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ABSTRACT
“Sensor-free” detectors of student affect that use only student
activity data and no physical or physiological sensors are
cost-effective and have potential to be applied at large scale
in real classrooms. These detectors are trained using student
affect labels collected from human observers as they observe
students learn within intelligent tutoring systems (ITSs) in
real classrooms. Due to the inherent diversity of student
activity and affect dynamics, observing the affective states of
some students at certain times is likely to be more informa-
tive to the affect detectors than observing others. Therefore,
a carefully-crafted observation schedule may lead to more
meaningful observations and improved affect detectors. In
this paper, we investigate whether active (machine) learning
methods, a family of methods that adaptively select the next
most informative observation, can improve the efficiency of
the affect label collection process. We study several existing
active learning methods and also propose a new method that
is ideally suited for the problem setting in affect detection.
We conduct a series of experiments using a real-world stu-
dent affect dataset collected in real classrooms deploying the
ASSISTments ITS. Results show that some active learning
methods can lead to high-quality affect detectors using only
a small number of highly informative observations. We also
discuss how to deploy active learning methods in real class-
rooms to improve the affect label collection process and thus
sensor-free affect detectors.
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1. INTRODUCTION
Intelligent tutoring systems (ITSs) have gradually seen more
and more deployment over the years in real classrooms all
over the world. Recently, large-scale randomized controlled
trials have shown that they can lead to improved student
learning outcomes [30] and affect [19]. However, even the

state-of-the-art ITSs cannot interact with students the way
human instructors can. For example, in real classrooms,
instructors can detect a student’s knowledge and affective
states by observing their activity and behavior and then
adjust their teaching strategy by changing the difficulty of
practice questions or addressing negative affect [2, 23]. In
particular, keeping students in positive affective states (e.g.,
engaged) is crucial since their affective states are found to be
highly predictive of many metrics of academic performance
and success, including test scores [28] and college enrollment
[29]. Consequently, there exist many works on designing
interventions [1, 10] to address negative affect. Examples
of such interventions include selecting appropriate textual
dialogues to help students engage [12], using an embodied
agent to mirror and empathize with confused students [6], and
providing motivational message to frustrated students [19].

1.1 Student Affect Detection
Many existing student affect detection methods employ phys-
ical and physiological sensors that make frequent observa-
tions of students when they are learning. Despite their
effectiveness, these detectors are impractical for large-scale
deployment in real classrooms due to cost and privacy con-
straints [16,35]. On the other hand, there exists a family of
“sensor-free” detectors, which uses only student activity data
as they learn within ITSs to detect affect [4,32,37]. These
detectors use machine learning-based classifiers to predict
student affective states from a set of activity features [5].
These sensor-free detectors are more feasible for large-scale
deployment than those sensor-dependent ones for two rea-
sons. First, they are cost-effective since once constructed,
they can operate in fully-automated fashion and can easily
be integrated into ITSs and deployed at large scale. Second,
they are more privacy-aware since activity data can be more
effectively anonymized than data obtained from other sensors,
e.g., video recordings of the students’ facial expressions.

Although sensor-free affect detectors are highly automated,
the student affect state label collection process remains labor-
intensive. The process for collecting these labels typically
consists of human observers (including trained coders and/or
the teacher) making observations of students in real class-
rooms and encode their affect into a collection of states.
For example, in the Baker Rodrigo Ocumpaugh monitoring
protocol (BROMP) for affect observation and coding, there
are four affective states: boredom, confusion, engaged con-
centration, and frustration. The process typically proceeds
in round-robin fashion, i.e., the human observer alternates



among students and observe one student in each observation
interval according to a pre-defined, ad hoc schedule.

However, this data collection process is insufficient since the
typical round-robin schedule cannot make full use of the
limited time human experts have to make observations. The
reason is that, due to the inherent diversity in student activity
and affect, the affect states of some students during some
observation intervals are more informative to the classifiers
than those in other cases; A non-adaptive, ad-hoc observation
schedule leads to a lot of missed opportunities to observe these
more informative cases. Therefore, it is desirable to develop
methods that adaptively select the most informative students
to observe in each observation interval and recommend them
to human observers. These adaptive methods can potentially
lead to the collection of higher-quality data for the affect
detector to train on without requiring additional human
effort, which will ultimately improve affect detection.

1.2 Active Learning
Active learning refers to a family of machine learning methods
that adaptively select the next most “informative” observa-
tion to a classifier [34]. These methods are designed for
applications where one has access to abundant unlabeled
data but can only selectively label a small portion of it. In
this setting, there is a need to select data instances whose
labels, once obtained, result in the largest improvement in
classification quality. There exist numerous active learn-
ing methods with different metrics of informativeness; these
methods have been found to be effective at reducing the
amount of labeled data needed when combining with many
classifiers including logistic regression [38], support vector
machines [15], and deep convolutional neural networks [33].
See Section 3.1 for a more formal introduction to active
learning.

