM/ 
3 Brute force grid search program code written in Java can be found at 
http://www.upenn.edu/learninganalytics/ryanbaker/edmtools.html 
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β the difficulty of the skill (can also represent item difficulty in some model variants) 
γ the effect of prior successes tracked s for a skill (or KC), or success learning rate 
ρ the effect of prior failures tracked f for a skill (or KC), or failure learning rate 

Together with tracking the prior successes (s) and prior failures (f) for the KC for the 

student on each relevant skill, the probability that the learner will get the next item correct 

(P(m))is computed (with Expectation Maximization used to fit the parameters): 

𝑚ሺ𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑠, 𝑓ሻ ൌ  ∑ ሺ𝛽  𝛾𝑠,  𝜌𝑓,ሻ∈௦      (4) 
 

                                                                  𝑃ሺ𝑚ሻ ൌ ଵ

ଵା ష                            (5) 

            

In published comparisons, PFA has achieved predictive performance roughly comparable 

to BKT (see review in Pardos et al., 2011). 

 

Deep Knowledge Tracing 

Deep knowledge tracing (DKT), introduced by Piech et al. (2015), is based on deep 

learning or recurrent neural networks (RNN) (Rumelhart et al., 1985) to represent the latent 

knowledge state. Instead of producing a separate model for each skill, DKT models all skills 

together. The input to the RNNs consists of compressed representations of a student action (one-

hot-encodings), resulting in a vector of predictions on the probability of getting items or 

exercises in the dataset correct. By using the sequence of student performance across skills, DKT 

provides predictions of a student’s performance on future items within the system. Aside from 

the input and output layers, the RNN model also has a hidden layer with recurrent connections 

that serves to retain relevant aspects of the input that are useful for predicting future performance 

(Khajah, et al., 2016). As a student progresses, DKT utilizes information from previous items 

when useful to make inferences regarding future performance in every skill. RNNs have a high 

dimensional, continuous, representation of latent state giving them the ability to use this rich 
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information as input in making prediction at a much later point in time. DKT has thus far been 

trained using stochastic gradient descent on mini batches, optimizing for negative log likelihood. 

Khajah and colleagues (2016) found that modern extensions to BKT (inclusion of 

forgetting, latent student abilities and skill induction) achieved performance equivalent to DKT, 

though both approaches had higher predictive accuracy than Classical BKT. However, more 

recent extensions to DKT have proven better than BKT and PFA both at predicting future 

performance within the learning system (Zhang et al., 2017; Yeung & Yeung, 2018) and at 

predicting future performance on paper post-tests (Scruggs et al., 2020). 

 

Elo Rating System 

An emerging paradigm for predicting student knowledge in adapting learning systems is 

the Elo Rating System (Pelanek, 2016). Traditional Item Response Theory (IRT) assesses a 

student’s knowledge of a particular topic by computing the probability that a student will get an 

item correct based on a fixed ability parameter for the student and difficulty and (sometimes) 

discriminability parameters of the item. It assumes there is only one skill being measured per set 

of items, though other psychometrics models relax this assumption (e.g., CDM, Rupp, Templin 

& Henson, 2010; multidimensional IRT, Embretson & Reise, 2000). IRT also assumes that no 

learning occurs between items, a problematic assumption in online adaptive learning, where a 

lack of learning would imply that the learning system was fundamentally failing in its goals. The 

Elo Rating System (Pelanek, 2016), a variant of the 1-PL IRT model, relaxes this assumption and 

can be used in a running system: the Elo Rating System (Pelanek, 2016) which is. The Elo 

Rating System continually estimates item difficulty and student ability, updating both every time 

a student encounters an item. It was originally devised for chess rating but has been used in 
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student modeling by evaluating a student’s item response as a “match” between the student and 

the item.  

