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ABSTRACT 
Determining which students are at risk of poorer outcomes -- 
such as dropping out, failing classes, or decreasing standardized 
examination scores -- has become an important area of research 
and practice in both K-12 and higher education. The detectors 
produced from this type of predictive modeling research are 
increasingly used in early warning systems to identify which 
students are at risk and intervene to support better outcomes. In 
K-12, it has become common practice to re-build and validate 
these detectors, district-by-district, due to different data 
semantics and risk factors for students in different districts. As 
these detectors become more widely used, however, it becomes 
desirable to also apply detectors in school districts without 
sufficient historical data to build a district-specific model. Novel 
approaches that can address the complex data challenges a new 
district presents are critical for extending the benefits of early 
warning systems to all students. Using an ensemble-based 
algorithm, we evaluate a model averaging approach that can 
generate a useful model for previously-unseen districts. During 
the ensembling process, our approach builds models for districts 
that have a significant amount of historical records and 
integrates them through averaging. We then use these models to 
generate predictions for districts suffering from high data 
missingness. Using this approach, we are able to predict student-
at-risk status effectively for unseen districts, across a range of 
grade ranges, and achieve prediction goodness comparable to 
previously published models predicting at-risk  
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Learning Analytics, High School Graduation, Machine 
Learning, Ensembling.  

1. INTRODUCTION 
Graduating from high school is an educational achievement that 
is strongly linked to gainful well-paying employment, higher 
personal income, better personal health, reduced risk of 
incarceration, and lowered reliance on social welfare programs 
[23, 2]. Fortunately, graduation rates have been rising in the 
United States, trending towards reaching 90% nationwide by the 
year 2020 [18]. While this is a positive accomplishment, it 
leaves millions of students not completing high school, 

representing a continuing crisis within the American educational 
system. This crisis is not evenly distributed; in the USA, there 
are much higher dropout rates for African American, Native 
American, and Hispanic/Latinx students [35, 19], up to 4 times 
the rate for White students, as well as for learners from low-
income families and with disabilities [37]. 

There is a clear benefit in completing a high school education, 
so why do we still see alarmingly high levels of high school 
dropout? A great deal of research has been conducted trying to 
answer this one question, with the hope that once identification 
is achieved educators and administrators can apply a 
preventative or remedial intervention to curb student dropout 
[11]. However, many factors appear to lead to student dropout, 
including lack of social support from parents, poor motivation, 
low self-esteem, parental educational achievement and value, 
and economic factors, making it difficult to create a single 
intervention that works for all students [19, 30]. While 
demographic factors correlate with eventual dropout, these 
indicators are not considered actionable. A school district 
generally does not have the capacity to improve a student’s 
economic condition, nor is it possible to alter a student's racial 
identity or gender. As such, the educational research community 
has focused on more actionable factors such as behavior, 
attendance, engagement, and social-emotional learning [21]. The 
most successful interventions have attempted to address issues 
related to specific indicators while also attempting to improve 
overall student academic engagement [14]. There are a range of 
potential interventions and many are costly, driving a need to 
identify the students that could benefit most from specific forms 
of support. Identifying these students can be a difficult task [10] 
which has led to an ongoing effort within the educational 
research community to determine which students are at risk of 
not graduating from high school [20] to apply proactive 
interventions that can help get students back on track [8].  

This goal, along with the growing availability of student data, 
has led to Early Warning Systems, which leverage statistical 
methods applied to historical student data in order to predict 
outcomes for new students. Early work on predicting high 
school graduation tended to use statistical methods in order to 
infer the relationship between graduation and indicators such as 
grades and attendance. For example, the seminal Chicago Model 
developed an "on-task" indicator built from first-year high 
school student performance indicators and then used this newly 
defined feature within logistic regression to model student risk 
[1]. This method proved effective with 80+ percent accuracy in 
predicting student dropout, leading to high popularity and wide-
scale implementation and use [6]. 