Existing active learning methods are not always successful
in practice; in some settings, no active learning methods
can outperform the simple baseline approach of randomly
selecting data instances to label [38]. One such setting is
the “cold-start” setting, when one does not yet have access
to a sufficient amount of data to build a good classifier. In
this setting, the estimate of informativeness can be highly
inaccurate. In affect detection, since there are typically
hundreds of features used to summarize student activity in
ITSs [5], a classifier needs a significant number of labels
to reach reasonable quality. Therefore, the effectiveness
of existing active learning methods will be limited in the
initial part of the student affect label collection process.
Another such setting is when the data is highly noisy; in
this case, it is hard to identify informative observations. In
affective detection, the affective state labels provided by
human observers are highly subjective and thus noisy; the
labels provided by different human experts may differ [27]
significantly. Therefore, the effectiveness of existing active
learning methods in affect detection will be limited by the
noisiness of the data. Therefore, it is desirable to develop
new active learning methods that are robust to small and
noisy data.

1.3 Contributions
In this paper, we investigate whether active learning can be
used to improve the efficiency and effectiveness of student

affective state label collection. We conduct a preliminary
study using several classic active learning methods on an
existing real-world student affect dataset collected from AS-
SISTments1, a widely-used ITS. Motivated by the limitations
of existing active learning methods when the data is small and
noisy, we also propose a new active learning method that can
excel in this setting. Our new active learning method lever-
ages the recently proposed linear minimum mean squared
error (L-MMSE) estimation framework [21,22] to evaluate
observation informativeness. This framework provides an
exact, closed-form, and nonasymptotic analysis of the param-
eter estimation error for binary regression and is shown to be
highly effective when data is small and/or noisy. Experimen-
tal results show that some active learning methods, especially
our L-MMSE-based method, can reduce the number of labels
needed to build high-quality, sensor-free affect detectors. We
also discuss how to use active learning to improve data col-
lection efficiency in real-world affect detection and possibly
other quantitative field observation (QFO) tasks by building
an interactive system that suggests human observers to make
certain observations.

We emphasize that the purpose of the current work is not to
improve affect detectors but rather to investigate whether one
can collect better data to train them. Therefore, we resort to
a simple logistic regression-based affect detector since it can
be integrated with all existing active learning methods. More
complicated, state-of-the-art deep learning-based detectors
cannot be integrated with many active learning methods and
thus do not offer us a complete view of active learning in
affect detection.

2. RELATED WORK
ASSISTments is a free web-based platform that provides im-
mediate feedback, on-demand hints, and scaffolding support
to the many students who use it in classrooms and for daily
homework [14]. The system has been used by hundreds of
thousands of students and thousands of teachers, and has
been found to be effective in improving learning outcomes
and closing achievement gaps in a large-scale randomized
controlled trial [30].

A significant amount of research has been conducted on the
detection of student affect by aligning ASSISTments data
to student affect labels collected in real classrooms using
BROMP [27]. BROMP allows human observers to label
a student in four often-studied affective states: engaged
concentration [9], frustration [20], boredom [25], and confu-
sion [8]. Initially, sensor-free affect detectors in ASSISTments
leveraged a number of rule-based and statistics-based mod-
els; these models achieved performance substantially above
chance, for new students from rural, suburban, and urban
populations [4]. Later, the work in [36] improved upon these
initial affect detectors by incorporating additional features
on skills/knowledge components as well as statistics across
the entire class. Most recently, the work in [5] applied deep
learning methods to affect detection and produced a signif-
icant increase in detection accuracy. The key in that work
is to use recurrent neural networks (RNNs), including its
two popular variants in long short-term memory (LSTM)
networks and gated recurrent unit (GRU) networks [13], to

1https://www.assistments.org/



capture students’ changing affect over time.

3. ACTIVE LEARNING
In this section, we will first review active learning and briefly
describe how it can be used to improve the efficiency in QFOs.
We will then review the L-MMSE estimation framework and
introduce our new, L-MMSE-based active learning method.

3.1 Background on Active Learning
Supervised learning refers to a class of machine learning
approaches where the task is to learn a function (usually, a
classifier) that captures the relation between input-output
(feature-label) pairs. The typical setup in supervised learning
is that one observes all features and labels and can use them
to train the classifier. Active learning, on the other hand,
deals with the setting where one has control of the data
label observation process; in this case, one has access to the
feature values of all feature-label pairs but can select which
one gets labeled next. Naturally, the most effective strategy
is to train the classifier on observed labels and select the next
label that is the most “informative” to the current classifier to
observe [34]. There exist numerous active learning methods
with different metrics of informativeness, e.g., entropy (or
observation uncertainty) [24], expected error reduction [31],
expected variance reduction [40], model change [7], etc. The
goal of active learning is to only observe labels that are highly
informative in order to learn the function more efficiently.

