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ABSTRACT

Predictive and data-intensive modeling has rapidly gained
prominence in many research fields over the past decade. In
recent years, the fairness of analytical models has become
an increasingly important question for researchers: might a
model systematically underperform on certain demograph-
ics? Might its application have different impacts across dif-
ferent demographic groups? Recently, these questions have
found their way into educational research as well, where pre-
dictive and statistical modeling is used for such purposes
as predicting course completion, assisting university recruit-
ment, and proactively offering assistance to students. If such
models are potentially unfair, students may remain under-
served or suffer potential harm as a result. In this paper, we
demonstrate two post-hoc assessments of fairness, applied to
existing models predicting student graduation. Our assess-
ments are intended to check for, rather than proactively pre-
vent, algorithmic bias in predictive models. The first assess-
ment investigates whether a selected model is equitable: does
its performance systematically differ for members of differ-
ent demographic groups? The second investigates whether
the decision to use one model for all individuals in a given
dataset is optimal: does using one model for all students
come at a significant loss in per-group accuracy? By assess-
ing fairness systematically, we hope to reduce to the risk of
inequities from predictive analytics in education.

1. INTRODUCTION

As educational research incorporates more automated tools
for analyzing and predicting such factors as student behav-
iors and educational outcomes, the field must grapple with
the ethical question of algorithmic fairness. Do our algo-
rithms, powerful as they may seem, encode and reinforce
existing societal inequalities? Are the predictive tools we
use systematically less accurate for some demographics, and
does the use of these tools risk harming members of those
demographics?

In this work, we assess a set of machine learning models,
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trained to predict student graduation at a public, four-year
university, using several definitions of fairness. Our analysis
centers on race and gender, but in principle, can be extended
to include age, international status, or other categorical vari-
ables.

Our investigations are driven by two main research ques-
tions: RQ 1) Are the models equitable? Do they perform
considerably worse on students of particular genders or eth-
nicities? RQ 2) Are the models optimal? Could we achieve
substantially better accuracy by using models specific to par-
ticular genders or ethnicities?

We investigate these questions through comparisons of false
positive rates, false negative rates, and overall accuracy mea-
sures, since these each represent different potential impacts
of these models’ use. The primary intended use of the mod-
els is to aid university advisers, and faculty, and adminis-
trators in structuring student support. This intended use of
the models informs our particular definitions and questions
around the fairness of these models.

2. RELATED WORK

Researchers have utilized a wide range of approaches to
defining fairness. Dwork et al. [4] define fairness as sim-
tlar individuals receive similar predictions (individual fair-
ness). Hardt et al. [7] measures equalized odds, which penal-
izes models for performing well only on the majority of data
points, and equal opportunity, which requires parity between
groups’ predictions only where the ground truth is an “ad-
vantaged” outcome (e.g., “was admitted to college,” “received
a promotion”). Feldman et al. [5] propose measures of group
fairness, where the distribution of errors and impacts should
not vary across groups. There are many approaches to con-
trolling for these, and other, fairness measures, as discussed
in, e.g., |2, 9]

While the exact definitions and approaches to fairness are
quite varied, a common thread is that there are no unam-
biguously “correct” definitions of fairness, or clear ways to
control for all aspects of it. The particular definitions and
measures depend on the specific data, analysis, and use case.

3. FAIRNESS FOR OUR MODELS

We select our measures of fairness based on the intended
applications of the models, and their potential impact. The
models are intended to inform and assist advisers, mentors,
faculty, and university administrators in making decisions



about student intervention, student support, and university
policies. We focus on the advising and mentoring applica-
tions, as this is is the first intended use for the models.

In this setting, we anticipate a difference in the impacts
of false negative and false positive errors. False negatives
(students on track to graduate who are identified as likely
to not graduate) are likely to result in additional contact
with advisers, and additional assistance being made avail-
able. There is little harm to the student. False positives
(students not on track to graduate, but who are predicted
as likely to graduate) mean a student may not receive as-
sistance from advisers. The potential harm is much greater.
We thus use both false positive and false negative rates as
metrics for fairness, per RQ 1, but we are more concerned
with possible disparities in the false positives.

The overall accuracy of the models may also vary across
our populations. Large variations put certain populations
at higher risk of being systematically underserved due to
lower-quality predictions, and thus less reliable information
being presented to advisers and mentors. Therefore we test
if selecting one model, trained on all students, is optimal, per
RQ 2, by comparing its overall accuracy to the population
specific models.

4. DATA

In this paper, we assess the fairness of models predicting
whether a student will graduate within six years, initially
presented in a conference poster [1]. In this section, we
briefly describe the data on which those models were trained;
more details are available in the original presentation.

