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ABSTRACT 
A number of studies have demonstrated strong links between 
students' language features (as found in spoken and written 
production) and their math performance. However, no studies 
have examined links between the students’ language features and 
measures of their Math Identity. This project extends prior studies 
that use natural language processing (NLP) features to examine 
student language features and math performance, replicating their 
analyses. The study then uses NLP features to model students’ 
Math Identity. Specifically, the study compares performance on 
basic math skills within an online math tutoring system to both 
student language (as captured in emails to a virtual pedagogical 
agent) and to survey measures of Math Identity (math self 
concept, interest, and value). Language features were analyzed by 
a number of NLP tools that extracted information related to text 
cohesion, lexical sophistication, and sentiment. The findings 
indicate weak to medium relationships between math scores and 
Math Identity and language features were able to predict a 
significant amount of the variance in each Math Identity variable 
and in math scores. The potential for these measures to inform 
interventions for students with lower Math Identity is discussed. 
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1. INTRODUCTION 
Educational Data Mining (EDM) has, among its many 
applications, been employed to better understand student-level 
differences that are important to personalization efforts in 
educational settings [1, 2]. These include efforts to better 
understand constructs like student engagement (e.g., [3]), self-
efficacy [4], and self-concept [5]. Many of these studies have 
relied upon sensors (e.g. posture sensors, vocal recognition, 
heartbeat, video, sweat/skin conductance, EEG), which can 
sometimes make it challenging to implement interventions in situ. 
Research using student interaction data has become more common 
even when modeling highly qualitative constructs like student 
engagement (c.f., [3]), but to date, much of these efforts have 
focused on temporally short variables (e.g., state-based variables 
like behaviors and affect), rather than on trait-based variables such 
as identity, which are larger in scope and duration. 

Work in related research areas has shown results that suggest that 
trait-based variables may be a promising area for investigation. 
Within the EDM community, there is now a growing body of 
research on identity-related constructs, such as motivation and 
self-regulated learning strategies (cf. [6]). Meanwhile, the related 
field of Natural Language Processing (NLP) has demonstrated 
relationships between language use and personality characteristics 
(cf.,[7, 8]). Detecting a construct like identity, which underlies 
motivation and goals [9], could further advance efforts toward 
personalized learning within educational setting, including the 
development of effective intervention strategies. 
Identity, broadly, refers to a person’s sense of who they are and 
the development of an identity permits people to make predictions 
about their abilities to navigate different aspects of their life (cf. 
[9]). While identity is the focus of this study, we do not attempt to 
investigate all aspects of student identity, but instead focus 
specifically on how they identify with math. Math Identity is often 
described as “the association between math and the self” [10], a 
definition that might be paraphrased as the degree to which one 
considers oneself to be a math person. We do so within the 
context of Reasoning Mind, a blended learning curriculum that 
offers significant metacognitive support to K-6th grade students 
through an on-line learning platform [11]  
Specifically, we use language features produced in within-system 
emails to predict three aspects of Math Identity in self-reported 
survey data: math self-concept, math interest, and math value. 
These constructs have been used to understand social influences 
on mathematic achievement in previous studies of identity (e.g., 
[12]). In addition, we examine links between math success in the 
system and the three Math Identity scales. We also use language 
features in the language produced by students to model math 
success, math value, math self-concept, and math interest. Our 
goal is to examine the potential for linguistic predictors within 
student data to identify math success and identity. If successful, 
such linguistic predictors could be used to better identify students 
in need of intervention. 

2. Language and Math Ability 
The body of research demonstrating connections between 
proficiency in language and math skills continues to grow, 
becoming more robust as researchers explore the potential 
underlying causes. Early studies focused on links between scores 
on math and language tests. For instance, [13] found that students 
who scored high on an algebra test also scored well on language 

 

 