Concretely, we denote the functional relation between the
features and labels as

y ∼ fx(D),

where y ∈ AN is the vector of labels that contains a total of N
observations. A denotes the set of labels. D ∈ RN×P denotes
the matrix containing all feature values corresponding to each
label. The column vectors corresponding to the rows of D,
i.e., the feature values of each observation, are denoted as
di, i ∈ {1, . . . , N}. Correspondingly, each element in the
label vector is denoted as yi, i ∈ {1, . . . , N}. fx(·) denotes
the function that maps each input feature vector di to each
label yi; x denotes the vector containing all parameters of
the function. In regression problems, x corresponds to the
regression coefficient vector, while in neural networks, x
corresponds to the collection of all weights and biases that
characterize the connections between hidden units.

The iterative process of active learning proceeds as follows.
Suppose that one now has a set of t−1 observations, with t ∈
{1, 2, . . . , N} and wants to select the next, t-th observation.
Let Ot−1 and Ut−1 denote the sets (which contain indices)
of all feature-label pairs (referred to as datasets) where the
labels are observed and unobserved, respectively, and let
x̂t−1 denote the current estimate of the function parameters
(trained on the subset of feature values and labels DOt−1

and yOt−1). Active learning methods then select the next
observation it as

it = argmax
i∈Ut−1

I(di, x̂t−1),

where I(·, ·) denotes a metric of how informative an observa-
tion i is to the current function. As an example, the simplest
yet often most effective existing active learning method, un-
certainty sampling, simply uses the entropy [13] as the metric

of informativeness:

I(di, x̂t−1) = −
∑
a∈A

p(yi = a) log p(yi = a),

where p(yi = a) = fx̂t−1(di) denotes the probability of a
new observation with feature values di taking on label a
given the current function estimate parameterized by x̂t−1.
In other words, uncertainty sampling simply selects the next
observation whose label the current classifier is the least
certain of. After selecting the next observation, the classifier
is re-trained using an updated observed dataset Ot = Ot−1 ∪
{it}. Then, in the next iteration of the active learning
process, the next observation it+1 is selected from an updated
unobserved dataset Ut.

In typical active learning settings, since one has access to all
feature values, the unobserved dataset is simply updated by
excluding the selected observation as Ut = Ut−1 \it. However,
we emphasize that under real-world QFO settings, the set of
unobserved observations can change entirely. For example, in
the typical BROMP coding process, a human coder observes
the affective state of one student in each observation interval
(typically 20 seconds); therefore, in the next iteration, the
set of unobserved dataset (which contains feature values
that summarize student activity during the next observation
interval) might change entirely.

3.2 Background on L-MMSE Estimation
The L-MMSE estimation framework put forward in [21,22]
enables the design of new estimators for a wide range of
nonlinear classification and regression problems. It also of-
fers a closed-form, exact, and nonasymptotic analysis of
the estimation error for nonlinear problems, which is typi-
cally impossible to obtain. The key insight to the L-MMSE
estimation framework is that even for nonlinear problems,
well-crafted linear estimators that take the nonlinearity into
account can achieve comparable performance to nonlinear
estimators that are computationally extensive and hard to an-
alyze. Therefore, it is an advanced estimation technique and
shall not be confused with basic linear estimation methods
like least squares.

In [22], the L-MMSE estimation framework is applied to
binary (especially probit) regression, which is given by

y = sign(Dx + w),

where yi ∈ {−1,+1} denotes the binary-valued label for
feature-value pair i. The vector w ∈ RN denotes a noise
vector with i.i.d. standard normal random entries. Putting a
zero-mean multivariate normal prior with covariance matrix
Cx on x as x ∼ N (0,Cx), the L-MMSE estimator finds the
best estimator of x that is linear in the observation vector
y, i.e.,

x̂ = Wy,

where W is a suitably-chosen estimation matrix that achieves
the minimum mean-squared error (MSE) defined as

MSE = Ex,w

[
||x− x̂||22

]
.

For probit regression, a variant of binary regression, the
L-MMSE estimator has a closed-form expression, given by
W = ETC−1

y , with its corresponding MSE given by



MSE = tr(Cx −ETC−1
y E), (1)

where

E =
( 2

π

)1/2
diag

(
diag(Cz)−1/2)DCx,

Cy =
2

π
sin−1

(
diag

(
diag(Cz)−1/2)Cz

× diag
(
diag(Cz)−1/2)),

Cz = DCxDT + I.

We note that the MSE (and also the matrix W) depends
only on the matrix D and not the label vector y.

