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ABSTRACT 

Games in service of learning are uniquely positioned to offer 

immersive, interactive educational experiences. Well-designed 

games build challenge through a series of well-ordered problems 

or activities, in which perseverance is key for working through in-

game failure and increasing game difficulty. Indeed, persistence 

through challenges during learning is beneficial not just in games 

but in other contexts as well, with grit and perseverance positively 

associated with academic performance and learning outcomes. 

However, recent studies suggest that not all persistence is 

positive, suggesting that many students end up “wheel-spinning”, 

spending considerable time on a topic without achieving mastery. 

Thus, it is vital to differentiate productive and unproductive 

persistence in order to understand emergent student progress, 

particularly in the context of learning games and personalized 

learning systems, in which individual pathways differ greatly 

based on student needs. Leveraging Educational Data Mining 

methods, this study builds a detector of wheel-spinning behavior 

(differentiated from productive persistence) in an adaptive, game-

based learning system. With the ability to predict unproductive 

persistence early, this detection model can be used to intelligently 

adapt to students needing further support in-system, as well as 

informing in-person intervention in a classroom setting—thus 

supporting a personalized, engaging learning experience in both 

formal and informal learning environments.  
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1. INTRODUCTION 
Games as learning vehicles can offer engaging, interactive 

experiences in which the player has agency in exploring and 

solving well-ordered problems or challenges in a learner-

responsive environment [1, 2]. Well-designed games seamlessly 

embed meaningful instruction in authentic, narrative-driven 

learning contexts (with the potential to assess learning in the 

natural progression of play [3]). As such, they have the ability to 

optimize learner motivation and learning trajectories without 

removing the experience of personal discovery [4]. By nature, 

games encourage discovery of an underlying rule system through 

boundary testing, making experimentation and failure a core part 

of play progression [5]. In this sense, moving through in-game 

failure and challenge with perseverance can be fundamental to the 

experience of learning in games (e.g. [6, 7]). Hence, games offer a 

particularly relevant context for productive persistence or grit—

the ability to steadily maintain an action or complete a task 

despite failure or adversity (cf. [8]). Indeed, keeping players in a 

“flow” state of persistence [9] through a series of challenges of 

increasing difficulty is key to the design of “good” games, 

particularly in educational contexts [10]. Recent research suggests 

these qualities in games support student growth in areas such as 

academic learning, socio-emotional skills, and creative problem 

solving (e.g. [11, 12, 13, 14]). 

Indeed, persevering through challenges during learning is 

beneficial not just in games but in other contexts as well. From 

undergraduates to military cadets to Spelling Bee competitors, 

findings suggest that persistence forecasts strong performance in 

rigorous, achievement-based learning contexts [15]. In many 

cases, persistence is also associated with academic achievement 

[16], creativity [17], and long-term outcomes like earnings and 

later schooling [18].  

However, recent research suggests that not all persistence is 

positive. “Wheel-spinning” is a form of unproductive effort, 

where students spend too much time struggling to learn a topic 

without achieving mastery [19]. Wheel-spinning behaviors have 

been associated with reduced motivation [20] and avoiding asking 

for help when needed [21]. In fact, recent empirical investigation 

has demonstrated that wheel-spinning can be differentiated from 

productive persistence in an intelligent tutoring system, in real-

time, determining during problem-solving whether a student’s 

persistence will be productive [22]. Making this type of 

differentiation could also be valuable in learning games contexts. 

Persistence is important in games just as in other settings [23], 
with evidence suggesting that persisting unproductively in games 

can be a highly frustrating experience (e.g. [24]). Since challenge 

and problem solving are often core components of learning 

experiences, particularly in game-based environments, it becomes 

increasingly important to differentiate productive persistence (e.g. 

grit) from unproductive persistence (e.g. wheel-spinning) in the 

context of play. This differentiation could be used to offer 

different pathways to students based on real-time performance. 