2 

tests. Using a more difficult algebra test produced a stronger 
relationship between algebraic notation and language ability. 
Similarly, [14] reported links between language and math skills, 
but also found that language skills differed in their degree of 
relation with math knowledge. For example, general verbal ability 
was indirectly related with symbolic number skills while 
phonological skills were directly related to arithmetic knowledge. 
Other research has focused on more indirect links between math 
and language skills, such as reading ability. For example, 
Hernandez [15] found significant positive correlations between 
reading and math scores in standardized tests. Based on these 
findings, Hernandez recommended that reading skills and reading 
strategies should be factored into math instructions to increase 
math ability, especially for poor readers. In another study, 
LeFevre et al. [16] reported that language ability was positively 
related to number naming, but that non-language abilities such as 
quantitative skills and spatial attention were stronger predictors of 
math ability than language abilities. 
A number of recent studies have begun to examine links between 
the language features found in students’ language production and 
their success in math learning using NLP tools. For instance, 
Crossley et al. [17] examined linguistic and non-linguistic features 
of elementary student discourse while students were engaged in 
collaborative problem solving within an on-line math tutoring 
system. NLP tools that reported on affect, text cohesion, and 
lexical sophistication were used to extract linguistic information 
from transcribed student speech. These language features along 
with a variety of non-linguistic features such as gender, age, 
grade, and school were used to predict pre- and post-test math 
scores. The results showed that language features related to 
cohesion, affect, and lexical proficiency explained around 30% of 
the variance in students’ math scores, while the selected non-
language features were not significant predictors. A second study 
by Crossley and colleagues examined students’ forum posts in an 
online tutoring system. Using these posts, Crossley et al. [18] 
investigated relationships between math success, click-stream data 
within the system, and language features reported by NLP tools 
for students in a university level blended math class (i.e., a class 
with both on-line and traditional face to face instruction). The 
study found that math success was best predicted by a non-
language feature (days on the system) and language features 
related to affect (egotism), syntactic complexity and text cohesion. 
Specifically, more complex syntactic structures and fewer explicit 
cohesion devices equated to higher course performance. The 
linguistic model also indicated that less self-centered students and 
students using words related to tool use were more successful. In 
addition, the results indicated that students that are more active in 
on-line discussion forums are more likely to be successful. In a 
final study, Crossley and Kostyuk [19] examined links between 
the language features of young students’ language production 
(grades 2nd through 5th) while e-mailing a virtual pedagogical 
agent in an online math tutoring system, and success within that 
system. Using NLP tools that reported language features related to 
affect, lexical sophistication, and text cohesion, Crossley and 
Kostyuk found that students who expressed more certainty in their 
writing and followed standardized language patterns scored higher 
in math assessments. In addition, students from higher grades who 
met more objectives, received more messages from teachers, and 
sent fewer messages to the agent, performed better on math 
problems. 
Overall, these studies demonstrate that features from students’ 
language productions can be used to predict math success (i.e., 
performance) in a variety of domains and across a number of ages 

and proficiency levels. In general, older students who produce 
more complex language, which is more positive and less self-
centered, tend to have stronger math skills. For younger students, 
adherence to expected language patterns relates to higher math 
performance. However, to our knowledge, no research has 
attempted to extend this approach to predicting larger student 
identity features that are trait-based such as Math Identity. 

3. Math Identity 
Math Identity, or the degree to which one considers oneself a 
“math person,” has become an area of interest among social 
scientists hoping to better understand what drives students to enter 
Science, Technology, Engineering, and Math (STEM) fields (cf. 
[20]). However, broader issues of self-definition (identity) are not 
new to educational research, especially when considering long-
term development. For example, Bandura’s research [21] on self-
efficacy discusses the role of self-attributional processes 
(including a wide range of self-definitions studied by Bem, [22] 
many of which are directly related to educational identities. In this 
research, a student’s cognitive appraisal (self-evaluation of 
ability) is thought to be susceptible to a form of confirmation bias 
where the student ignores demonstrable achievements and 
improvements when they contrast with a previously established 
self-definition [21]. Bandura’s observations on the role of self-
definitions in the development of self-efficacy are highly 
compatible with other research paradigms, which describe identity 
as an anchor that people use to understand their own interests and 
abilities [23]. This may explain Bandura’s findings that students 
who show improvement that is contrary to self-appraisals often 
attribute their performance to environmental factors rather than to 
their own persistence [21].  
Constructs considered to be a core part of one’s identity are long 
thought to start developing in adolescence ([24]. There is some 
support that Math Identity should be included in this timeframe 
with research suggesting that it develops early in life. For 
instance, [25] showed that students who start in a non-STEM 
degree program rarely transfer into a STEM program (despite the 
high frequency of major changes more generally). Similarly, 
within the EDM community, student engagement indicators in 
middle school online mathematics tutors have been shown to 
correlate with college enrollment more generally [26], and with 
STEM-major enrollment more specifically [27]. Math Identity is 
most often studied through ethnographic studies (e.g., [28]), 
implicit association tests (e.g., [29, 10]), and surveys (e.g., [30, 
31]). 
In this study, we operationalize Math Identity as math self-
concept, math interest, and math value. We defined these 
constructs using self-report scales adapted from Ryan & Ryan 
[12], who examined how these constructs performed during 
conditions likely to trigger stereotype threat effects. While these 
are well-established constructs in research on the effects of social 
evaluations of mathematics, they are not unique to research on 
identity. In addition to their appearance in Bandura’s work, they 
appear in Eccles’ [32] expectancy value theory, where self-
efficacy (among a variety of other factors) is hypothesized to 
influence both intrinsic value (interest) and utility value (the 
usefulness of the task). We discuss each of these briefly below. 