3.3 L-MMSE-based Active Learning
Results in [21,22] have shown that the L-MMSE estimator
for binary regression performs on-par with state-of-the-art,
sophisticated estimators, e.g., those that require using tools
in convex optimization and Markov chain Monte Carlo tech-
niques, while having much lower computational complexity.
More importantly, the L-MMSE-based estimation error anal-
ysis is shown to be more accurate than other analyses (e.g.,
those that rely on Fisher information) when the data is noisy
and/or when the data is small, i.e., when N is not much
larger than P . This advantage is highly desirable in active
learning settings and especially in affect detection for two
reasons. First, in active learning settings, one often work
with small problem sizes: in the initial stages of the active
learning process, the classifier is highly inaccurate since it
is only trained on a small number of observed labels; there-
fore, it can lead to an unreliable metric of informativeness
which is the key to active learning methods. Second, in affect
detection and a lot of other educational applications, the
data is inherently noisy: state-of-the-art affect detectors can
only achieve area under the receiver operating characteris-
tic curve (AUC) values of around 0.7 after many empirical
tweaks [5]. This accuracy is significantly lower than that
in common classification tasks [13]. Moreover, inter-coder
disagreement on a student’s affective state can be high in
some cases [27]; this disagreement is also reported in facial
expression recognition-based affect detectors [3].

Therefore, we propose a new active learning method that
uses the closed-form expression of the MSE of the L-MMSE
estimator given in Eq. 1 to measure informativeness since it
is reliable even for small and noisy data. Note that we do
not use the L-MMSE estimator to estimate x, but only its
MSE to select the next observation. Specifically, we use the
negative MSE as our metric of informativeness as

I(di, x̂t−1) = −MSE(DOt−1∪{i}).

In other words, we select the t-th observation as the one
corresponding to the feature vector di that minimizes the
resulting MSE, i.e.,

it = argmin
i∈Ut−1

MSE(DOt−1∪{i}),

where DOt−1∪{i} = [DT
Ot−1

,di]
T .

Since the MSE is independent on the observations y, the
L-MMSE-based active learning method is likely more robust
than all existing methods that rely on y, especially during the
initial stage of the active learning process when the number
of observations is small. Therefore, it is likely to be highly

effective in real-world QFO and especially affect detection
settings. This intuition is confirmed by our experiments in
Section 4.

In practice, the MSE can be computed very efficiently since
the inverse of the matrix C−1

y only needs to be computed
once in every iteration; we do not need to invert it for every
potential observation added to the current set of observa-
tions. For simplicity of exposition, we temporarily drop the
subscripts and use D and d to denote the current feature
matrix and the feature vector for a possible new observation.
The new matrix C′z is given by

C′z =
[ D

dT

]
Cx[DT d] =

[ Cz DCxd
dTCxDT dTCxd + 1

]
.

Now, the new matrix C′y is given by

C′y =
2

π
sin−1

(
diag

(
diag(C′z)−1/2)C′zdiag

(
diag(C′z)−1/2))

=
2

π
sin−1

([
diag

(
diag(Cz)−1/2

)
0

0T (dTCxd + 1)−1/2

]
·
[ Cz DCxd

dTCxDT dTCxd + 1

]
·
[

diag
(
diag(Cz)−1/2

)
0

0T (dTCxd + 1)−1/2

])
=
[ Cy c

cT 1

]
,

where c = 2
π

sin−1
((

diag(C′z)−1/2
)
DCxd(dTCxd + 1)−1/2

)
.

Now, using the block matrix inversion rule [17], we have

C′−1
y =

[
C−1

y + hgTCyg hg
hgT h

]
,

where g = −C−1
y c and h = 1

1−cTC−1
y c

. Now, the new matrix

E′ is given by

E′ =
( 2

π

)1/2[ diag
(
diag(Cz)−1/2

)
0

0T (dTCxd + 1)−1/2

]
·
[ D

dT

]
Cx =

[ E
eT

]
,

where e = ( 2
π

)1/2(dTCxd + 1)−1/2Cxd. Therefore, plugging
all of the above into Eq. 1 and some algebra, we get an
expression for the new MSE after adding a new observation
with feature value vector di as

MSE′ = tr(Cx)− tr(E′
T
C′−1

y E′) = tr(Cx)

− tr
(

[ET e]
[

Cy + hgTC−1
y g hg

hgT h

][ E
eT

])
= tr(Cx)− tr(ETC−1

y E)− htr(ETgTC−1
y gE)

− 2htr(ETgeT )− htr(eeT )

= MSE− h(‖ETg + e‖22), (2)

where the reduction in MSE induced by making a new ob-
servation is given by the term h(‖ETg + e‖22). Therefore,
we can obtain the new MSE without having to explicitly
calculate C′−1

y for every possible new observation. In our
experiments, we found that this implementation speeds up
the L-MMSE-based active learning method by 10 to 100
times, resulting in an empirical computational complexity



that is lower than most existing active learning methods
except uncertainty sampling.

