
srcML-DKT: Enhancing Deep Knowledge Tracing with Ro-
bust Code Representations from srcML 

Maciej Pankiewicz 
University of Pennsylvania 

Warsaw University of Life Sciences 

mpank@upenn.edu 

Yang Shi 
Utah State University 

yang.shi@usu.edu 
 

Ryan S. Baker 
University of Pennsylvania 

ryanshaunbaker@gmail.com 

 

ABSTRACT 
Knowledge Tracing (KT) models predicting student performance 

in intelligent tutoring systems have been successfully deployed in 

several educational domains. However, their usage in open-ended 

programming problems poses multiple challenges due to the com-

plexity of the programming code and a complex interplay between 

syntax and logic requirements embedded in code development. As 

a result, traditional Bayesian Knowledge Tracing (BKT) and more 

advanced Deep Knowledge Tracing (DKT) approaches that use bi-

nary correctness data find limited use. Code-DKT [26] is a 

knowledge tracing approach that uses recurrent neural networks to 

model learning progress leveraging information extracted from the 

student-generated code, incorporating abstract syntax tree (AST)-

based code features, but its reliance on parsable code limits its ef-

fectiveness; unparsable submissions may constitute a substantial 

part of code submitted for evaluation within platforms for auto-

mated assessment of programming assignments. To overcome the 

ASTs limitations, we propose srcML-DKT, an extension of Code-

DKT that utilizes srcML-based code representations, enabling fea-

ture extraction from both parsable and unparsable code. By 

capturing syntactic and structural details directly from the code 

text, srcML-DKT enables including all student code submissions, 

regardless of syntax errors. Empirical evaluations on a dataset of 

610 students and six programming tasks focused on conditional 

statements demonstrate that srcML-DKT consistently outperforms 

both Code-DKT and traditional DKT models, achieving higher 

AUC and F1-scores across first and all attempts. These results high-

light the model’s ability to track student knowledge progression 

more accurately, in environments where trial-and-error learning is 

common. 
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1. INTRODUCTION 
Knowledge tracing has been used in intelligent tutoring systems 

(ITS) to monitor and support student learning across various do-

mains [21,23,26]. By capturing how students progress in mastering 

specific skills, knowledge tracing models have helped educators 

personalize instruction and feedback [30]. A key aspect of these 

models is the concept of knowledge components (KCs [14])—

discrete units of knowledge or skills—used to track student mastery 

at a granular level [6]. While certain subjects such as algebra have 

well-established KCs [23], defining and identifying KCs in 

programming education remains more elusive due to the complex 

and multifaceted nature of coding tasks [7,24,27]. 

In response to these challenges, machine learning (ML) approaches 

for knowledge tracing in programming have been proposed. One 

such approach is Code-DKT [26], which leverages Abstract Syntax 

Trees (ASTs) to represent student code submissions [16]. ASTs can 

capture structural and syntactic features of code, making them suit-

able for modeling student competencies and predicting 

performance on future tasks. However, Code-DKT’s reliance on 

AST generation comes with a key limitation: since the standard 

AST construction process requires parsable code, any unparsable 

submissions are excluded. This is a non-trivial concern in educa-

tional settings. Simply discarding these submissions risks  favoring 

more advanced students who can already write error-free code, and 

neglecting novice learners who often struggle with syntax and other 

basic mistakes. 

Given that novices potentially benefit the most from targeted in-

structional support in introductory programming courses, there is a 

need to develop a knowledge tracing model that can incorporate the 

full range of code submissions, including code that cannot be 

parsed into an AST. To address this gap, we propose srcML-DKT, 

an approach that integrates all code submissions via srcML [5]. Un-

like previous AST generation techniques that fail when code does 

not parse, srcML can represent code structure more flexibly, ac-

commodating code structure from incomplete or erroneous 

submissions across multiple programming languages (C, C++, C# 

and Java). By incorporating these submissions, srcML-DKT can 

provide a more comprehensive representation of student 

knowledge states, improving the model’s applicability to more 

code submissions. 