 



There is evidence that this type of modeling is feasible; related 

game-based research has shown that the same surface behavior in 

games can have different meanings, with distinction of productive 

vs unproductive failure in a games context (cf. [25]). 

In this study, we empirically investigate wheel-spinning vs 

productive persistence in an adaptive, game-based learning system 

for early childhood math skills called Mastering Math. 

Specifically, we use predictive analytics to infer whether a student 

is engaging in wheel-spinning or productive persistence in 

Mastering Math. This detection model can be used to intelligently 

adapt to students needing further support in-system, as well as 

informing in-person intervention in a classroom setting—thus 

supporting a personalized learning experience in both formal and 

informal learning environments. 

2. METHODS AND DATA COLLECTION 

2.1 Game-based Learning Content  
Mastering Math (MM) is a game-based adaptive learning system 

designed to help elementary age children build a strong 

understanding of fundamental number sense and operations, 

ranging from counting to 10 to adding and subtracting three-digit 

numbers using the standard algorithm. The app constitutes 

approximately 130 games, covering number sense and operations 

concepts and skills for pre-kindergarten through second 

grade. Each individual game maps to a learning objective, and is 

supported by an interactive instruction level, as well as several 

layers of scaffolding and feedback. In addition, the game system 

as a whole uses cohesive narrative and interactive characters 

(embedded at the level of individual games) to support student 

engagement with the learning world. Adaptivity functions within 

individual games to provide scaffolding with each level of skill 

difficulty, between games to adjust to students’ difficulty needs, 

and across the system to give players a customized pathway 

between skills based on performance. Assessment is embedded 

throughout the play experience, including game-based pretests 

and final assessment tasks at a granular skill level. 

2.2 Experimental Design 
In the fall of 2018, two research studies were conducted to 

evaluate the effectiveness of MM in preschool (Study 1) and 

kindergarten (Study 2) students. Students in both studies came 

from ethnically diverse, low-income, public school districts in 

Southern California.  

Both studies employed a cluster-randomized trial design, in which 

half of the participating classrooms in each study were randomly 

assigned to use the MM app as part of their classroom instruction 

(treatment group), while the other half used business-as-usual 

mathematics instruction and materials (control group). The 

treatment group students (394 students in total, 146 from Study 1, 

248 from Study 2) were asked to use MM in small group settings 

for 15 minutes per day for three days per week, over a total of 12 

weeks. After classroom implementation, overall usage averaged 

5.6 hours in Study 1, and 5.22 hours in Study 2. Both treatment 

and control groups received a paper-and-pencil standardized 

assessment of early mathematics performance before and after the 

implementation of MM. 

2.3 Event-stream Data Collection 
Event stream data were collected using a learning game data 

framework based on ADAGE (Assessment Data Aggregator for 

Game Environments; [26]), focusing on key learning mechanic 

milestones as context for performance information and results, as 

well as comprehensive coverage of player interaction and system 

feedback (e.g. [27]). These milestones are called units, and 

represent repeating progress mechanics through the learning 

game. Generally, students can play many games in the system 

(each of which corresponds with a mathematics skill), and each 

game contains multiple levels of difficulty. Thus, a larger unit of 

play is a game, and within a game a student can play one level (or 

activity) at a time. Each activity is built to support and assess 

knowledge of an individual math skill. All unit starts and ends are 

marked in the data, and all player interactions, system feedback, 

and results are recorded in the context of the active units at the 

time of the event. For example: if a student taps on the screen, we 

capture the basic x,y coordinate, the object being tapped (if 

applicable), and the units that were active during the tap (e.g. 

which game, activity and round the player was in when the event 

fired). In-game performance information (e.g. result or score) is 

embedded at the unit level, recorded at the end of applicable 

rounds and activities. In terms of raw player interaction, data 

collected consists of taps and drags. System feedback, also called 

system events, consists mainly of the game communicating with 

the player in giving formative feedback. This includes tutorial 

prompts, instructional input, and inactivity prompts (given if 

students have not interacted with the screen in 30 seconds). 