4. EXPERIMENTAL RESULTS
We now perform a series of experiments on a real-world
student affect dataset to explore the effectiveness of active
learning methods. We start by adopting standard experi-
mental protocols for active learning under several different
settings and then present a simple example to help us under-
stand the conditions under which active learning methods
are the most effective.

4.1 Student Affect Dataset
We use an existing dataset for building sensor-free affect de-
tectors collected in real classrooms2 [5]. The dataset consists
of 3, 109 observations, each observation contains i) a student’s
affective state label during a 20-second observation interval
in real classrooms and ii) a set of 88 features that summa-
rizes their activities within ASSISTments during this time
interval. These features include the time each student spent
on practice items, the number of hints they seek, and the
correctness of their responses. We keep observations where
the student is labeled as being in one of the four affect states
under BROMP: bored, confused, engaged concentration, and
frustrated. We leave out the few observations where the
human coder indicates that either the student is not in any
of the four states or that they are not sure what state the
student is in. Engaged concentration is the most frequent
state among the four, which occurs about 82% of the time.

Since we focus on logistic regression-based affect detectors
in this paper, we need to construct a binary classification
problem by detecting the presence of one of the four affective
states. We start by building a detector of the engaged con-
centration affective state since it is the most common among
the four states.

4.2 Baseline Active Learning Methods
We test four different active learning methods in our exper-
iments: i) our L-MMSE-based active learning method, (ii)
uncertainty sampling (US) [24], as introduced in Section 3.1,
(iii) expected variance reduction (EVR) [40], which selects
the next observation as the one that results in the largest
reduction of the variance of the classifier, and (iv) model
change (MC) [7], which selects the observation that changes
the classifier’s parameters the most. We also use random
sampling (Random), which randomly selects the next obser-
vation, as the baseline method to simulate the round-robin
observation schedule followed in real classrooms when the
dataset was collected. We do not test another popular active
learning method, expected error reduction [31], since it has
very high computational complexity and does not outperform
other methods in several preliminary experiments.

4.3 Engaged Concentration Detection
We start by testing active learning methods for a detector of
engaged concentration vs. other affective states.

4.3.1 Experimental setup
2This dataset is taken from http://tiny.cc/affectdata

We use cross validation to test the performance of active
learning methods on the ASSISTments student affect dataset.
We use two different settings for cross validation: we split
the dataset at both the observation level (where each obser-
vation is regarded as a stand alone instance) and the student
level (where all observation on a student is considered as an
instance). We randomly select 20% and 10% of all instances
as the test and validation sets, respectively, and use the rest
as the training set. The test set is used to evaluate the pre-
dictive quality of the trained classifier, using the area under
the receiver operating characteristic curve (AUC) metric [18].
This metric takes value in [0, 1] and larger values indicate
higher predictive quality.

We start by randomly selecting an initial batch of M ∈
{20, 100, 500} observations (with both student activity fea-
ture vector and affective state label for each observation)
from the training set; we then use them to train a base
logistic regression classifier and use it as our initial affect
detector. This experimental setting enables us to study the
effectiveness of active learning methods when the amount
of prior data available to the detector varies. Although the
L-MMSE-based analysis is based on probit regression, we
use the more widely-adapted logistic regression to test its
robustness against model mismatch. The base classifier is
trained using accelerated gradient descent [26] implemented
in TensorFlow3 with a P × 1 zero-vector as the initializer.
We do not regularize the logistic regression classifier and in-
stead use the validation set to decide when to terminate the
training process and avoid overfitting. Specifically, after each
(accelerated) gradient descent step, we evaluate the current
detector on the validation set, and stop once its predictive
quality stops improving (as measured by AUC).

Then, in each iteration of the active learning process, we
select the next observation from the remaining ones in the
training set according to their feature values, for each active
learning method. We then add this new observation (both its
feature vector and label) to the current batch and re-train the
affect detector, using the previous estimate of the regression
coefficients as the initializer. We then calculate the AUC of
the re-trained affect detector on the test set. We repeat these
steps for a total of 50 additional observations; using more
data points is unnecessary since i) we found that using 50
additional observations is enough to summarize the behavior
of each active learning method and ii) the performance of
the affect detector will converge to the same end point for
each active learning method, after going through the entire
training set. We also repeat our experiment 100 times and
use a different random split of the full dataset and a different
initial batch of observations each time. We then report the
average results over these repetitions.