More recently, researchers have begun to leverage machine 
learning and data mining methods, sometimes termed predictive 
analytics, to find complex patterns associated with future 

 

 



student outcomes [28, 17]. In K-12 education, this approach was 
used by Lakkaraju et al. [29] to predict student dropout in two 
districts, finding that the Random Forest algorithm outperformed 
several other algorithms. Some of the efforts to use machine 
learning in predicting student success have been scaled beyond 
single districts to entire states [27]. However, it still remains a 
challenge to deploy predictive analytics for use in schools at 
scale. District data often contain substantial information about 
its schools and students: demographic data about the student and 
teacher populations, academic performance information, 
financial information, disciplinary actions, and attendance 
records [36]. However, in many school districts, data quality is 
limited, with key information only available by integrating 
across multiple data warehouses, incompatible student ID 
numbers, errors in data entry, and local idiosyncratic 
interpretations of often ambiguous data fields. Even when data 
is today excellent, key data from past years is often unavailable 
due to the absence of a formal data system or having a data 
system which is difficult to query. Semantics may also change -- 
for example, the definition of "not graduated" is not stable 
across years and contexts [35] -- but these changes may not 
always be clearly understood when reviewing past data.   

One solution is to use models that involve simple variables that 
are feasible for almost any district's data and assume that model 
will be valid in new contexts, even where that context may be 
quite different from the context where the model was initially 
developed [32]. The Chicago model [1] is a common choice for 
this type of application.  

In this paper, we propose and evaluate an alternate solution to 
providing a model for a new district. Our approach attempts to 
generate predictions for a specific “Target” school district based 
on models from other school districts where full datasets are 
available, using a simple average of the district models, where 
all existing models are given equal weight. We compare the 
quality of our averaging approach to the earlier solution of using 
a simple generic model, specifically, the Chicago model. 

2. METHODS 
In the following section, we will discuss our method for making 
at-risk student predictions for school districts which have 
insufficient data to create a district-based prediction model. In 
brief, we develop and validate predictive analytics models for 
each school district with sufficient data. These models predict 
each student’s probability of graduating (or risk of not 
graduating). We then conduct a simple ensembling approach, 
averaging each model’s predictions, to produce a single 
prediction for each student. We test the quality of this approach 
by conducting it for held-out districts where data is available.  

We validate our new approach by comparing its performance to 
the widely-used “Chicago model” [1, 6] on the same test data 
and comparing the performance of our detector to the classic 
Chicago model, which can be used for entirely new districts 
with no re-training. The Chicago model utilizes freshman-year 
GPA, the number of semester course failures, and freshman-year 
absences to determine the student’s risk of failing to graduate 
[1]. Since the Chicago model relies on data collected within the 
first year of high school, we were only able to compare the 
performance of our approach to the Chicago model for high 
school students. 

2.1 Data 
Data for this research originate from the BrightBytes data 
analytics and visualization platform, Clarity®. The Clarity® 
platform ingests disparate datasets, transforms them to a 
standardized format by mapping district-specific variables to a 
common schema, prepares the data for analysis, and then 
visualizes the data in a meaningful, easy-to-understand way. The 
Clarity® platform is used by 1 in 5 schools across 47 states to 
empower educational leaders to use data for decision making. 
The value derived by districts from the Clarity® platform comes 
from using data to drive change within an organization. The 
anonymized dataset used in this paper (n =3,575,724) represents 
a large spectrum of K-12 students in terms of free/reduced lunch 
eligibility, school urbanicity, and school demographic makeup, 
and is drawn from a range of school districts, educational 
organizations and agencies.  

We have nearly complete data (with only small numbers of 
variables unavailable) from an educational agency with 
decision-making power over a large geographical region (Pillar 
1) and three large individual school districts (Pillar 2, Pillar 3, 
Pillar 4). These datasets are referred to as “Pillars” because they 
serve as bases for our ensemble-based approach. The four Pillars 
differ in terms of their predominant student demographic 
groups, with Caucasians representing the largest group of 
students in Pillar 1 (n=1,681,988), Hispanic/Latinx students 
representing the largest group of students in Pillar 2 (n= 
392,148), and split demographics in Pillar 3 (n=158,991) and 
Pillar 4 (n=140,132). 