3.1.1 Math Self-Concept 
Research in self-concept overlaps considerably with two related 
constructs—identity and self-efficacy—because all three are 
related to the mental schema a person uses when calculating their 
ability to negotiate different challenges in their lives. In general, 



social-psychologists are more likely to refer to the concept of 
identity when discussing issues related to social processes, while 
they are more likely to use the term self-concept when discussing 
internal mental processes ([9]). 
In education research, self-concept and self-efficacy are often 
used to discuss domain-specific evaluations (e.g., self-concept in 
mathematics), and they are sometimes used synonymously. 
However, there are education researchers who draw a distinction 
between these two constructs, limiting the term self-efficacy to 
self-evaluations of specific tasks, often specifying that it must be 
measured directly after the task has been completed [33, 34]. For 
example, they might use a Likert scale administered after each 
math problem to measure self-efficacy by asking a student to 
indicate his/her confidence that each problem had been completed 
correctly.  
In this research tradition, self-concept is a broader measure of 
ability within the domain, where its meaning more closely 
approaches its use among social-psychologists, who tend to define 
it as a theory of self (e.g., [35]) which often operates below the 
level of consciousness, guiding people’s interpretations and 
expectations of external events (cf. [9]).  For example, in a 
situation where a student failed a task in a domain for which they 
have high self-concept, they might be more willing to retry than 
someone with low self-concept. Alternatively, they might 
interpret the task as flawed since their performance did not match 
the expectations created by their self-concept. 
Like researchers who study educational outcomes, social 
psychologists tend to believe that people develop self-concept 
from experience, so that those with more shallow or limited 
experiences are likely to be more susceptible to changes in self-
concept [35]. For example, academic self-concept tends to be 
positively correlated with achievement indices, [36], but there 
appears to be some reciprocity in this relationship. High self-
concept can make students more likely to persist through difficult 
mathematics instruction, leading to improved academic outcomes. 
However, repeated failure could theoretically lower self-concept, 
particularly if a student did not have other mastery experiences in 
mathematics to serve as a sort of buffer.  

3.1.2 Interest in Mathematics 
Motivational research defines interest as the propensity to engage 
with a particular subject over time through both affective and 
cognitive components [37]. Studies on the relationship of interest 
to other constructs such as self-concept have repeatedly found that 
self-concept drives intrinsic interest in a given subject [38, 39], 
with theorists suggesting that as self-efficacy increases, it 
becomes safe for the ego to become invested in a particular topic 
[40]. 
Researchers have identified a number of simple strategies that 
appear to increase interest in the classroom, such as creating more 
challenging tasks for students or adding variety to the ways in 
which a student is asked to perform a task. However, others 
caution that some of these strategies may only improve situational 
interest (e.g., [37]), suggesting that intrinsic interest (which they 
refer to as individual interest) is almost always self-driven, 
possibly because it seems to be fed by increased self-efficacy. 
Others researchers have found that interest is highly susceptible to 
contextual effects that vary from student to student (cf. [39]). 
Researchers in Career Theory (e.g., [41]) have found that interest, 
like self-efficacy, is directly responsive to performance success 
and failure. 

Interest is an important complement to self-concept when defining 
Math Identity, since its development is known to improve self-
regulatory strategies [37]. Students with a stronger sense of 
interest in a subject are more likely to persist when confronted 
with frustrating challenges [42, 37; 43], so that strengthening 
skills in mathematics is a self-feeding cycle. Eccles’ [32] 
discussion of identity development mentions this cycle and state 
that enjoyable or pleasant experiences with a subject are likely 
necessary to develop the persistence needed to become an expert 
in that subject.  

3.1.3 Value of Mathematics 
Math value is the degree to which a student thinks that math is or 
will be useful to their life. Like self-concept and interest, value 
(utility) has been linked to motivation in a number of different 
research traditions. Among social psychologists, research has 
shown that value is influenced by self-concept, and, in turn, that 
value positively influences the kind of goal-setting practices that 
lead to increased effort [44]. However, research also finds that 
(perhaps more than self-concept or interest), parents can have a 
substantial effect on math value [44, 45], which suggests the 
construct could also be more susceptible to other social pressures 
or interventions. Cumulatively, these findings suggest that value is 
often the last component of Math Identity to develop unless 
external influences (e.g., parents) are involved. 

4. Current Study 
A number of studies have demonstrated strong links between 
students' linguistic knowledge and affect (as found in language 
production), and their success in math. However, to our 
knowledge, no studies have examined the links between the 
linguistic features in student language production and variables 
related to Math Identity. In the current study, we attempt to 
replicate previous studies that have investigated how linguistic 
features and affective aspects of students’ language production 
can predict success. More importantly, we also derive models of 
math identify based on student survey responses related to math 
value, interest, and self-concept. To derive our language features 
of interest, we analyzed the language produced by students 
sending email messages to a virtual pedagogical agent within an 
online math tutoring system. We analyzed the language using a 
number of NLP tools in order to extract language information 
related to text cohesion, lexical sophistication, and sentiment. 
While our primary interest is in using NLP features to predict 
variables related to math value, interest, and self-concept, we are 
also interested in studying the links between NLP features and 
accuracy scores on beginning level math problems within the 
online tutoring system. Thus, in this study, we address two 
research questions:  
1. Are linguistic features significant predictors of self-reported 

student traits related to math value, interest, and self-
concept? 