4.3.2 Results and discussion
Figure 1 plots the AUC values of the trained affect detec-
tors on the held-out test set vs. the number of additional
observations, for all active learning methods on the student
affect dataset, using observation-level cross validation. We
see that most active learning methods, except EVR, generally
outperforms random observation selection when the quality
of the affect detector is limited by the amount of data it

3https://www.tensorflow.org/



(a) Initial batch size = 20 (b) Initial batch size = 100 (c) Initial batch size = 500

Figure 1: Comparison between different active learning methods for engaged concentration detection with
observation-level cross validation. Most active learning methods, especially our L-MMSE-based active learn-
ing method, are effective at small initial batch sizes. This advantage over random observation selection
diminishes as the quality of the detector saturates when a large number of observations is made.

(a) Initial batch size = 20 (b) Initial batch size = 100 (c) Initial batch size = 500

Figure 2: Comparison between different active learning methods for engaged concentration detection with
student-level cross validation. The behavior of active learning methods remain largely the same as observation-
level cross validation: they are most effective when the affect detector is trained on few observations.

sees (when it is trained on no more than 50 observations).
Our L-MMSE-based method significantly outperforms every
other method in this setting. As a concrete example, with 25
additional observations added to the 20 observations in the
initial batch, the L-MMSE active learning method results
in an that has an AUC of 0.685 on the test set, while no
other method result in a detector that has an AUC above
0.65. This result suggests that the L-MMSE-based active
learning method excels at picking out observations that are
crucial to the affect detector immediately, despite the de-
tector’s limited predictive quality; its performance in this
setting is impressive since the number of features is quite
large (P = 88), which is even more than the number of
observations in Figure 1(a). Moreover, to reach an AUC
value of 0.685 on the test set, the L-MMSE-based active
learning method only needs 45 total observations; no other
active learning method can achieve this predictive quality
even with 70 total observations. This result suggests that,
by directing human experts at making observations that are
more meaningful to the affect detector, active learning meth-
ods can potentially improve the quality of the data without
requiring more human effort.

We demonstrate the statistical significance of our results using
Student’s t-test. Table 1 shows the p-values for rejecting
the null hypothesis that the best performing active learning
method (L-MMSE) over random observation selection, with

No. of observations 20 30 40 70 100

p-value 3× 10−3 2× 10−7 2× 10−9 6× 10−3 4× 10−1

Table 1: Statistical significance of the advantage ac-
tive learning (the L-MMSE-based method) exhibits
over random observation selection. Active learning
methods are significantly better at the initial stage
of the affect observation process.

an initial batch size of M = 20. We see that initially, when
the affect detector is not highly accurate, active learning has
a significant advantage over random observation selection.

As the size of the initial batch increases (M = 100) and the
quality of the initial affect detector improves, the advantage
of the L-MMSE-based active learning method over random
observation selection drops and eventually diminishes when
M = 500. This result is not surprising since with 500 initial
observations, the performance of the affect detector already
saturates (the AUC on the test set after training on the
entire training set is 0.74, which is consistent with the values
reported in [5]). However, even in this case, the L-MMSE-
based active learning method still provides some improvement
compared to random observation selection (about 0.01 AUC
on the test set with 100 to 150 observations in Figure 1(b)).
We note that this advantage is not statistically significant



(see Table 1), which is not surprising since the quality of
the affect detector improves very slowly after the first 50
observations, leaving very little room for active learning to
show its effectiveness.

Perhaps surprisingly, no active learning method except our
L-MMSE-based method consistently outperforms random
observation selection, even when the initial batch size is
small. When the initial batch size is large (M = 500), US
and MC even leads to worse affect detectors, although we
suspect that the performance degradation in that case is
due to randomness in cross validation not being sufficiently
smoothed out rather than a poor affect detector. These
results confirm our intuition that active learning methods
designed for general-purpose classification tasks are not well-
suited to affect detection, especially when the data size is
small during the initial stage of the data collection process.

Figure 2 plots the AUC values of the trained affect detectors
on the held-out test set vs. the number of additional obser-
vations for all active learning methods, using student-level
cross validation. The results largely remain the same com-
pared to observation-level cross validation. Overall, there is
a small drop of about 0.01 in test set AUC, confirming the
intuition that it is harder for affect detectors to generalize
to unseen students than to generalize to unseen observa-
tions from current students. However, the L-MMSE-based
active learning method still (perhaps even more) consistently
outperforms other active learning methods and random ob-
servation selection. As a concrete example, with only 10
additional observations in addition to an initial batch of
20 observations, the L-MMSE-based active learning method
achieves an AUC of 0.655 on the test set; the other active
learning methods and random observation selection achieve
AUC values 0.635 and 0.62, respectively. In this case, the
effectiveness of using active learning methods (especially our
L-MMSE-based method) to identify informative observations
and use them to improve affect detection is obvious.