The dataset utilized was from a large, publicly-funded, R1
research university in the southern United States. It con-
tains data on 14,706 first time in college (FTIC) undergrad-
uate students, all of whom were admitted in Fall semesters
between 2006-2012 (inclusive), and were enrolled full-time.
The data contains one entry per student, summarizing their
first three enrolled semesters (Fall, Spring, and Summer).
The final feature set covers academic performance (e.g. GPA,
credit hours completed), financial information (e.g. scholar-

ships, unmet need), pre-admission information (e.g. SAT/ACT

scores), and extra-curricular activities (e.g. Greek Life, ath-
letics). A student’s first year has been shown to be an impor-
tant period for determining a student’s likelihood of drop-
ping out [8], which while not quite the inverse of graduation,
is a closely related outcome.

Tables [1] and ] shows basic descriptive statistics for the
dataset. Some of the populations have very small Ns. We
include these populations in the fairness analyses for com-
pleteness, but we caution against drawing meaningful con-
clusions from them. Similarly, we caution against drawing
conclusions for the Multiple Ethnicities and Foreign popu-
lations, since these are “catch-all” labels, and represent ex-
tremely diverse groups of students.

5. METHODOLOGY
5.1 Model Building

We investigate the fairness of five separate models, each
trained on our dataset to predict whether a student will

Table 1: Basic descriptive statistics of the dataset,
by self-reported ethnicities.

Population N  Graduation rate
American Indian 44 27.27%
Asian 2091 61.74%
African American 2092 38.48%
Foreign 296 52.03%
Hispanic/Latino 3805 43.97%
Multiple Ethnicities 499 48.30%
Hawaiian/Pacific Islander 22 54.55%
Ethnicity Not Specified 85 35.29%
White 5772 44.51%
TOTAL 14706 46.15%

Table 2: Basic descriptive statistics of the dataset,
by self-reported gender.

Population N Graduation rate
Female 7613 50.06%
Male 7092 41.96%
Gender Unknown 1 0.00%
TOTAL 14706 46.15%

graduate within 6 years of first enrolling at the university.
Early versions of these models (except Random Forest) have
been presented in poster form [1): linear kernel Support
Vector Machines (SVM), Decision Trees, Random Forests,
Logistic Regressions, and scikit-learn’s Stochastic Gradient
Descent classifier ( SG]jZI).

Each model was trained on 80% of the full dataset, with
20% held out for testing. The train-test split was conducted
such that the proportions of students in each demographic
category were as close as possible across the folds, and the
within-group and overall graduation rates were as similar
as possible. Model parameters were selected using 5-fold
cross-validation within the training set. Ethnicity and gen-
der features were omitted when training the models.

5.2 Assessing Equity

We measure the equity of our models via their false positive
and false negative predictions on the held-out testing set.
Each comparison is made using a one-versus-rest approach:
Male versus non-Male, White versus non- White, etc. To
compare false positive and false negative rates, we assign
each student a label of 1 (indicating a false positive/false
negative prediction) or 0 (true positive/true negative). The
populations are compared using a x? test on the resulting
binary-valued vectors, with Benjamini & Hochberg’s post-
hoc correction [3] applied within each combination of popu-
lation and fairness metric, across algorithms.

!scikit-learn’s SGDClassifier model uses gradient descent
to construct a hyperplane classifier. We refer to this clas-
sifier, not the general numeric optimization method, in this
paper. See the scikit-learn documentation for further de-
tails: https://scikit-learn.org/stable/modules/sgd.
html
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Table 3: Results of the x? tests on false negatives and false positives, by demographic. Differences shown are
the overall rates for students in the listed demographic, minus the overall rates for students not in the listed
demographic. Benjamini & Hochberg [3] corrected p-values are in parentheses; p-values less than 0.05 are in

bold. * = N < 500.

| Population DT RF SVM LR SGD
American Indian* 0.051 (0.496) 0.036 (0.598)  0.055 (1.652)  0.055 (0.559)  0.055 (0.826)