2. Are linguistic factors significant predictors of math 
performance in an on-line tutoring environment? 

5. METHOD 
5.1 Reasoning Mind  
We collected data from Reasoning Mind's Foundations product, 
which is a blended learning mathematics program used in grades 
2-5. Foundations students learn math in an engaging, animated 
world at their own pace, while teachers use the system's real-time 
data to provide one-on-one and small-group interventions [46]. 
The algorithms and pedagogical logic underlying Foundations 
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(previously called Genie 2) are described in detail by Khachatryan 
et al. [11].  
The main study mode in Foundations, Guided Study, consists of a 
sequenced curriculum divided into objectives, each of which 
introduces a new topic (e.g., the distributive property) using 
interactive explanations, presents problems of increasing 
difficulty on the topic, and reviews previously studied topics. 
Within Guided Study, every student completes problems 
addressing the basic knowledge and skills required in the 
objective. These basic problems (known as A Level problems) 
typically require only a single step to solve and are the lowest of 
three possible difficulty levels. Students who do well on A Level 
problems may also proceed to problems of higher difficulty that 
require two or three steps to solve (B Level and C Level 
problems) within the objective. They may also access the higher-
level problems in an independent study mode called Wall of 
Mastery. Other modes in Foundations allow students to play math 
games against classmates, tackle challenging problems and 
puzzles, and use points earned by solving math problems to buy 
virtual prizes. 
Foundations uses animated characters to provide a backstory to 
the mathematics being learned and to deliver emotional support. 
The main character is the Genie, a pedagogical agent who 
encourages students throughout their work in the system. Students 
are also able to send emails to the Genie. These messages are 
answered in character by part-time Reasoning Mind employees 
who reference an extensive biography of the Genie and project a 
consistent, warm, and encouraging persona, model a positive 
attitude toward learning, and emphasize the importance of 
practice and challenging work for success. The Genie email 
system is a popular component of the system, having received 
129,879 messages from 38,940 different students in the 2016-17 
academic year. 

5.2 Participants 
The students sampled in this study came from a large sample of 
Foundations students in the 2016-17 academic year, who had 
written messages for the Genie in the email system. The dates 
sampled were from August 1, 2016 to June 17, 2017. There were 
a total of 34,602 such students. The students were from 462 
different schools located in 99 different districts, most of which 
were located in Texas. This analysis samples students in 4th-5th 
grades because their writing skills are developed enough to be 
captured by NLP tools. We also included only those students that 
had completed the post-test survey (discussed in the next sub-
section) and those students that had attempted A Level problems. 
This subset of the data consisted of 970 students.  

5.3 Survey Data 
The measures used in the present study consisted of three 4-point 
scales adapted from [47] and administered at the start/end of the 
2016/2017 school year. The first was mathematics self-concept, 
which comprised five items that captured the degree to which the 
student see themselves as a “math person” (e.g., “I have always 
been good at math”). The second was interest in mathematics, 
which consisted of three items that capture intrinsic curiosity or 
enjoyment of mathematics (e.g., “How much do you like math?”). 
The last scale measured value of mathematics and consisted of 
five items that captured the degree to which students find math to 
be useful (e.g., “How important is it to you to get good grades in 
math class?”). The Cronbach α of these scales were 0.72, 0.69, 
and 0.72, respectively. 

5.4 Final Corpus 
Our language sample for this analysis consisted of messages sent 
from the students to the Genie. Because many messages contained 
few words, we aggregated all e-mails sent by each student to 
create a representation of an individual student’s linguistic 
activity.  
We then implemented data cleaning procedures to reduce the 
amount of noise in the data. First, all the data was cleaned of non-
ASCII characters that could interfere with the NLP tools. Second, 
all texts were automatically spell-checked and corrected using an 
open-source Python spelling correction library, in addition to 
several Python text-cleaning scripts that we developed. 
Furthermore, several measures were taken to clean the texts, 
including removing random, non-math symbols such as “#”, “@”, 
and “&”, as well as omitting repeating words, excessively long 
words, words with repeating characters, such as “wooorrrddd”, 
and mixed-type words, such as “$word$”, (with the exceptions of 
currencies, percentages, timestamps, and ordinals). Next, all non-
dictionary, invalid words were removed from the data. This was 
accomplished by first checking each word against synsets in 
WordNet, and if a match could not be found, then checking if it 
consisted of all consonants (always invalid), or if any pair of 
characters (digraph) in the word were invalid in the English 
language. Words that met either two of these conditions were 
removed. Lastly, all texts were cleaned of repeating, non-
overlapping groups of words, such as “this word this word this 
word”. Only word groups of lengths two, three, and four were 
removed by this approach.  
Finally, we removed data from students who had produced fewer 
than 150 words in writing to the Genie (calculated after cleaning). 
This cut-off ensures that students produced a large enough 
language sample to provide a clear representation of their 
linguistic ability including bag-of-word assumptions for Latent 
Dirichlet Allocation (LDA) analyses. This left us with data from 
351 students for analyses. 