In the following sections, we describe details of our approach. We 

first summarize related work on knowledge tracing and AST-based 

methods in programming education. Next, we describe the tech-

nical underpinnings of srcML-DKT, illustrating how srcML is 

integrated into the workflow to handle all code submissions. We 

then present our experimental setup and results, highlighting the 

improvements achieved by including these overlooked submis-

sions. Finally, we discuss future implications and outline the next 

steps for advancing knowledge tracing in programming education. 

2. CONTEXT OF THE STUDY 

2.1 Compiler Errors 
A compiler error occurs when code fails to adhere to the syntactic 

rules of a programming language, preventing it from being trans-

lated into an executable program. These errors detected by a 

compiler are typically accompanied by messages indicating where 

the code deviates from the required syntax. 

Novice programmers frequently encounter compiler errors as they 

navigate the complexities of learning syntax. This stage is critical 

in programming education, as many researchers have emphasized 

that overcoming these early challenges significantly impacts future 
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success in computer science [2,3,12,13]. Gaining the ability to in-

terpret and fix compiler errors builds a foundation for tackling more 

advanced programming tasks, while repeated struggles can hinder 

progress, erode confidence, and limit skill development. And for 

novices this may be a challenging task. A study on the use of an 

online programming tool for a CS1 course reported that more than 

one-third of student submissions failed to compile [20]. An even 

higher failure rate was observed in classroom settings – a study an-

alyzing compilation events from CS1 laboratory sessions found that 

60% of compilation attempts were unsuccessful [28]. 

2.2 Abstract Syntax Trees 
Abstract syntax trees (ASTs) have long served as an instrument for 

analyzing the structure and evolution of programming code in edu-

cational contexts [16]. Researchers have employed AST-based 

methods to investigate programming style, detect plagiarism, and 

even offer automated feedback on student submissions [22]. How-

ever, generating an AST requires code that can be parsed 

successfully.  As a result, researchers often discard non-compilable 

submissions when assembling large-scale datasets for analysis 

[7,17,25,32]. This limitation is particularly pronounced in novice 

programming contexts, where syntax errors are frequent, and code 

rarely compiles on the first attempt. Disregarding this code means 

losing a significant portion of real-world submissions, thus creating 

a gap in our understanding of how learners grapple with fundamen-

tal syntax rules. 

2.3 srcML  
srcML [5] is an XML-based representation of source code designed 

to facilitate the analysis, transformation, and querying of program 

structure and semantics. By encoding syntactic elements of code 

into a hierarchical XML format, it enables advanced tools and al-

gorithms to process source code while preserving its original 

structure. This approach has been used in software engineering re-

search and applications, including program comprehension, 

refactoring, and code generation [8,29]. srcML supports languages 

commonly used in introductory programming courses, such as C, 

C++, C#, and Java, making it a suitable tool for educational and 

academic purposes. srcML represents source code while preserving 

all original text, including comments and whitespace. Unlike 

strictly compiler-oriented tools, srcML can accommodate incom-

plete or erroneous code, making it especially valuable for analyzing 

novice submissions. 

2.4 Challenges in Knowledge Tracing for Pro-

gramming Education 
Bayesian Knowledge Tracing (BKT) is one of the foundational ap-

proaches to modeling student learning [6]. It predicts whether a 

student has mastered specific skills based on their performance 

over time. BKT uses a probabilistic framework with the following 

parameters: guess (success without mastery), slip (failure despite 

mastery), and the probability of transitioning from unlearned to 

learned states. While effective in some domains [23], traditional 

BKT models treat student responses as binary (correct or incorrect), 

which limits their applicability to complex problem-solving do-

mains like programming. These domains often require more 

nuanced analysis to account for variations in student understanding 

reflected in their solution attempts. 

Deep Knowledge Tracing (DKT) is a neural network-based ap-

proach that initially attempted to improve predictive accuracy, 

while still requiring binary correctness. Introduced by [21], DKT 

employs long short-term memory (LSTM) networks – a more com-

plex variant of RNNs – to capture sequential dependencies in 

students’ learning trajectory. The model processes sequences of 

student attempts, encoded as problem-response pairs, and outputs a 

probability distribution indicating the likelihood of a correct re-

sponse on the next attempt. By leveraging deep learning, DKT 

identifies complex, nonlinear patterns in student learning, offering 

a more flexible and scalable framework for modeling educational 

trajectories. Recent advancements in DKT, including attention-

based mechanisms [11,18], have enhanced the model’s predictive 

accuracy by incorporating richer contextual features, such as prob-

lem text and student-generated responses. DKT, in contrast to BKT, 

automatically discovers relationships among problems, and no 

longer needs a pre-specified knowledge component model. How-

ever, it still relies on binary correctness indicators, missing the 

information embedded in student responses, which may be valuable 

in such domains as programming education. Here, the nature of in-

correct or correct solutions can reveal essential details about a 

student's conceptual understanding or misconceptions. 