Our experimental results also suggest that there is a lot of re-
dundancy in the ASSISTments student affect dataset. As we
discussed above, the quality of the affect detectors saturates
after training on about 500 observations. Consider that the
entire training set contains more than 2, 100 observations,
it seems that the majority of them do not significantly con-
tribute to the quality of the resulting affect detector. This
discovery further emphasizes the need of using smarter ways
to collect higher-quality data; see Section 5 on a detailed
discussion of how to use active learning methods to possibly
improve data quality in practice.

4.4 Detection of Other Affective States
We now test the effectiveness of active learning methods for
the detection of the other three affective states in BROMP:
bored, confused, and frustrated.

4.4.1 Experimental setup
Since these affective states are rare (bored occurs about
10% of the time, while confused and frustrated each occur
about 4% of the time) in the ASSISTments dataset, prior
work [5,28] uses resampling to balance among the affective
states. Specifically, these works build training datasets that
contain roughly equal numbers of observations corresponding

to each affective state by resampling from the original train-
ing set; after affect detectors are trained on the resampled
training dataset, they are then evaluated on the original,
non-resampled test set.

We do not use the resampling technique since our goal is to
simulate the actual affect observation setting in real-world
classrooms, where the four affective states are naturally
unbalanced. Therefore, we use same experimental setting as
before, except that we have to resort to larger initial batch
sizes to ensure that at least a few rare affective states occur
in the initial batch. In our experiments, we found that using
an initial batch size of M = 100 is sufficient.

4.4.2 Results and discussion
Figure 3 plots the AUC values of the trained detectors on the
held-out test set vs. the number of additional observations,
for the affective states of bored, confused, and frustrated.
We used different y-axis ranges in each of the three subplots
to enhance contrast since for the confused and frustrated
states, the improvement in the quality of the detectors as
more observations are made is small. We see that active
learning methods, especially our L-MMSE-based method,
can still generally outperform random observation selection
in most cases (especially for the bored state). However,
this advantage is much smaller for these infrequent affective
states compared to engaged concentration. For the detection
of confusion, two of the active learning methods (US and
MC) consistently underperform random observation selection,
while our L-MMSE-based method shows some improvement
only initially. The only active learning method that performs
on-par with random observation selection is the EVR method.
One possible explanation is that for harder-to-detect affective
states like the confused state, the quality of the classifier is
quite low (the final AUC on the test set is only 0.67), which
leaves little room for active learning to show its effectiveness.

We now present a simple example to give us some insights on
the conditions under which active learning methods are most
effective in affect detection. Figure 4 compares the portion
of observations selected by an active learning method (US)
that actually correspond to an infrequent affect (we used the
bored state as an example) to that of random observation
selection. We see that after using the initial batch of ob-
servations to build a (low-quality) detector, active learning
methods can quickly use it to select the observations that
actually correspond to the infrequent target affect. Specifi-
cally, within the first 50 additional observations, US selects
about 15 observations that correspond to the bored affective
state, using only student activity features, as it deems these
observations more informative; this portion (about 30%) is
much higher than the overall portion of the bored state in
the entire training set (about 10%). This behavior of US
is consistent across all affective states except the confused
state, where the portion of observations it selects that actu-
ally correspond to the confused state does not exceed the
overall portion. In that case, active learning methods also
fail to consistently outperform random observation selection,
as shown in Figure 3(b). Therefore, active learning methods
seem to be effective only if they can strike the right balance
between observing different affective states that occur at
different frequencies.



(a) Bored (b) Confused (c) Frustrated

Figure 3: Comparison between different active learning methods for infrequent affective state detection
(bored, confused, and frustrated). Active learning methods are generally effective for the bored and frustrated
states but not the confused state. Their advantage over random observation selection for these states is smaller
than that for engaged concentration detection.

Figure 4: Portion of total infrequent affective state
observations selected by an active learning method
(US) versus random observation selection for bore-
dom detection. Active learning methods can effec-
tively select observations that actually correspond
to the infrequent affect.

5. DEPLOYMENT IN CLASSROOMS
We now outline how to deploy active learning methods in
real classrooms to improve the data collection efficiency for
affect detection. Since active learning requires training affect
detectors on-the-fly as new observations are made, there is a
need to create a system that consists of three components.
The first component is an interface to human observers mak-
ing observations in classrooms; this interface i) suggests the
human observer to observe a student at each observation
interval, ii) collects their affect label on the student, and iii)
send the label to the affect detector. The second component
is a training paradigm for affect detectors that keeps updating
the detector by re-training it after it receives each observed
affect label and its corresponding feature vector. The third
component is the active learning method that links the other
two components together: it i) uses APIs to collect student
activity data from ITSs and turn them into feature vectors,
ii) selects the next observation that is the most informative
to the current affect detector and sends its suggestion via
the human observer interface.