5.5 Natural Language Processing Tools 
We used several NLP tools to assess the linguistic features in the 
aggregated posts of sufficient length. These included the Tool for 
the Automatic Analysis of Lexical Sophistication (TAALES) [48], 
the Tool for the Automatic Analysis of Cohesion (TAACO) [49], 
the Tool for the Automatic Analysis of Syntactic Sophistication 
and Complexity (TAASSC) [50], and the SEntiment ANalysis and 
Cognition Engine (SEANCE) [51]. In addition, we developed 
specific indices related to topics commonly discussed with the 
Genie e-mail system using Latent Dirichlet Allocation (LDA). 
Thus, the selected NLP features consisted of language variables 
related to lexical sophistication, text cohesion, syntactic 
complexity sentiment analysis, and topic similarity respectively. 
The features are discussed in greater detail below. 

5.5.1 TAALES 
TAALES reports on a number of indices related to basic lexical 
information (e.g., the number of tokens, and types), lexical 
frequency, lexical range, lexical registers, word information 
features (e.g., concreteness, meaningfulness, polysemy [the 
number of senses a word has]), and psycholinguistic variables. 
For instance, the tool uses the Kucera-Francis corpus to compute 
the number of registers (e.g., humor academic, or fiction registers) 
that words occur in (a measure of register specificity). The tool 
also reports on a number of phonological, orthographic, and 
phonographic neighborhood effects that calculate how many near 
neighbors based on sound or spelling that a word has. TAALES 



also reports on variables that measure how long a word takes to 
name, how accurately words are pronounced, and how many 
senses a word contains (i.e., polysemy). 

5.5.2 TAACO 
TAACO incorporates a variety of classic and recently developed 
indices related to text cohesion. For a number of indices, the tool 
incorporates the Stanford part of speech (POS) tagger [52] and 
synonym sets from the WordNet lexical database [53]. TAACO 
provides linguistic counts for both sentence and paragraph 
markers of cohesion and incorporates WordNet synonym sets. 
Specifically, TAACO calculates type token ratio (TTR) indices, 
sentence overlap indices that assess local cohesion, paragraph 
overlap indices that assess global cohesion, and a variety of 
connective indices such as logical connectives (e.g., also, next, so) 
and sentence linking connectives (e.g., but, if, then). 

5.5.3 TAASSC 
TAASSC measures large and fined grained clausal and phrasal 
indices of syntactic complexity and usage-based 
frequency/contingency indices of syntactic sophistication. 
TAASSC includes indices measured by Lu’s [54] Syntactic 
Complexity Analyzer (SCA) and a number of pre-developed fine-
grained indices or clausal complexity and phrasal complexity, The 
SCA measures are classic measures of syntax based on t-unit 
analyses [19] where t-units are defined as a dominant and 
subordinate clause. For instance, SCA measures the number of 
complex t-units in a text (i.e., T-units that includes both an 
independent and a dependent clause). The fine-grained clausal 
indices calculate the average number of particular structures per 
clause and dependents per clause. The fine-grained phrasal indices 
measure noun phrase types and phrasal dependent types.  

5.5.4 SEANCE 
SEANCE is a sentiment analysis tool that relies on a number of 
pre-existing sentiment, social positioning, and cognition 
dictionaries. SEANCE contains a number of pre-developed word 
vectors that measure sentiment, cognition, and social order. These 
vectors are taken from freely available source databases. For 
many of these vectors, SEANCE also provides a negation feature 
(i.e., a contextual valence shifter) that ignores positive terms that 
are negated (e.g., not happy). SEANCE also includes a part of 
speech (POS) tagger. Examples of affective variables reports by 
SEANCE include positive and negative polarity metrics, terms 
related to arousal (as compared to calmness), and respect terms. 
Cognition examples include words related to socially defined 
ways of doing work, acts and methods to accomplish goals, time 
and space, and quantity. 