¢ | Asian 0.014 (0.311) 0.000 (0.997)  0.013 (0.880)  0.013 (0.239)  0.013 (0.440)
£ | African American 0.011 (0.729) 0.025 (0.188)  -0.001 (1.193)  0.002 (1.423)  -0.001 (0.954)
& | Foreign* 0.009 (0.731) -0.022 (2.226)  0.013 (1.458)  0.013 (0.744)  0.013 (0.972)
Z. | Hispanic/Latino 0.020 (0.046)  0.030 (0.007)  0.010 (0.223)  0.013 (0.181)  0.011 (0.186)
| Multiple Ethnicities* -0.001 (0.943) -0.006 (0.992)  0.023 (1.066)  0.023 (0.555)  0.013 (0.801)
€ | Hawaiian,/Pacific Islander* -0.041 (1.613) -0.055 (2.950)  -0.036 (0.831)  -0.037 (1.105)  -0.036 (0.664)
White -0.030 (<0.001) -0.035 (<0.001) -0.020 (0.006) -0.023 (0.002) -0.020 (0.005)
Female -0.005 (0.565) 0.000 (0.966) -0.019 (0.024) -0.017 (0.030) -0.017 (0.025)
Male 0.006 (0.560) 0.000 (0.974)  0.019 (0.023)  0.017 (0.029)  0.017 (0.025)
American Indian* 0.103 (0.366) 0.122 (1.290)  0.105 (0.438)  0.108 (0.562)  0.110 (0.810)

8 | Asian -0.024 (1.139) 0.013 (0.496)  -0.024 (0.581)  -0.018 (0.448)  -0.018 (0.592)
5 | African American 0.001 (0.956) -0.037 (0.245) -0.018 (0.602) -0.021 (0.722) -0.012 (0.653)
Z | Foreign* 0.060 (1.078) 0.013 (0.967)  0.046 (0.564)  0.049 (0.778)  0.001 (0.985)
% | Hispanic/Latino -0.021 (0.304) 0.019 (0.247)  -0.019 (0.222)  -0.028 (0.346)  -0.023 (0.329)
2 | Multiple Ethnicities* -0.024 (0.870) 0.024 (1.253)  -0.032 (2.005)  -0.019 (0.764)  -0.017 (0.656)
£ | Hawaiian/Pacific Islander* 0.030 (0.861) 0.049 (3.794)  0.032 (1.059)  0.035 (1.392)  0.037 (2.057)
White 0.029 (0.038)  0.032 (0.023) 0.040 (0.012) 0.043 (0.010) 0.039 (0.009)
Female -0.018 (0.309) -0.008 (0.711)  -0.021 (0.648)  -0.020 (0.359)  -0.004 (0.753)
Male 0.019 (0.300) 0.008 (0.698)  0.021 (0.627)  0.020 (0.347)  0.004 (0.741)

Table 4: Model scores, trained on all students, eval-
uated against the held-out testing set. Values in
parentheses are the standard error, calculated as in
[6].

Model AUC
Decision Tree 0.798 (0.008)
SVM 0.805 (0.008)
Logistic Regression 0.807 (0.008)
Random Forest 0.800 (0.008)
SGD 0.814 (0.008)

5.3 Assessing Optimality

To assess the optimality of our models (RQ 2), we compare
how much accuracy is gained or lost by building separate
models for each population, based on AUC ROC scores. For
each population in our dataset, we compare the AUC ROC
scores (calculated only on the test set) of the models when
trained on all students to the AUC ROC scores of the models
when trained only on that population.

6. RESULTS

6.1 Model Performance

The overall metrics, evaluated against all students in the
testing set, are reported in Table The models achieve
consistently good performance, with high AUC ROC and F1
scores. These numbers are a good baseline of performance; if
the models’ performance drops or rises considerably for any
demographic, that can be taken as an indication of algorith-
mic bias and the need for population-specific models. AUC
ROC standard errors are computed according to Hanley &
McNeil’s method [6].

6.2 RQ 1: Model Equity

Table [3] shows the results of our investigation into RQ 1.
The majority of the comparisons do not show significance
at p = 0.05 after correction. Notable exceptions are White
students, with consistently higher false positive and lower
false negative rates across all models; Hispanic/Latino stu-
dents, with consistently higher false negative rates for the
tree-based models; and Male students, who have consis-
tently higher false negative rates for hyperplane-based mod-
els (SVM, SGD, and Logistic Regression).

Since the impacts of false positives are likely to be more
harmful than false negatives, we find the consistently higher
false positive rate for White students to be more noteworthy
than the false negative results.

6.3 RQ 2: Model Optimality

Table B shows the AUC scores and AUC standard errors
on each population for two models: one trained on the en-
tire dataset and tested only on students in the listed demo-
graphic group (“Whole Population Model”), and one trained
only on students in the listed demographic group (“Popula-
tion Specific Model”). The only instance where the per-
formance differed by more than the standard error is the
Logistic Regression model for Asian students, which saw a
decrease in performance when using the population-specific
model. This indicates that the current models are optimal in
terms of population-specificity: population-specific models
do not gain appreciable predictive power for any population
in the dataset.