Applying the Elo rating system in the context of adaptive learning systems, Pelanek 

(2016) denotes the skill of a student s as θS, item (i) difficulty as di and the student response as 

correctsi ∈ {0, 1}. A logistic function using the skill and item difficulty gives the probability of a 

correct answer:  

𝑃ሺ𝑐𝑜𝑟𝑟𝑒𝑐𝑡௦ ൌ  1ሻ ൌ ଵ

ଵା షሺഇೄష ሻ        (6) 

 
𝜃ௌ ≔  𝜃ௌ  𝐾 ∙ ሺ𝑐𝑜𝑟𝑟𝑒𝑐𝑡௦ െ 𝑃ሺ𝑐𝑜𝑟𝑟𝑒𝑐𝑡௦ ൌ 1ሻ    (7)* 
 𝑑 ≔  𝑑  𝐾 ∙ ሺ𝑃ሺ𝑐𝑜𝑟𝑟𝑒𝑐𝑡௦ ൌ  1ሻ െ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡௦    (8)* 

       * where K is a parameter for how strongly the model should consider new information. 

The Elo rating system has been shown to provide good prediction accuracy (Nižnan, 

Pelánek, & Rihák, 2015), and better performance than standard PFA and BKT when extended in 

combination with PFA (Papousek, Pelánek, & Stanislav, 2014). The Elo rating system provides 

both simplicity and flexibility in its student modeling approach which makes it easy to 

implement in educational systems (Pelanek, 2016; Von Davier et al., 2019; Yudelson, Rosen, 

Polyak & de la Torre, 2019). 

 

Model Assessment 

Models such as BKT, PFA, DKT, and Elo are often assessed and validated in multiple 

ways. The most common way that these types of models are assessed is by building the model on 

one group of students, applying it to a new, unseen group of students, and testing the model’s 

performance at predicting future performance for these students. Typically, performance on the 

nth opportunity to demonstrate a skill is predicted from the model’s state at the (n-1)th 

opportunity to demonstrate that skill. Most commonly, student-level cross-validation is used so 
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that every student’s data can be used in both training and test set. By doing so, it becomes 

possible to determine whether a model is generalizable. The resultant predictions are evaluated 

using multiple metrics – there is an ongoing and continuing debate in the field as to which of 

several metrics is best, including AUC ROC, RMSE, log likelihood, and others (Pardos & 

Yudelson, 2013; Pelanek, 2015). There is also debate as to whether evaluation should be 

conducted at the grain-size of all data points together (i.e. differentiating prediction across 

students and skills) or individual within-student or within-skill (i.e. differentiating the model’s 

ability to determine when a student learns or when a specific skill is known) (Pelanek, 2017b). 

Note that a model’s ability to differentiate whether a student has learned – by being able to 

predict when a student will demonstrate successful or unsuccessful performance -- is somewhat 

different than common psychometric notions of reliability of assessment in that the knowledge 

states of students are changing as they are being assessed. If the student is learning – and in an 

adaptive learning system we hope they are – we should not hope that our assessments of that 

student will agree over time. 

Although the most common form of assessment of this type of knowledge model is 

immediate future performance, many papers have also looked at whether the resultant models 

could predict performance on future tests of the same knowledge, administered through other 

modalities, such as paper post-tests (see, for instance, Corbett & Anderson, 1995; Sao Pedro et 

al., 2013). This practice can help to establish that the model is capturing a more general indicator 

of student knowledge. Models are often also studied to determine whether all items belong 

within the skill, through examining whether better fit is achieved if an item is excluded (Corbett 

& Anderson, 1995; Stamper & Koedinger, 2011). One other key differentiator between models is 

the degree to which they infer a latent construct. Whereas BKT and Elo infer a latent construct 
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(i.e., student knowledge, ability), which can be used in several ways, DKT and PFA are limited 

to predicting performance on specific items. This limitation means that, despite DKT’s better 

performance than BKT’s original articulation, it cannot be straightforwardly used for many of 

the purposes that BKT has been used for, such as predicting performance outside the learning 

system and use in models of engagement and affect (e.g. Pardos et al., 2014). 

 

Adapting to Student Attributes 

Once learner attributes (in this paper, student knowledge) are modeled by an adaptive 

learning system, the pedagogical model is designed to select problems or customize instructional 

content for the learner. Adaptive systems take into account the information in the student models 

and behave differently in terms of pedagogical mechanisms for different students or groups of 

students, aimed at providing individualized support for better learning.  