The recently proposed Code-based Deep Knowledge Tracing 

(Code-DKT) [26] addresses these limitations by incorporating do-

main-specific features from students' code submissions. Code-DKT 

extends the DKT framework by analyzing the actual content of pro-

gramming solutions, providing a richer representation of student 

knowledge. It achieves this by utilizing the code2vec model [1], 

which represents programming solutions as abstract syntax trees 

and extracts paths between AST nodes to create meaningful em-

beddings. These embeddings are weighted using an attention 

mechanism informed by the correctness of prior submissions, al-

lowing the model to identify the most predictive aspects of the 

code. 

Code-DKT's integration of code content marks a departure from 

traditional domain-general approaches. While DKT and its variants 

are effective on large datasets with simpler problems (e.g., multi-

ple-choice, or short-answer questions), they fail to capture the 

intricacies of domains like programming. By incorporating the 

structural and semantic features of code submissions, Code-DKT 

enhances the predictive accuracy of KT models, enabling them to 

account for subtleties like syntax errors, conceptual misunderstand-

ings, or inefficient logic, which binary correctness data cannot 

capture. 

An empirical evaluation of Code-DKT demonstrated its advantages 

over traditional BKT and DKT models [26]. In a study involving 

410 students across five introductory programming assignments, 

Code-DKT consistently outperformed DKT by 3-4% in AUC ROC 

(Area Under the Receiver Operating Characteristic Curve) across 

all assignments. This improvement is on par with advancements 

achieved by state-of-the-art domain-general models, like SAINT 

[4] and SAKT [18], in other domains. Code-DKT is particularly 

effective in identifying patterns of student learning when problems 

share common programming constructs or learning objectives, alt-

hough its performance can vary for novel or unique tasks. 

Despite these advancements, challenges remain. Code-DKT, like 

other deep models, requires considerable data to learn effectively, 

which can be a limitation in smaller datasets. Additionally, while 

the inclusion of code features improves predictions, further re-

search is needed to optimize the representation and integration of 

such features. Exploring alternative code representation models, 

like CodeBERT [9] or ASTNN [15], may provide further enhance-

ments. Additionally, as we investigate here, Code-DKT cannot 

analyze student solutions if the AST cannot be created. Neverthe-

less, Code-DKT demonstrates the potential of combining domain-

specific features with deep learning to improve knowledge tracing, 



particularly in domains where problem-solving complexity extends 

beyond binary correctness. 

3. METHODS 

3.1 Platform for Automated Assessment of 

Programming Assignments 
The study utilized a programming code dataset from an online plat-

form, RunCode [19], which provides an automated environment for 

the execution and testing of programming code. RunCode has been 

actively used since 2017 by computer science students at a large 

European University. Although usage of the platform was volun-

tary and performance did not count toward the final grade, it 

remained highly popular among students, with a participation rate 

of around 90% over the years. The platform features a diverse set 

of a few hundred programming assignments, covering fundamental 

programming topics: types and variables, conditional statements, 

recursion, loops, arrays, and bitwise operations, but also more ad-

vanced topics around object-oriented programming. Students 

submit their programming code via an online code editor. 

3.2 Assessment Process 
The platform's assessment process involves compiling and testing 

the submitted code. Students receive comprehensive feedback to 

support their learning and debugging, which includes:  

• Compiler messages: detailed information on errors, in-

cluding the line number, error message, and error ID. 

Code editor highlights the lines, where compiler errors 

occurred. 

• Unit test results: unit tests are executed to verify if the 

code logic is correct. Outcomes for each unit test exe-

cuted on the submitted code are presented as a list with 

green or red marks requiring clicks to access detailed 

feedback. Detailed feedback includes input values, the 

expected output, and the actual output generated by stu-

dent code. A test fails if the value generated by a student 

code does not equal the expected output. 