Further, this indicates that the trends identified by the mod-
els generalize across populations in the dataset, and thus, the
models’ performance on all students benefits from access to



Table 5: The results of comparing the AUC ROC scores for models trained on all students (“Whole Popu-
lation Model,” abbreviated “WPM?”) versus just one demographic (“Population Specific Model,” abbreviated

“PSM”). AUCs with non-overlapping standard error (SE) intervals are in bold.

DT RF SVM LR SGD
Population PSM  WPM | PSM WPM | PSM WPM | PSM WPM | PSM WPM
African American AUC | 0.788 0.796 | 0.799 0.804 | 0.818 0.830 | 0.805 0.830 | 0.799  0.830
SE 0.024 0.024 | 0.023 0.023 | 0.022 0.022 | 0.023 0.022 | 0.023 0.022
American Indian AUC | 0.857 0.661 | 0.679 0.661 | 0.464 0.661 | 0.589 0.661 | 0.589  0.661
SE 0.135 0.182 | 0.180 0.182 | 0.187 0.182 | 0.188 0.182 | 0.188  0.182
Asian AUC | 0.747 0.762 | 0.729  0.744 | 0.746  0.769 | 0.710 0.766 | 0.753  0.769
SE 0.023 0.023 | 0.024 0.024 | 0.024 0.023 | 0.025 0.023 | 0.023 0.023
Female AUC | 0.795 0.800 | 0.803 0.798 | 0.814 0.815 | 0.812 0.816 | 0.798 0.811
SE 0.011  0.011 | 0.011 0.011 | 0.011 0.011 | 0.011 0.011 | 0.011 0.011
Foreign AUC | 0.770  0.712 | 0.763  0.796 | 0.677 0.729 | 0.658 0.729 | 0.620 0.781
SE 0.060 0.066 | 0.061 0.057 | 0.068 0.064 | 0.070 0.064 | 0.072  0.059
Hispanic/Latino AUC | 0.800 0.799 | 0.786 0.790 | 0.810 0.814 | 0.798 0.819 | 0.806  0.819
SE 0.017 0.017 | 0.017 0.017 | 0.016 0.016 | 0.017 0.016 | 0.016 0.016
Male AUC | 0.777 0.793 | 0.796 0.801 | 0.787  0.791 | 0.792 0.794 | 0.790  0.804
SE 0.013 0.012 | 0.012 0.012 | 0.013 0.013 | 0.012 0.012 | 0.013 0.012
Multiple Ethnicities AUC | 0.816 0.818 | 0.812 0.826 | 0.809 0.807 | 0.807 0.797 | 0.723  0.807
SE 0.043 0.043 | 0.043 0.042 | 0.044 0.044 | 0.044 0.045 | 0.051 0.044
Hawaiian/Pacific Islander AUC | 0.667  0.750 | 0.750  0.750 | 0.833  0.750 | 0.833  0.750 | 0.417  0.750
SE 0.265 0.239 | 0.239 0.239 | 0.201 0.239 | 0.201 0.239 | 0.287  0.239
White AUC | 0.803 0.805 | 0.806  0.809 | 0.803 0.800 | 0.800 0.802 | 0.805 0.805
SE 0.013 0.013 | 0.013 0.013 | 0.013 0.013 | 0.013 0.013 | 0.013 0.013

the full population at training time. However, since the
models primarily identified GPA and student credit hours
obtained as the most important predictors [1], this trend
may be specific to these variables.

7. DISCUSSION AND FUTURE WORK

We have demonstrated an approach to assessing fairness that
derives definitions of fairness directly from the use cases of
the models in question. We find that our models are not per-
fectly equitable, as the term is defined in RQ 1. However,
the differences are generally small (under 5%), and with the
important exception of White students, are not consistent
across all models. We encourage any end-users of models
that display some unfair tendencies to be cautious and mind-
ful of the potential impact. These differences are relatively
small, but it has still not been established what level of un-
fairness should be considered acceptable in a model with
real-life implications. Perfect fairness is ideal, but difficult
to achieve. Our models are, though, very optimal across
groups, in terms of our definition in RQ 2. No model, or
population, saw a meaningful change in per-group perfor-
mance when trained only on one population.

The most important avenue for future work on this subject
is investigating how the implementation of models such as
these (e.g. making them available to advisers) will affect stu-
dent outcomes, and whether the slight unfairness observed
here will translate to real-world differences. The assessment
of fairness we have performed is an attempt to pre-empt
such effects, but is not a substitute for directly measuring
them.
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