An example of adaptation that is more complex than simple mastery learning is seen in 

Assessment and Learning in Knowledge Spaces (ALEKS), (Canfield, 2001; Hu et al., 2012) a 

web-based assessment and learning system that attempts to identify when a student is struggling 

because the student does not know a prerequisite skill, so that it can switch to supporting the 

student in learning the prerequisite skill. As the student progresses in learning topics, ALEKS 

updates its student model and uses that information to make a principled selection of what skills 

it asks the student to work on.  

Several aspects of the learning experience can be adapted, including the content’s 

complexity or difficulty (Murray & Arroyo, 2002; VanLehn, 2006), scaffolding and support 

(Razzaq et al., 2005; Koedinger et al., 2006), the visual interface (Ahn & Brusilovsky, 2009; 

Jeremic, Jovanovic, & Gasevic, 2009), and feedback prompts such as hints, prompts or 

communications from pedagogical agents (Biswas et al., 2005; Razzaq et al., 2005; Graesser et 
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al., 2007). While many of these systems have hand-coded intervention logic, some experimental 

systems go beyond this to use algorithms which attempt to automatically discover which types of 

interventions work for which students, under which conditions (e.g. Chi, VanLehn, Litman, & 

Jordan, 2011). Through this process, the system “learns” more about the student in real-time, and 

what works for this student, as the student responds to the instructional or learning material 

presented to them.  

Finally, some systems provide support through natural language dialogues. The best 

known example is AutoTutor (Graesser, Jackson, & McDaniel, 2007). It employs semantic 

analyses to compare a student’s input text to the text of the ideal answer to a problem, as well as 

sample text representing other potential answers, including both good answers and 

misconceptions. By recognizing a range of potential answers (and being able to do textual 

transformations between canonical answers and alternate ways of saying the same thing), 

AutoTutor can respond in a flexible and sensitive fashion. It adaptively responds to the student 

answers, whether answers are incomplete or representing misconceptions, by engaging in a 

variety of tutorial strategies, including asking for more information, giving positive, neutral or 

negative messages, prompts for missing words, giving hints, answering questions from students, 

and summarizing answers (Graesser, Jackson, & McDaniel, 2007). 

 

Conclusion 

In this chapter, we provided an overview of student modeling used in adaptive learning, 

focusing on modern approaches to inferring student knowledge – the most common student 

attribute being adapted to in current large-scale adaptive learning systems. We have discussed a 

small number of established adaptive educational systems, as well as established and more recent 
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knowledge inference models.  Although not discussed in detail here, most of the systems 

presented in this chapter have been shown to lead to significantly better student outcomes than 

traditional curricular approaches (Graesser, Jackson, & McDaniel, 2007; Hu et al., 2012; 

Koedinger, Anderson, Hadley, & Mark, 1997; Leelawong & Biswas, 2008; Razzaq, et al., 2005), 

although relatively few systems have achieved a high rating in research review databases such as 

the What Works Clearinghouse or Evidence for ESSA. Especially in the United States, adaptive 

learning systems have achieved scale, with systems such as the Cognitive Tutor or ALEKS being 

used by hundreds of thousands of students. 

One interesting limitation to the current generation of adaptive learning systems, 

discussed in detail in (Baker, 2016), is that with a few exceptions (such as Affective AutoTutor, 

for instance), most existing systems adapt to a single dimension of the learner, in a single way. 

Individual systems become very effective at using mastery learning, or at providing feedback 

when students violate constraints, and perhaps giving messages as to why the student is wrong – 

but comprehensive support for problem selection, misconceptions, affect, motivation, disengaged 

behavior, and self-regulated learning is rare. Baker (2016) suggests that this is because of the 

difficulty and complexity of getting any one type of intervention correct; for adaptive learning 

systems to reach their full potential, they will have to surmount this challenge and consider and 

adapt to the student in a richer, more multi-dimensional fashion.  
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