• Overall score: a percentage (0–100%) representing the 

proportion of successfully passed unit tests. 

This detailed feedback is provided to allow students to iteratively 

refine their solutions and deepen their understanding of program-

ming concepts. 

3.3 Dataset 
The dataset originates from a study that involved first-semester 

computer science students enrolled in an Introduction to Program-

ming (CS1) course, conducted during the Winter Semester at a 

large European university over four academic years (2020–2024). 

The course, which uses C# as the programming language, is a man-

datory component of the computer science curriculum. The dataset 

comprises submissions from N = 610 students on six programming 

assignments designed to practice conditional statements. These as-

signments were completed on an automated assessment platform, 

progressively increasing in complexity by introducing new opera-

tors and logical constructs (Table 1). Consent was obtained from 

students prior to joining this study. Due to the COVID pandemic, 

in academic year 2021-2022 the course was fully online, and the 

assignments were made available during the semester, as topics 

were introduced weekly during online sessions 

In this paper, we analyze a selected set of tasks focusing on condi-

tional statements. These tasks were selected for the following 

reasons: 1) Foundational yet approachable: Conditional statements 

are the first topic that introduces logic into programming. Unlike 

more complex topics, such as loops, it may be easier to interpret 

underlying “knowledge components”. 2) High frequency of syntax 

errors: Therefore an approach that can parse solutions with syntax 

errors could be valuable. 3) Syntax errors beyond slips: At this early 

stage, many syntax errors likely stem from misconceptions rather 

than accidental slips, offering valuable insights into student under-

standing. 4) Incremental difficulty: Each task incrementally builds 

on previous ones. The gradual progression in task complexity al-

lows for clearer interpretation of student learning patterns across 

consecutive attempts. 

Table 1. Summary of the number of students and total submis-

sions to the selected “if” tasks – categorized as non-compiling 

(NC), compiling but incorrect and correct – across the years 

2020-2023. 

 2020 2021 2022 2023 

Submissions 2329 1052 1626 1465 

NC 
828 

(36%) 

247 

(23%) 

221 

(14%) 

190 

(13%) 

Incorrect 
310 

(13%) 

121 

(12%) 

373 

(23%) 

374 

(26%) 

Correct 
1191 

(51%) 

684 

(65%)  

1032 

(63%) 

901 

(61%) 

Students 189 109 161 155 

 

The six assignments were: 

T1: Create a function that returns true if the input number is zero 

and false otherwise (Key concepts: equality comparison). 

T2: Create a function that returns true if the input number is positive 

and false otherwise (Key concepts: greater-than comparison). 

T3: Create a function that returns true if the input number is even 

and false otherwise (Key concepts: equality comparison, modulo 

operator). 

T4: Create a function that returns true if the input number is not 

divisible by 3 and false otherwise (Key concepts: equality compar-

ison, modulo operator). 

T5: Create a function that returns true if the input number is both 

positive and even. This task builds on earlier functions by requiring 

students to combine conditions using logical operators (Key con-

cepts: logical AND, modulo operator, equality comparison, 

greater-than comparison). 

T6: Create a function that returns true if the input number is posi-

tive, even, and not divisible by 3. Students must integrate multiple 

conditions and reuse previously defined functions (Key concepts: 

logical AND, modulo operator, equality comparison, greater-than 

comparison). 

These tasks were designed to progressively challenge students by 

requiring them to apply foundational programming concepts and 

build on their earlier work to solve more complex problems. Across 

these tasks, we recorded 6,472 submissions, of which 2,018 were 

non-compiling and 4,454 were successfully compiled and tested. 

3,808 (59%) submissions were correct (Table 2). 



3.4 srcML-DKT 
srcML-DKT is an approach to extending the deep knowledge trac-

ing architecture with student code, which addresses the limitations 

of abstract syntax tree (AST)-based code representations, particu-

larly when dealing with these non-compilable student submissions 

that cannot be parsed into an abstract syntax tree. The original 

Code-DKT approach [26] leverages AST-based representations of 

student code, which relies on successfully parsing code into com-

plete syntax trees, which can be problematic when students submit 

non-compilable code. The majority of the non-compilable submis-

sions in our dataset are also non-parsable (66%) and therefore AST 

generation for such submissions fails. 