We test our models on 30 “Target” districts that were not used 
to develop the models, due to having fewer years of data, more 
missing variables, or smaller samples overall. These Target 
districts span a diverse range of predominant demographics, 
with one Target district being over ninety percent Caucasian at 
one extreme, and other districts being almost completely 
Hispanic/Latinx or African American. District performance is 
equally as diverse: some Target districts achieve graduation 
rates over 90% while others have graduation rates as low as 
36%. Table 1 below highlights the number of records available 
in the Pillar districts and Target districts. The Target districts 
are generally smaller than the Pillar districts, with some having 
as few as 271 total historical student records, with the percent of 
data missingness within the Target districts also quite high in 
some cases (M= 41.65%, SD=7.498%). 

Table 1: Average Number of Outcome Records in Target 
Districts 

Grade Band Graduates SD Dropouts SD 
1st – 5th 4,307 9,784 634 1,267 
6th – 8th 7,673 16,837 996 2,012 
9th – 12th 24,552 39,524 1,920 3,833 

All Grades 12,177 95,962 1,183 7,377 
 

2.2 Predictor Variables 
The potential set of predictor variables was selected in 
partnership with the American Institutes for Research (AIR) 
team [22], this paper’s authors, and other researchers and 
developers at BrightBytes. This collaboration resulted in a 
theory-based [9] framework of success indicators, along with 
definitions of those success indicators that are used to map and 
align district data. Due to the data ingestion and transformation 



process, the same data features can be used across all districts. 
Below is a distillation of the broad range of potential variables 
into a small set of meaningful buckets: 

General Coursework: student academic performance such as 
total credits earned or student grade point averages [25, 38, 5]. 
Student Assessments: interim or summative assessments related 
to math, science, reading and social studies performance [26,16]. 
Student Attendance: recorded as absences or tardies [33]. 
Student Behavior: disciplinary incidents the student has on file 
[4, 10]. 

2.3 Model Fitting 
The first step toward building an at-risk prediction model for 
districts without sufficient data is to build models for districts 
with sufficient data. For each of these models, we took the data 
from a single district. We filtered down to only the students who 
were flagged as ‘dropped’ and ‘graduated’. Even if students took 
extra time to graduate, they were still counted as graduating. 
Only these students were used for building the model; all other 
outcomes (such as transferring to another school district) were 
removed from the filtered dataset. The resultant datasets were 
generally highly imbalanced, with substantially more students 
graduating than dropping out. To account for this imbalance, the 
training data was manually rebalanced by adding duplicate 
copies of students who dropped out to the data set. Specifically, 
duplicates were created such that every grade level (10th, 11th, 
12th, etc.) of students in the training datasets had an equal 
number of students who dropped out as students who remained. 
The original data distribution was used when testing the models. 

Decision trees, support vector machines, XGBoost, logistic 
regression and random forest were all tested to build the initial 
model. The best performance across data was obtained with 
random forest classifiers with n=15 estimators and a max depth 
of 10. Since the algorithm was tree based, we utilized arbitrary 
value substitution to replace missing values with a high integer 
[39]. The goodness of each district’s model was evaluated, 
within-district, using a train-test split method (note that models 
are also evaluated within entirely new districts; see below). In 
each case, the training set consisted of a randomly selected 70 
percent of the data with label-based stratification used across 
grades. The test set held out to validate the model consisted of 
the remaining 30 percent of the data.  

Models were evaluated using the Area Under the Curve for the 
Receiver Operator Characteristic graph. AUC ROC was selected 
as our primary evaluation statistic due to its interpretability and 
validity for highly-imbalanced test sets [24]. AUC ROC 
calculates the tradeoff between true positive and false negative 
for every possible threshold used for labeling data points as 
positive and negative; as such, it is well-suited for evaluating 
how well an algorithm ranks students relative to their risk. 