Additionally, every log file event is seeded with metadata such as 

student ID, timestamp, and session ID. Data structured in this 

fashion (Figure 1) allows for a comprehensive event-stream 

record that is labeled consistently across the system—which 

currently contains over 130 activities—all aligned with learning 

design for interpretability, a key element of viable data use for 

feature engineering and analysis. 

 

Figure 1. A simplified view of MM’s log file data schema. 

2.4 Behavior Detection 
To investigate player patterns of wheel-spinning in Mastering 

Math, prediction modeling was used to build a behavior detector 

(i.e. model of student behavior), an automated model that can 

infer from log files whether a student is behaving in a certain way 

(e.g. [28]). These models can be employed to detect a variety of 

important aspects of the learner and his/her performance, 

including student learning, strategy, and engagement (e.g. [29, 12, 

30, 31]). To train the predictive model, detectors often leverage 

human judgment of student behavior, in a process where behavior 

labels derived from human judgement are used to train and 

validate models, which can then automatically detect the target 

behavior in the larger event-stream. In this case, once the initial 

student interaction with a digital learning environment is 

captured, the analysis process includes: 1) distilling data features 

potentially relevant to the behavior construct; 2) identifying 



instances of the behavior through human evaluation; and 3) 

predictive modeling with the synchronized log file data.  

Throughout these phases of analysis, a critical element of the data 

mining approach is emphasis on the event-stream trajectories that 

emerge in relationship to the behavior. With this detector study, 

each student's event-stream play patterns were observed and 

coded individually for emergent wheel-spinning behavior. 

Specific actions and click-stream interactions then emerged as 

evidence of wheel-spinning through the prediction algorithm’s 

variable selection processes. Thus, player choices and interactions 

characteristic of wheel-spinning were derived from the larger 

event-stream data flow in the analysis process detailed below. 

2.4.1 Feature Distillation 
In this analysis, data features were distilled from MM event-

stream data based on play across the entire system, then refined 

along themes of progression and performance. These organizing 

themes help capture student trajectories across the system for 

behavior detection, particularly since student progress and 

failure/success are central to the target constructs of wheel-

spinning and productive persistence. 

Using the learning progress mechanics, or units (i.e. games or 

activities) from the event-stream data schema, data features were 

organized based on performance within each unit, as well as 

measures of progression (e.g. time elapsed, number of activities 

completed, number of games activated, etc.). (For reference, when 

a game is activated, it means that a student failed the associated 

pretest and that gameplay for that skill is now open.) Summary 

features were also created in parallel to the unit features, giving a 

sense of the overall trajectory of the player through the learning 

space. Since PreK and K students are in developing stages of 

cognition, additional features were engineered to represent age 

and elements of motor skill (e.g. miss rate, or how often a student 

drags an object towards a target and misses). One view of selected 

event-stream features is given below (Table 1). 

Table 1. Overview of selected event-stream features 

 Progression Performance 
Overall • total duration in system 

(active play) 
• total activities completed  
• total activities started 
• total games started 
• miss rate 
• student age 

• % of skills mastered  
• ratio of “boss” activities 

successfully passed*  
• total # of skills (games) 

activated  
• total skills mastered 

(games completed) 

Game • game completion rate  
• avg duration to game 

completion 
• # of answers submitted 

per player per game 
• # of activities completed 

within each game 
• avg time elapsed between 

activities in the same 
game 

• individual game status: 
- in-progress 
- passed game (skill 

completed) 
- struggling (fail states for 3 

of the last 5 activities) 
- not started 
- pretest passed** 
- pretest failed 
• % of started games 

successfully completed  
Activity • activity completion rate 

• avg activity duration 
• # of hints given 
• # of inactivity prompts 
• # of tutorials accessed 