Table 2. Summary of the number of students and total submis-

sions for selected 'if' tasks (T1–T6), categorized as non-

compiling (NC), compiling but incorrect, and correct. 

 T1 T2 T3 T4 T5 T6 

Submissions 1356 1063 968 918 1073 1094 

NC 
635 

(47%) 

252 

(24%) 

297 

(31%) 

157 

(17%) 

368 

(34%) 

309 

(28%) 

Incorrect 
39 

(3%) 

162 

(15%) 

34 

(3%) 

133 

(15%) 

99 

(9%) 

179 

(16%) 

Correct 
682 

(50%) 

649 

(61%) 

637 

(66%) 

628 

(68%) 

606 

(57%)  

606 

(56%) 

Students 604 594 580 578 570 564 

 

An example of the AST represented for a code snippet is shown in 

Figure 1 (a). In Code-DKT, code paths are extracted as code fea-

tures, and an example of a code path is shown in red in Figure 1. 

They are represented as sequences of text and embedded as vectors 

for next-step processing. For example, in the red code path of Fig-

ure 1 (a), the path is represented as [‘input’, ‘method’, ‘body’, 

‘doSomething’, ‘input’]. 

 

Figure 1. Example of AST (a) and srcML tree (b) and the ex-

tracted code path features for Code-DKT specified in red. In 

srcML, uncompilable code can be represented in an XML for-

mat even if it is unparsable and thus represented as a tree for 

srcML-DKT feature extraction. 

To overcome the issue with AST generation process not parsing 

code, srcML-DKT replaces AST-based code feature extraction 

with a srcML-based approach, which provides a more flexible and 

robust representation of student submissions, regardless of whether 

they can be parsed. An example of a non-compilable, unparsable 

code and the corresponding srcML tree is shown in Figure 1 (b). In 

case the code cannot be parsed due to a syntax error in the second 

line (bolded), srcML still captures both the syntactic and structural 

elements of source code preserving faulty parts’ plain textual for-

mat, allowing for a comprehensive analysis of both complete and 

incomplete programs. srcML parses programming code into XML 

format, which can be further transformed into a tree (similarly to 

AST, but without strict syntax rules, where the AST generation 

would fail). This representation ensures that the learning model has 

access to meaningful structural features even in the presence of syn-

tax errors, improving its ability to track students’ evolving 

knowledge states. 

srcML-DKT leverages srcML-based features instead of the AST-

based features in the knowledge tracing framework. It encodes the 

structural information of student code at each attempt. Each code 

submission ct at submission t has a set of Rt codepaths (example 

codepath is marked red in Figure 1), and similar to Code-DKT, they 

are embedded as vectors through attention mechanisms [31]. These  

code features  ([z1, z2, …, zT]) are combined with student prior cor-

rectness traces (denoted as [x1, x2, …, xT]), and are then processed 

using a long short-term memory (LSTM) architecture to model the 

temporal progression of student learning [10,21]. Note that in case 

of programming assignments, a single problem may involve differ-

ent skills across multiple attempts. Since correct solutions are not 

strictly defined, we follow the approach used in Code-DKT and 

consider every attempt in this model for tracing [26]. By incorpo-

rating a more flexible code representation, srcML-DKT enhances 

the applicability of deep learning-based knowledge tracing in pro-

gramming education, making it more resilient to non-compilable 

code, allowing it to more fully capture the progression of student 

learning. 

4. RESULTS 
In this section, we present results obtained for the srcML-DKT 

model and compare it to the Code-DKT and DKT models. 

4.1 Hyperparameter tuning 
The analysis was conducted by partitioning the dataset at the stu-

dent level into training, validation, and testing sets in a 3:1:1 ratio 

that also ensured that submissions from the same student did not 

appear in multiple sets. The validation set was used for hyperpa-

rameter tuning, where ten runs were performed to identify the 

optimal parameter configuration. For each run, we calculated the 

AUC (ROC) metric and for each configuration of hyperparameter 

set we averaged obtained AUCs to find a configuration that max-

imizes the averaged AUC. Specifically, the learning rates tested 

included 0.0001, 0.0005, 0.001, 0.005, and 0.01, while the number 

of epochs varied within the range of 80 to 180 in increments of 20. 