There are several realistic considerations in such a system
in order for it to be deployed in real classrooms. First, our

experiments (see Section 4.4) have shown that active learning
methods are not as effective for affective states that occur
infrequently (especially the confused state). Therefore, there
is a need to explore more advanced active learning methods
that take class imbalance into account [11]. Second, experi-
enced human observers may have their own understanding
of the informativeness of an observation; such understanding
can also be highly valuable to machine learning-based affect
detectors. Therefore, the human observer interface should
present an option that allows them to ignore the suggestion
by active learning methods and instead propose which stu-
dents to observe on their own. Third, fairness among different
student subgroups [39] is critical; we want to ensure that
each subgroup is well-observed in the data collection process.
Therefore, there needs to be an exploration mechanism that
checks whether a student subgroup is under-observed and
limit active learning methods to only select among those
students when that happens.

6. LIMITATIONS AND FUTURE WORK
In this paper, we have explored the problem of whether active
learning methods can be used to increase the efficiency of the
affective state label collection process for the development
of sensor-free affect detectors. Using an existing student
affect dataset collected from ASSISTments, we have shown
that active learning methods are indeed effective at making
observations that are the most informative to the affect
detector; therefore, it can reduce the number of observation
needed for the detector to reach a certain quality under most
settings. We also proposed a new active learning method that
is especially effective for small and noisy data; experimental
results show that it outperforms existing active learning
methods. At the end, we outlined how to deploy these
methods in real-world systems to improve the quality of
the data to be collected and discussed several necessary
considerations under practical constraints.

Despite the effectiveness of active learning methods, espe-
cially our L-MMSE-based method, our work has several
limitations and can be extended in many different ways.
First, our experimental setting for active learning does not
perfectly reflect the actual affective state observation process
in real classrooms. In our experimental setting, we select the
next observation from all available observations left in the



training set, which was collected in many classroom sessions
over a long period of time. In practice, when a human ob-
server is making observations in real classrooms, we can only
select an observation among the students in class; the most
informative observation among these students is generally
less informative than the most informative observation pos-
sible. Therefore, the benefit active learning methods bring
to real-world affect label collection may not be as much as
what we have shown in our experiments.

Second, the affect detectors we have studied in this paper are
only for detecting the presence of a particular affective state,
e.g., bored vs. not bored; it cannot jointly detect all possible
affective states. The reason we did so is to test as many
active learning methods as possible since most of them are
designed only for binary classification. Unfortunately, the
most effective active learning method for affect detection in
our experiments (our L-MMSE-based method) only applies
to binary classification tasks. Therefore, for real-world affect
detection problems that are multi-class classification prob-
lems, we will extend our method so that it can be applied to
multinomial logistic regression instead of binomial logistic
regression.

Third, state-of-the-art affect detectors use neural networks
rather than logistic regression as their base classifier [5].
While some active learning methods (e.g., uncertainty sam-
pling) can be easily extended to neural networks, others (e.g.,
our L-MMSE-based method, variance reduction methods,
and methods based on model change) cannot since they are
either theoretically grounded in binary regression or becomes
computationally intractable. Fortunately, the L-MMSE esti-
mation framework encapsulates all the common nonlinearities
used in today’s state-of-the-art neural network architectures,
including the hyperbolic tangent and rectified linear nonlin-
earities [13]. Therefore, we will extend the L-MMSE-based
active learning method proposed in this paper to leverage
neural networks as the base classifier.

Fourth, the workflow we outlined for the deployment of ac-
tive learning in a real-world system in Section 5 presents a
time mismatch challenge. In order to select an observation
that the human observer should observe, we need access
to the corresponding student activity feature vector; these
feature values, however, are not available until the end of the
observation time interval since many features summarize a
student’s activity during the entire period. When the teacher
receives a suggestion to observe a certain student, this sug-
gestion will be based on the student’s activities during the
last observation interval, which may not be the most infor-
mative observation during the current observation interval.
Therefore, we will need to perform a thorough analysis of
the coherence in student activity and affect over time to vali-
date the feasibility of deploying active learning in real-world
systems for affect label collection.

Finally, the essence of using active learning for affect detec-
tion is to leverage the judgement a machine learning-based
detector makes on how sure it is about the affective state of
a student. Simultaneously, human observers who are trained
to make observations in classrooms have their own judge-
ments on how sure they are about a student’s affective state.
Therefore, comparing the two sets of judgements may lead

to deeper insights on how humans perceive affect. More-
over, there is an intrinsic mismatch between the two sets of
judgements since one is based on a set of activity features
in ITSs while the other is based on observations of activity,
gesture, and facial expressions. Therefore, comparing the
two sets of judgements may also lead to an analysis of the
extent to which the activity features can capture student
affect; these insights can potentially help us to design better
student activity features or even lead to better ITS designs.
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