• score 
• progression to next level 

(pass/fail) 
• # of rounds passed 
• # of rounds failed 
• # of rounds completed 

*The “boss” activity is the most difficult assessment in a game 

**Pretests are embedded at the game level to test prior knowledge 

2.4.2 Behavior Coding of Wheel-spinning 
For behavior detection, we focused on the construct of wheel-

spinning, since the ability to flag this particular behavior held 

strong utility for enabling automated scaffolding in-system as well 

as in-person teacher intervention. Wheel-spinning is also an 

especially relevant focus for a game context—a medium in which 

boundary testing is an implicit norm [25], and differentiating real 

struggle from more productive forms of exploration and self-

paced discovery can be valuable. Mastering Math games are 

sufficiently different from the intelligent tutoring systems, where 

wheel-spinning was initially studied, to require a different 

operationalization of wheel-spinning. In this context, we view 

wheel-spinning as connected to lower gameplay efficiency in the 

system, since wheel-spinning occurs when a great deal of effort 

yields very little progress [19]. To capture efficiency in an 

adaptive games context, in which every student has a different 

learning pathway, we designed a metric allowing efficiency to be 

standardized across players. This measure of learning efficiency 

was called rate of mastery, designed to measure the rate at which 

students were mastering math skills. This was calculated as the 

number of boss activities (the hardest assessment level in each 

math skill game) a student passed, divided by his/her total number 

of activities. This measure made sense as a progress-based metric, 

since performance on boss-level skill assessments is central to 

learning game progression. This ratio was ultimately calculated 

using data from both school studies. In the main behavior 

analysis, in accordance with the focus on wheel-spinning students 

and those persevering through difficulty, we concentrated on 

students in the lower two quartiles of rate of mastery. 

As noted in Kai et al., 2018, we cannot assume that all lower 

efficiency students in the system are hopelessly struggling—on 

the contrary. Students who take their time to learn material, use 

self-paced progression, and achieve eventual success are likely to 

be demonstrating productive persistence. Determining whether a 

low-efficiency student is spinning their wheels or persisting 

productively is challenging. To differentiate these two groups, we 

started by leveraging human judgement on a per-student level to 

capture emergent patterns in the data. In particular, we chose to 

utilize the human capacity for pattern recognition and behavior 

evaluation (rather than an a priori rule-based approach), since the 

system is adaptive and no two students are likely to have the same 

path through the learning space. 

Thus, the next step was to have human researchers observe a 

stream of student actions and identify the student’s behavior (e.g. 

[32]). The human evaluation of student behavior establishes when 

the behavior occurred (which serves as the predicted variable). 

For coding of wheel-spinning behavior in this study, play 

visualization based on text replays were adopted for their 

efficiency and accuracy [33]. Text replays, based on recorded log 

file data, are a text-based representation of student action during a 

given period of time. Text replays have shown to be highly time-

efficient and scalable [50], and almost as accurate for detecting 

student behavior as other methods such as live observation [34]. 

The variation on the text replay that we used—called a visual 

progress replay (VPR)—includes color coding of performance 

levels (in addition to text summaries) for greater ease of 

information processing (cf. [35]). This approach represents the 

same information as a text replay, but in a form that encodes 

information with color consistent with canonical visualization 



techniques [36], and has previously been used to create detection 

models in related game-based learning research (e.g. [25]). Key 

features of the VPR included a visual display of game status, per 

student, across the system. This color-coded visual map showed 

whether each game was in-progress, completed (passed), in a 

struggle state (i.e. at least 3 non-passing scores within the last 5 

activities), or not started. In addition, summary statistics per 

student were shown, such as number of activities completed in the 

system and time spent in total (Figure 2). 

 

Figure 2. A sample portion of a VPR used for coding wheel-

spinning, shown for a single student across the system. 