2.4 Pillar Selection 
Selection of the four Pillar districts was based on two factors, 
data quality and model performance. To evaluate data quality, 
we calculated the proportion of missing values within the total 
feature set, expressed as a percentage. Districts were not 
included as Pillar districts if they had high amounts of missing 
data, over 40% of values missing, as these districts would be 
less useful for modeling other districts where these features 
were present. Districts were also not included as Pillar districts 

if they lacked historical data spanning all grades 1 through 12; 
districts without historical data for some grades would be less 
useful for developing models that could be applied to all grades.  

Models developed for specific districts as potential pillar model 
candidates were fit and evaluated using held-out test sets from 
that district’s own data. Districts for which we were able to 
produce a model with AUC higher than 0.7 on the district’s test 
sample, averaged across all student class years, were designated 
as Pillar districts/models and used in our predictions for districts 
for which models could not be generated for all grade levels, or 
for which models were insufficient in quality. Of the 30 Target 
districts within our study, 25 do not have enough historical 
records spanning all 12 grades and 5 had sufficient data but were 
unable to produce an AUC over 0.7. All 30 districts suffered 
from at least some degree of feature missingness.  

2.5 Applying Models to New Districts 
Having developed models for Pillar districts, where data are 
abundant, data quality is high, and where it is possible to 
develop a high-quality model, we next applied each Pillar model 
to each Target district. These Target districts had at least one of 
the following attributes; 1) Under 20,000 students, 2) Over 40% 
missing values, 3) Missing historical records for some grades in 
K-12, 4) AUC ROC when applied to new students within-
district.  

Our first step to applying the Pillar models was simply to run 
each of them on the Target district’s data (n = 1,202,465) and 
obtain predictions for each student. This provides us with a set 
of predictions for each student and for each model. We then 
took the average of the probability estimates, across districts, to 
generate the final student prediction. When we applied Pillar 
models to Target districts, we evaluated these models using all 
historical records present in the data as none of their records 
were used within model training. As with models tested on the 
district for which they were built, we use AUC ROC as our 
metric of model goodness. 

3. RESULTS 
3.1 Within-District Performance  
We first applied each Pillar district model to new students from 
the same district, to evaluate within-district performance. As 
shown in Table 2, the four Pillar districts achieved AUC ROC 
values ranging between 0.899-0.936 when predicting 
graduation/dropout, for 9th through 12th grades (the typical high 
school years in U.S. classrooms). Performance was moderately 
lower for 6th-8th graders, where longitudinal predictions of up 
to 6 years are being made, with AUC ROC ranging from 0.849-
0.884. Performance was again moderately lower for 1st-5th 
graders, where longitudinal predictions of up to 11 years are 
being made, with AUC ROC ranging from 0.758-0.810. 

Table 2. AUC of Pillar Model Performance on Pillar Model 
Test Data (new students) by Grade Band 

District 1 – 5 6 - 8 9 - 12 Average 

Pillar 1 0.778 0.849 0.899 0.865 

Pillar 2 0.758 0.884 0.908 0.858 

Pillar 3 0.810 0.884 0.936 0.888 



Pillar 4 0.794 0.850 0.903 0.886 
 
Our attempts to build a model for each Target district proved 
less successful, with 9th – 12th grade model AUC averaging 
0.729, 0.1825 lower than for the Pillar Districts, 6th-8th model 
AUC averaging 0.669, 0.198 AUC lower than the Pillar 
Districts, and 1st -5th grade obtaining an average AUC of 0.635, 
0.15 points lower than the Pillar Districts’ within-district 
performance for these grade levels.  
It should be noted that there were three exceptions to this poor 
AUC trend. Three Target districts produced relatively more 
successful models, averaging AUC = 0.81 for 9th-12th grade 
students, AUC = 0.709 for 6th-8th grade students, and AUC = 
0.666 for 1st-5th grade students. Despite the initial successful 
results of these three Target districts, they still lacked the data to 
produce models for all years, with all three missing records for 
1st and 2nd grades. When additional historical records become 
available in the future, these models will almost certainly make 
it into the pool of Pillar models in future model iterations. 