Once the best-performing hyperparameters were established on the 

validation set, the model was evaluated on the test set 10 times to 

assess its final performance.  For each of these 10 runs, the model 

was randomly initialized, trained from scratch using the training 

dataset, and then evaluated on the test dataset. This approach ac-

counts for variability in neural network training and ensures that 

the reported results are averaged over multiple runs for a more re-

liable performance estimate. The final AUC/F1 performance of 

models are reported as the average of the 10 runs. 



Table 3 presents the performance comparison of srcML-DKT, 

Code-DKT, and the baseline DKT model, evaluated using AUC 

and F1-score metrics for both first attempts and all attempts. 

srcML-DKT consistently outperforms both Code-DKT and DKT 

across all evaluation metrics, demonstrating the efficacy of incor-

porating srcML-based code representations into the knowledge 

tracing framework. For first attempts, srcML-DKT achieves an 

AUC of 0.8355 and an F1-score of 0.8278, representing an im-

provement of 1.65 percentage points in AUC and 0.53 percentage 

points in F1-score over Code-DKT (AUC = 0.8190, F1 = 0.8225). 

Compared to the baseline DKT model (AUC = 0.7931, F1 = 

0.8132), srcML-DKT exhibits a substantial gain of 4.24 percentage 

points in AUC and 1.46 percentage points in F1-score. This indi-

cates that the srcML-based feature extraction method provides 

richer and more reliable information about student knowledge, par-

ticularly in predicting performance on new, unseen problems. 

Similarly, when considering all attempts, srcML-DKT achieves the 

highest performance with an AUC of 0.8467 and an F1-score of 

0.8053. This reflects an improvement of 1.61 percentage points in 

AUC and 0.88 percentage points in F1-score over Code-DKT 

(AUC = 0.8306, F1 = 0.7965), and a 2.90 percentage point increase 

in AUC and 1.32 percentage point improvement in F1-score com-

pared to DKT (AUC = 0.8177, F1 = 0.7921). These results 

highlight srcML-DKT's enhanced capability to model student 

learning trajectories.  

Table 3. Performance Comparison of srcML-DKT, Code-DKT, 

and DKT Using AUC and F1-Score for First and All Attempts. 

 First attempts All attempts 

 AUC F1 AUC F1 

srcML-DKT 0.8355 0.8278 0.8467 0.8053 

Code-DKT 0.8190 0.8225 0.8306 0.7965 

DKT 0.7931 0.8132 0.8177 0.7921 

 

Overall, the consistent performance gains observed in srcML-DKT 

across both first and all attempts suggest that srcML-based code 

feature extraction not only addresses the limitations of ASTs in 

handling non-compilable code but also provides a more robust and 

generalizable approach to knowledge tracing in programming edu-

cation. 

4.2 Case Study: The Impact of Non-Compil-

ing Code Features on srcML-DKT 

Predictions 
To investigate how incorporating features from non-compiling 

code submissions improves predictive performance, we conducted 

a case study comparing srcML-DKT, Code-DKT, and DKT mod-

els. 

4.2.1 Prediction Visualization 
We utilized prediction heatmaps to visualize model performance. 

In these heatmaps, each cell represents a specific student’s attempt 

on task T4 (after initially solving tasks T1, T2, and T3 in 5 total 

attempts: two non-compilable and 3 compilable submissions). The 

numerical value inside the cell indicates the ground truth out-

come—1 for a correct (successful) submission and 0 for an 

incorrect (unsuccessful) one. The cell color corresponds to the 

model’s predicted probability of success: green indicates a higher 

likelihood of a correct submission, while red denotes a lower prob-

ability of success. 

Figure 2 presents the prediction heatmaps generated by the three 

models for this student who made four submission attempts on a 

task. This example was selected to highlight how incorporating fea-

tures from non-compiling code may impact prediction accuracy. In 

this case, the first three submissions were incorrect and non-com-

pilable—a common scenario among novice programmers. Only the 

fourth attempt was compilable – it was also the final and correct 

submission. 