5.5.5 Latent Dirichlet Allocation (LDA) features 
We developed measures of domain topicality for the messages 
found in the corpus using LDA. LDA is a computational modeling 
technique used to infer underlying topics through a generative 
probabilistic process. We conducted an LDA analysis on the 
entire corpus of student messages to the Genie and fit 200 topics 
to the data - the optimal number of topics was inferred using 
Hierarchical Dirichlet processes [55]. Using these latent topics, 
each word is perceived as a probability distribution across all 
topics; if irrelevant for a topic, the corresponding weight is 0, 
whereas more relevant topics for a given word have higher 
probabilities. These word weights were then used to create topic 
distributions for each student in order to identify how strongly 
student language overlapped with topics covered in the entire 
Genie message corpus. 

5.6 Statistical Analysis 
We first calculated correlations between the students’ accuracy on 
A Level problems and their survey scores for Math Identity (self 
concept, interest, and value). These relationships allow us to  
better understand how basic math skills interacted with student 
survey responses for Math Identity.  
We followed this up by calculating linear models to assess the 
degree to which linguistic features in the students’ emails to the 
Genie, along with other behaviors (e.g., question/note posted, 
questions answered, site visits) were predictive of students’ math 
skills and their self-reported Math Identity. As part of this 
analysis, we first checked that all variables were normally 
distributed. For the linguistic variables, we tested only those 
variables that showed at least a small effect size (r > .100) with 
the response variable. We also controlled for multicollinearity 
between all the linguistic and non-linguistic variables (r ≥ .700) 
such that if two or more variables were highly similar, all but one 
of the variables (the one with the strongest relationship with the 
response variable) were removed from the analysis.  
We cross-validated our results by dividing data into training and 
test sets based on a 67/33 split. We used stepwise linear models 
on the training set to find the best fitting models for each analysis. 
After model selection, coefficients were checked for suppression 
and visual inspection of residuals distribution for non-
standardized variables was conducted. To obtain a measure of 
effect sizes, we computed correlations between the fitted and 
observed values, resulting in an overall R2 value for the fixed 
factors in the training set. The model from the training set was 
used to derive an r and R2 value for the test data.  

6. RESULTS 
6.1 Correlations 
Pearson correlations were conducted among the response 
variables to assess links between Math Identity and math scores. 
The results, reported in Table 1, indicate that all three Math 
Identity variables were positively and significantly correlated with 
performance on A level math problems. Medium effects were 
found for self-concept. Weak effects were found for interest and 
value. None of the Math Identity variables were strongly 
associated with one another (i.e., r < .500), although correlations 
with interest approached that threshold for both self-concept (r = 
.489) and value (r = .491). 

Table 1. Correlations between response variables 

Variable Self-concept Interest  Value 

A level score 0.341** 0.205** 0.145* 

Self Concept 

 
0.489** 0.309** 

Interest     0.491** 

Note * p < .010, **p < .001 

6.2 Linear Model for Self-Concept 
A linear model to predict students’ self-concept including 
linguistic, affect, and click-stream variables yielded a significant 
model, F(5, 242) = 2.861, p < .001, r = .356, r2 = .127 (see Table 
2 for details). Two linguistic variables: Phonographic neighbors, 
function words and word naming accuracy, function words were 
significant predictors as were three affective variables: Methods 
and goals words, words related to work, and polarity verbs. No 
click-stream variables were significant predictors. The 
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combination of the five variables accounted for 13% of the 
variance in the students’ self-concept scores. Cross-validating the 
model on the test set yielded r = .371, r2 = .138, demonstrating 
that the combination of the five variables accounted for 14% of 
the variance in the student samples comprising the test set. 

Table 2. Linguistic model for predicting self-concept scores 

Fixed Effect Coefficient Std. 
Error t 

(Intercept) 61.518 21.309 2.887** 
Phonographic Neighbors: 
Function words -0.284 0.081 -3.512*** 
Acts and methods terms to 
accomplish goals 9.441 3.113 3.033** 
Words related to work -6.609 2.342 -2.822** 
Polarity verbs 0.247 0.087 2.857** 
Word naming accuracy: 
Function words -57.807 21.413 -2.700** 

Note * p < .050, ** p < .010, ***p < .001 

6.3 Linear Model for Interest 
A linear model using linguistic and click-stream variables to 
predict students’ interest yielded a significant model, 
F(4, 218) = 4.943, p < .001, r = .419, r2 = .176 (see Table 3 for 
details).. Four affective variables were significant predictors in the 
model: Hu Liu negative terms, power words, arousal ratings, and 
words related to methods and goal. No click-stream variables 
were significant predictors. The combination of the four variables 
accounted for 17% of the variance in the students' interest scores. 
Using the model from the training set on the samples in the test 
set yielded r = .360, r2 = .130, demonstrating that the combination 
of the four variables accounted for 13% of the variance in the 
student samples comprising the test set. 