3.2 Feature Importance 
We can understand which features are particularly important to 
each Pillar model by calculating feature importance. Feature 
importance was calculated using the mean decrease impurity 
method, sometimes referred to as the gini importance [12]. This 
metric allows us to calculate how much each feature contributes 
to the model’s eventual predictions of a student’s outcomes (in 
this case, risk of dropout). A range of different types of features 
were found to be important in the four models. The Pillar 1 
model relied heavily on features related to student age, 
attendance and academic achievement. The Pillar 2 model was 
similar to the Pillar 1 model in that it relied strongly on 
academic and attendance related features. However, student 
summative reading scores were also important to the Pillar 2 
model. The Pillar 3 model was less similar to the first two 
Pillars. For Pillar 3, student assessment data and student 
behavioral data (i.e., disruption, defiance, etc.) were the primary 
contributors to the model’s predicted outcomes, a difference in 
feature importance that is likely due to a multitude of reasons. 
Pillar 4 was most similar to Pillar 1 as it also relied heavily on 
student academic indicators. One reason could be that there were 
differences in the data availability of features for each district. 
For example, no assessment data was available for Pillar 1, 
whereas Pillar 3 had assessment data available for almost all of 
their historical student records. Another cause could be the 
difference in the populations of students in each Pillar district. 
For example, attendance may play a larger role in graduation in 
urban districts (e.g. Pillar 2), whereas behavioral incidents could 
play a larger role in the path to dropping out for students in 
more rural districts (e.g. Pillar 3). 

3.3 Performance on New Districts 
We applied the Pillar models to each student’s data from the 30 
Target districts, and averaged the probability across models for 
each student. These districts had considerable variation in size, 
graduation rate, and degree of missingness of data (and which 
features were missing), with values for these variables that were 
substantially higher or lower than the values for the Pillar 
districts. In other words, applying models from the Pillar 
districts to these thirty Target districts represents substantial 
extrapolation. 

Table 3 shows average performance of each individual Pillar 
model detectors on the Target district data, as well as using 
averaged probabilities. Despite the high degree of extrapolation 
required, performance was generally good, with an average 
AUC (across districts) of 0.783 (SD = 0.100), with three 
districts achieving AUC above 0.9. AUC results within grade 
band produced similar outcomes, with 9th-12th obtaining an 
average AUC of 0.813 (SD = 0.078), 6th-8th model AUC 
averaging 0.736 (SD = 0.13), and 1st -5th grade model AUC 
averaging 0.646 (SD = 0.141). However, two districts (Target 
12 and Target 28) had poor overall AUC values of 0.539 and 
0.469. It is worth noting that these two districts had the highest 
rate of missing data for features that ranked most important in 
the Pillar models, with over 80% of students in these Target 
districts missing data related to coursework, over 90% of the 
records not containing any assessment scores, and the data for 
40% of the students not containing attendance information. 
Overall, the districts with the highest amounts of missing data in 
core features were also the districts with the lowest AUC ROC 
values. None of the individual Pillar models did as well as their 
average when applied to the Target districts; individual Pillar 
models achieved an AUC between 0.718 - 0.756 on the Target 
districts, significantly underperforming compared to averaging 
the produced model probabilities.  

Table 3: Average Performance of Pillar Model and Mean 
Detectors on Target District Data. 

Detector 1 – 5 6 - 8 9 - 12 All Grades 

Mean Model 0.646 0.74 0.813 0.783 

Pillar 1 Model 0.631 0.673 0.749 0.719 

Pillar 2 Model 0.568 0.678 0.764 0.718 

Pillar 3 Model 0.631 0.720 0.789 0.750 

Pillar 4 Model 0.591 0.685 0.788 0.756 

3.4 The Chicago Model On-Task Indicator 
Comparing our Mean Model detector to the Chicago model 
detector was limited by data availability: the Chicago model 
relies on freshman year high school student data, specifically the 
number of course credits and courses failed during freshman 
year (9th grade). Due to the detector’s reliance on these two data 
points, our validation sample was limited to only those districts 
that contained valid information for these two features. 
However, many of our Target districts lacked data for the 
features in the Chicago model, for some students. If at least one 
feature was available for the Chicago model, the model was 
used; a student was assigned a .5 probability of graduating if the 
Chicago model was missing all features and therefore incapable 
of producing a prediction. The Pillar models performed also 
poorly for these students with very high data missingness. 