 

We designed the replay’s clip size to show one student’s full 

system playthrough at a time, since we wanted to be able to detect 

a system-wide wheel-spinning state for each child. To capture the 

full trajectory of play, coding was done at the student level, 

labeling each student at the end of the study (week 12), in terms 

of whether a student was WS (wheel-spinning), P (productive 

persistence), and NA (not enough information). Within the lower 

efficiency group of students, WS captured a state of high effort 

but little progress, P fit with steady student progress, and NA was 

applied when there wasn’t enough information (e.g. not enough 

time or activities in game to make a judgement). We included NA 

in this schema so that we could derive time and activity 

minimums for WS vs P differentiation through the predictor itself, 

rather than picking an arbitrary cutoff in excluding student data 

(such as, for instance, dropping all students who played for under 

30 minutes). This third code also allowed for more nuanced 

coding—rather than forcing all students to fit under WS or P, thus 

risking miscategorization, the NA code could be used instead. 

Using this tri-code schema, inter-rater reliability analysis yielded a 

Cohen's ᴋ [37] of .78, indicating acceptable agreement between 

raters was achieved. 

2.4.3 Modeling Early Detection of Wheel-spinning 
The final predictive model merged the initial feature engineering 

of event-stream features with the behavioral codes generated in 

the analysis above. To support early intervention for in-system 

personalization as well as teacher interventions, the final model 

was built to predict wheel-spinning (WS) at the end of week 12 

(the last week of the study) using predictors from week 4 data. 

(Week 4 predictors were selected after subsequent weeks 5 and 6 

were tested for model performance, but resulted in only marginal 

improvement.) Since each classroom was assigned exactly 12 

weeks of play relative to start date, weeks as a time marker helped 

consistently align student progress across classrooms in 

relationship to the study design. It also allowed for 

implementation-focused behavior detection for the highest utility 

to teachers. With earlier detection of students getting stuck in the 

system, intervention can have greater impact on student progress 

in building core math skills. 

Ultimately, the log file features (Table 1) were used as predictors 

in the model, while the behavior of wheel-spinning became the 

predicted variable. Using this full feature list, the WS detector was 

then built at the student level using RStudio, using the RWeka 

package for data mining [38]. An appropriate set of algorithms 

were selected based on the categorical dependent variable, 

informed by related behavior modeling research in education (e.g. 

[39, 40]), including J48, CART, Random Forest, and Naïve 

Bayes. Models were evaluated using ten-fold cross validation, 

with a final selection based on the goodness metric of AUC ROC.  

To achieve higher accuracy in correctly detecting and classifying 

the target class of students, the wheel-spinning students, we used 

rebalanced classes for all three methods tested. This approach is in 

alignment with similar detector-based analyses in digital learning 

contexts (e.g. [41, 42]). Specifically, the original classes P, WS 

and NA had a respective number of instances of 79, 39 and 14. 

We set the target number of instances for each rebalanced class to 

n=100. To obtain that number of observations per class, for a total 

of n=300, sampling with replacement was performed on each 

class. This resampling procedure was only performed on the 

training set for tree building purposes and all testing was 

performed on the original data distribution. 

3. RESULTS AND DISCUSSION 

3.1 Results 
Ultimately, the CART algorithm produced the best model 

performance, achieving a cross-validated AUC of .676 in 

predicting wheel-spinning in week 12 with week 4 predictors, 

comparable to metrics in other game-based learning detector 

models (e.g. [39, 12]). 

 
Figure 3. Final CART wheel-spinning predictor model. 

 

Interestingly, in Figure 3 the first decision on the tree is the 

number of activities completed, with many students having less 

than 21 activities categorized as NA (insufficient information). 