Table 3. Linguistic model for predicting interest scores 

Fixed Effect Coefficient Std. 
Error t 

(Intercept) 3.523 0.137 25.708*** 
Hu Liu negative terms -0.928 0.201 -4.612*** 
Power words -8.440 3.335 -2.531** 
Arousal ratings -9.407 3.336 -2.820** 
Acts and methods terms to 
accomplish goals 8.056 2.951 2.730** 

Note * p < .050, ** p < .010, ***p < .001 

6.4 Linear Model for Value 
A linear model to predict students’ math value using linguistic and 
click-stream variables yielded a significant model, 
F(3, 217) = 7.843, p < .001, r = .313, r2 = .098 (see Table 4 for 
details).. Three variables were significant predictors in the model: 
polarity verbs component score (verbs related to polarity, aptitude, 
and pleasantness), time and space terms, and words related to 
respect. No click-stream variables were significant predictors. The 
combination of the three affect variables accounted for 10% of the 
variance in the students' math value scores. Using the model from 
the training set on the samples in the test set yielded r = .303, 
r2 = .091, demonstrating that the combination of the five variables 

accounted for 9% of the variance in the student samples 
comprising the test set. 

Table 4. Linguistic model for predicting value scores 

Fixed Effect Coefficient Std. 
Error t 

(Intercept) 3.301 0.082 40.254** 
Polarity verbs 0.15 0.048 3.107** 
Time/space terms 2.932 1.048 2.799** 
Respect words 4.776 2.119 2.254* 

Note * p < .050, ** p < .010, ***p < .001 

6.5 Linear Model for Math Success 
A linear model to predict math success including linguistic and 
click-stream variables yielded a significant model, 
F(5, 217) = 9.130, p < .001, r = .417, r2 = .174 (see Table 5 for 
details).. Five linguistic variables were significant predictors in 
the model: Kucera-Francis categories, phonological neighbors 
distances, complex t-units, polysemy (adverbs), and quantitative 
terms. No click-stream variables were significant predictors. The 
combination of the five variables accounted for 17% of the 
variance in the students A level math scores. Using the model 
from the training set on the samples in the test set yielded 
r = .378, r2 = .143, indicating that the combination of the five 
variables accounted for 14% of the variance in the student 
samples comprising the test set. 

Table 5. Linguistic model for predicting math scores 

Fixed Effect Coefficient Std. 
Error T 

(Intercept) 33.544 15.331 3.508*** 
Kucera-Francis categories 2.721 0.776 2.12* 
Phonological neighbor 
Levenshtein distances 15.225 7.18 -2.701** 
Complex T-units -5.256 1.946 -3.019** 
Polysemy (adverbs) -1.212 0.401 2.348** 
Quantitative terms 62.983 26.82 3.508** 
Note * p < .050, ** p < .010, ***p < .001 

7. DISCUSSION AND CONCLUSION 
Investigating the degree to which students identify with math 
(e.g., their Math Identity) can provide important information 
related to student-level differences which in turn could allow for 
personalization efforts within educational settings. The purpose of 
this study was to examine links between students’ self-reported 
Math Identity (e.g., math self-concept, value, and interest) and 
language features found in student e-mails within an on-line math 
tutoring system. The study also examined links between student 
math scores and self-reported Math Identity and between math 
scores and language features. Overall, we find weak to medium 
relationships between Math Identity variables and math scores. 
Additionally, language features were able to explain a significant 
amount of variance for each Math Identity variable and for student 
math scores. These findings are discussed below along with 
implications for better understanding Math Identity and 
developing pedagogical interventions within Reasoning Mind’s 
Foundation system. 



Our first analysis examined links between A level math scores 
within the Foundations system and student’s self-reported Math 
Identity variables (self concept, interest and value). All of the 
Math Identity variables were positively correlated with each other 
as well as with the math-performance metric, although this effect 
was stronger for self-concept than for interest or value. The 
correlation matrix in Table 1 provides evidence that the Math 
Identity variables self-reported by the students were related to 
math ability within the system. 

Our next goal was to investigate if linguistic models could be 
developed for each of the Math Identity variables. Specifically, 
we were interested in examining links between the words and 
language structures produced by the student in their e-mails to the 
Genie and their self-ratings of self-concept, interest, and value. 
Our model of student ratings for self-concept explained 14% of 
the variance in the test set (r = .371). The model was informed by 
five language features. Three sentiment and cognition features 
were reported by SEANCE while two features related to lexical 
sophistication were reported by TAALES. Polarity verbs were 
again positively related to a math identify variable indicating that 
students who used more positive verbs reported higher math self-
concept. Additionally, students who produced more words related 
to accomplishing goals (e.g., build, make, and formulate) reported 
higher self-concept. Conversely, words related to ways of doing 
work were negatively associated with self-concept. This may be 
an effect of the word grade, which is included in this category and 
was common in the e-mails (i.e., students worried about low 
grades). Two lexical indices for function words were also 
negatively predictive of self-concept scores: phonographic 
neighbors and word naming accuracy. These findings suggest that 
students with higher self-concept produced function words that 
had fewer neighbors and lower word naming accuracy. In both 
cases, the results indicate that students producing more 
sophisticated function words had greater self-concept.  