Table 4: Average AUC Performance of Mean Model vs. 
Chicago On-Task Indicator: 9th-12th grades 

Detector Avg AUC Standard Deviation 

Mean Model 0.821 0.084 

Chicago Model 0.624 0.121 
The Mean Model outperformed the Chicago model in every 
Target district, except for one district. In that district, the 
Chicago model (AUC=0.77) performed .068 better than the 
Mean Model (AUC=0.702). Overall, the mean Pillar model 



detector achieved an average AUC of 0.197 higher than the 
Chicago model when measuring performance of predictions on 
high school student Target district data. 
One might argue that this comparison biases against the Chicago 
model, by including cases where the specific data needed was 
unavailable. Although our approach is designed to work in cases 
of high missingness, we can also compare our Mean Model to 
the Chicago Model only for cases which have the data the 
Chicago model needs. This resulted in a significant reduction of 
the data used to calculate AUC metrics, with only 351,902 out 
of the original 1,202,465 student records able to populate the 
On-Track Indicator, 29.3% of our initial sample.  
Table 5: AUC Performance of Mean Model vs. Chicago On-

Task Indicator on Complete Records: 9th-12th grades 

Detector Avg AUC Standard Deviation 

Mean Model 0.874 0.061 

Chicago Model 0.734 0.082 
 
Both the Mean Model and the Chicago Model saw an increase in 
their average model performance across the new sample, with 
the Mean Model increasing by 0.053 from 0.821 to 0.874 and 
the Chicago model increasing by 0.11, from 0.624 to a more 
respectable AUC of 0.734. However, the Mean Model still 
achieves an AUC 0.14 higher despite these conditions designed 
to be more favorable to the Chicago Model.  

4. CONCLUSIONS 
In this paper we propose an approach to predict student risk of 
not graduating from high school for districts where the quality, 
quantity, or availability of data is insufficient to produce a 
satisfactory model of student risk, using an ensemble of models 
from other districts where data is available. This method 
achieves good predictive power for students in districts that 
were not used to develop the model, without any fitting or 
modification to the models or their application. Furthermore, it 
achieves substantially better results than a popular alternate 
approach to predicting at-risk status in new districts, the 
Chicago model. 
It is worth noting that our approach and study have several 
limitations that should be investigated in future work. Though 
our sample of Target districts was large, we have not yet applied 
this method across the full diversity of students in the U.S. In 
particular, districts with substantial Native American 
populations or those located in extremely rural regions, such as 
northern or western Alaska, are not represented in our study. 
Similarly, we have not studied whether our models are equally 
good for all subgroups within the school districts–a limitation 
that is common in the field. 
There are several ways in which we could probably improve 
model performance. Research has shown that contextual factors 
can contribute to identifying students at risk of dropping out and 
that factors associated with dropout can differ between 
populations [7, 15]. Altering the detector to weight the Pillar 
model probabilities by leveraging characteristic information 
such as student and school demographics, urbanicity (urban, 
rural, suburban), and the proportion of military-connected or 
otherwise highly-mobile students could help account for 
similarities between students and districts better. Additionally, 
future iterations of our method could take an empirical approach 

to selecting the Pillar model weights using measure of similarity 
based on model performance [31], rather than limiting the 
approach to the current simple averaging method where features 
are weighted equally. 
Ultimately, the performance of the Mean Model presents new 
opportunities in identifying students at risk of dropping out for 
districts with minimal or no data. Given the potential benefit of 
interventions for at-risk students, this new approach has the 
capacity to improve the future of student outcomes within a 
large number of schools where it is not yet possible to develop 
predictive models. Students educated by districts where data are 
insufficient can now be presented with greater opportunities 
through the use of proactive interventions driven by predictive 
modeling rather than being limited to receiving reactive 
interventions that are often applied too late, if ever. 
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