Under this parent node, three core pathways emerge for wheel-

spinners, covered from left to right on the tree: 1) low prior 

knowledge and low motor skill (via count all game, a low-level 

skill, and miss rate); 2) higher % of skills mastered but with very 

low efficiency (rate of mastery); and 3) younger students with low 

prior knowledge and very low efficiency in the system (with few 

games activated, higher time per activity and high number of 

activities per game). The first path suggests a group of students 

that may be in an earlier stage of development, both in terms of 

motor skill and prior knowledge (but not necessarily age). The 

second group, with the ability to master more skills with 

seemingly fewer motor skill issues, may represent students that 



have more advanced development and prior knowledge but may 

need a bit more scaffolding and just-in-time support to learn the 

material. The last group may consist of younger students with low 

prior knowledge who need support more directly related to age-

based maturity levels. These groups, implying differing levels of 

development and age, reflect clinical research which suggests 

wide variation in the relationship between age and developmental 

level in young children [43]. This suggests that developmental 

stage (rather than age alone) is a helpful differentiator in 

personalizing learning experiences for young students. To 

investigate implications of age and development for better 

learning design, these emergent groups suggest value in deeper 

exploration of student profiles in future work (discussed below). 

Overall, these model-derived groups offer insight into potential 

types of wheel-spinning that occur within the system, with the tree 

model allowing for early detection of unproductive persistence. 

3.2 Discussion and Conclusion 
Overall, the model of wheel-spinning yields insight into the 

important differentiation between unproductive and productive 

persistence, revealing multiple ways that student wheel-spinning 

manifests in data and enabling event-stream detection of this 

behavior in the event stream data. In turn, this real-time prediction 

can allow for very early intervention—both in-system and in 

classroom—for students displaying wheel-spinning behavior. For 

the system, this means it may be possible to offer more intelligent 

adaption to student needs, while for teachers (with limited time 

and resources) it may become possible to offer just-in-time 

information about which students most need help. This emergent 

behavior detection is especially important in games, which can 

have unexpected player pathways due to complex elements of 

narrative, agency, and failure-driven exploration—all of which 

converge to support the medium’s power of engagement in well-

designed playful learning experiences. 

Along this line of research in future work, there is an opportunity 

to generalize this detector to children using the game-based 

learning system outside of a study-specific context. The week-

level data used in this study was centered around implementation, 

designed to flag to a teacher which students might be wheel-

spinning after a certain amount of prescribed weekly dosage; 

however, converting this progress marker to an activity/elapsed 

time-based unit to build a model based on data in the wild can 

make this model applicable to an even broader base of learners. In 

addition, comparison between the classroom-based and broader 

event-stream based models may yield interesting insights. There is 

also an opportunity in this rich data stream (currently thousands of 

students) to hone the model for even higher AUC and predictive 

power. This includes iteration in feature engineering based on 

patterns that may arise in the larger data stream of students, using 

predictive modeling of wheel-spinning in a broader context of 

students (in formal and informal learning environments). 

Investigating player profiles based on detection results may also 

help determine groups of students struggling with the system 

based on motor skill, prior knowledge, and age/grade. Relatedly, 

better understanding how motor skill indicators in the data 

connected to more traditional measures of visual-motor skill (e.g. 

[44]) may also be valuable. Finally, dashboards highlighting 

detector-based insights to both parents and students for 

interpersonal support represent a key area for future work, with 

potential for student-level flagging for intervention, specific skills 

needing support (see Figure 2), recommendations for in-person 

follow-up, and possible grouping of students in the same class for 

differentiated instruction.  

Future work in expanding the scope of wheel-spinning research in 

the MM system can support the ability to generalize findings 

across broader age ranges and geographic areas, increasing the 

potential for impact on data-driven design, intelligent 

personalization, and interpersonal intervention. With information 

on behaviors like wheel-spinning and productive persistence, in 

combination with other evidence such as student prior knowledge, 

this work can inform designers about which instructional design 

in games needs revisiting, as well as providing adaptive logic and 

system overlays for just-in-time detection and intervention. Both 

in the system and beyond, this research can further the application 

of educational data mining to principled learning design, 

potentially expanding the field of intelligent game-based learning 

and supporting young learners in developing foundational 

academic skills at scale. 
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