Our model for math interest explained 13% of the variance in the 
test set (r = .360) and included only sentiment and cognition 
variables reported by SEANCE. These variables indicate that 
students with greater math interest used fewer negative terms, 
fewer words related to arousal (i.e., more words related to 
calmness), and more words related to acts and methods to 
accomplish goals, which was also a predictor of self-concept 
scores. Lastly, words related to power yielded a negative co-
efficient with math interest scores. This finding suggests that 
students that use power words (e.g., force and command) have 
lower interest in math. 

With respect to students’ ratings of their math value, language 
features were able to predict about 9% of the variance in student 
test set ratings. (r = .303). Three features were positive predictors 
of value: polarity verbs, time/space terms, and respect terms. All 
variables were reported by SEANCE and were related to either 
sentiment or cognition. The results show that students that 
reported higher math value produced language in their e-mails 
that included more positive verbs and showed greater respect 
through the use of terms such as honor, admire, and respect. In 
addition, these students produced more words related to time and 
space. Time words include prepositions such as across and above 
but also space verbs that may be related to math concepts 
including circle, curve, and distance.  

Finally, we developed a model to predict math success (i.e., scores 
on A Level problems). This model explained 14% of the variance 
in math scores (r = .378) using lexical features, a measure of 
syntactic complexity, and a measure of cognition. The three 

lexical indices included the number of registers in which a word 
occurs, phonological neighbors based on Levenshtein distances 
(i.e., words that words that require more substitutions, insertions, 
or deletion operations to transform that word into its closest 
phonologic neighbors), and the polysemy value of adverbs. The 
first index suggests that students with high math scores produced 
words that were found across a variety of registers. The second 
and third indices indicate that students with higher math scores 
produced more sophisticated language (i.e., adverbs with fewer 
senses and words that required more operations to find a 
phonological neighbor). Students with higher math scores also 
produced fewer complex sentences (sentences with an 
independent and dependent clause) and used more quantitative 
words. 

Overall, the findings suggest that language variables related to 
sentiment and cognition can explain a significant amount of the 
variance in a number of self-reported survey variables related to 
math self-concept, interest, and value. These variables have the 
potential to not only better explain the constructs of Math Identity, 
but also have the potential to be useful for student interventions.  

The findings from this study indicate that students who produce 
more positive language e-mails within the Foundations system are 
more likely to have a positive Math Identity. Conversely, those 
that use more negative language are more likely to have lower 
Math Identity. However, it is not just positive and negative terms 
that are related to Math Identity. Students with stronger Math 
Identity use more respectful language, less power-related 
language, and language that is more calm. Lastly, students with 
stronger Math Identity were more likely to use more sophisticated 
words or words related to accomplishing goals.  

The findings from this study also suggest little overlap between 
the language features that predict Math Identity and those that 
predict math success even though we see links between our Math 
Identity variables and math success within the system. While there 
are some similarities between self-concept scores and math scores 
with respect to phonological neighbors, these features differ in 
their parts of speech (content versus function words). In general, 
most predictors of math success are related to linguistic features 
(lexical, syntactic, and cohesion features) while predictors of 
Math Identity are related to sentiment and cognition features. In 
total, these sentiment and cognition features provide a profile of 
students within the system that have high math interest.  

Using the models reported here, a number of different 
interventions could be developed for students identified as likely 
having low math interest. These interventions could be as simple 
as having the Genie send an e-mail to students that provides 
statistics on their successes within the system, their perseverance 
in answering problems, or simply the number of problems they 
have attempted or accurately solved over a specific time period. 
Students could also be asked to correspond with the Genie using 
metacognitive strategies related to self-assessment and goal-
setting activities, as this corresponds with both the interest models 
we developed here and with long-standing interventions designed 
to support self-efficacy and interest (cf. [21]). Interventions such 
as these may assist students in more critically thinking about 
themselves in relation to math and in better understanding their 
math knowledge and acquisition.  

While the Math Identity profiles developed should be strong 
enough to drive interventions, the models report only medium 
effect sizes. Thus, much variance remains to be identified within 
the existing survey data. Some of that variance may emerge in 
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language features that are not yet captured by NLP tools, while 
other variance may be related to demographic or other click-
stream data available within the system such as the number of 
messages sent and received by the students within the e-mail 
system, hours spent on-line within the tutoring system, and 
number of objectives met within the system. Thus, the findings 
here should be seen as preliminary with implications for future 
development. 
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