4.2.2 Code Evolution Across Attempts 
Alongside the heatmaps, we analyzed the student’s code modifica-

tions (pairs of consecutive submissions with changes tracked in a 

git-style presented on Figure 2) to understand the sequence of cor-

rections made by this student while creating a function to check if 

a number is divisible by 3. 

    Attempt 1: The initial submission resulted in a compiler error due 

to a missing semicolon (compiler reports one error). 

    Attempt 2: The student added the missing semicolon, but the 

code still failed to compile (compiler reports one error) due to a 

misunderstanding of the  /=  operator. In C#,  /=  is a division 

assignment operator, dividing the left-hand operand by the right-

hand operand and assigning the result back to the left-hand operand 

(e.g.,  x /= y  is equivalent to  x = x / y ). 

 

Figure 2. Heatmap Comparison of DKT, Code-DKT, and 

srcML-DKT Predictions with Annotated Student Code 

Changes Across Four Consecutive Attempts on a Task T4. 



    Attempt 3: The student attempted to fix the error by changing  

/=  to  =/ , which is syntactically incorrect, causing another com-

pilation failure (compiler reports one error). 

    Attempt 4: The student correctly replaced   =/  with the inequal-

ity operator   != , resulting in a compilable and correct submission. 

4.2.3 Model Predictions and Analysis 
Initial predictions for the first attempt of the student on task T4 var-

ied across models. The DKT model, which does not utilize code 

features, was overly optimistic, predicting a high probability of suc-

cess (indicated by light green). In contrast, both Code-DKT and 

srcML-DKT, which incorporate code-based features, correctly pre-

dicted the student’s failure on the first attempt. This highlights how 

even basic code feature inclusion can improve predictive accuracy 

for novice programmers prone to syntax errors. 

As the student progressed through subsequent attempts, the pre-

dicted probability of success increased for all models. However, 

key differences emerged: DKT showed a gradual increase in suc-

cess probability but lacked the contextual understanding of code 

correctness, leading to less accurate predictions in earlier attempts. 

Code-DKT, while leveraging code features, could not utilize non-

compiling submissions, limiting its ability to learn information 

about the student’s progress when the student’s code failed to com-

pile. srcML-DKT demonstrated superior performance by 

incorporating features from non-compiling code. Notably, it cor-

rectly predicted the failure on the third attempt, where the syntax 

error ( /= ) persisted. This illustrates the model’s enhanced ability 

to interpret student performance and learning, even when submis-

sions contain compilation errors 

This case study demonstrates that integrating non-compiling code 

features significantly enhances prediction accuracy in knowledge 

tracing models. srcML-DKT’s ability to process incomplete or er-

roneous code may provide a more nuanced understanding of 

student learning trajectories, particularly in early programming ed-

ucation where syntax errors are prevalent. 

5. DISCUSSION 
Programming poses unique challenges for knowledge tracing due 

to the multi-layered nature of errors, which can occur at the syntax 

level (code does not compile), runtime level (code compiles but 

crashes during execution), or logic level (code runs but produces 

incorrect results). Additionally, when solving programming assign-

ments, students often require multiple compilation attempts before 

arriving at a correct solution. These complexities make modeling 

student knowledge in programming environments particularly dif-

ficult and previous research has shown that traditional Bayesian 

Knowledge Tracing and more advanced Deep Knowledge Tracing 

approaches struggle with data from programming assessment plat-

forms. Code-DKT – a model that integrates features extracted from 

student code has been found to outperform both BKT and DKT, but 

it does not include code features if the AST cannot be generated. 

To address this limitation of the Code-DKT method, we explored 

the use of srcML as a structured representation of programming 

code and selected a set of tasks for evaluation. In our investigation, 

we focused on tasks involving conditional statements, a fundamen-

tal concept introduced early in programming courses. While these 

tasks are relatively simple, many novices struggle with syntax, 

making these tasks a suitable choice for this initial analysis. 

In this paper, we introduced the srcML-DKT approach, hypothesiz-

ing that improved code feature extraction from both parsable and 

unparsable code can enhance knowledge tracing performance. We 

leveraged the srcML format to generate code features for all sub-

missions, including all non-compiling ones, ensuring that the full 

range of student attempts contributes to model training. We evalu-

ated our approach on a subset of conditional statement tasks, 

demonstrating improved performance over Code-DKT and DKT in 

terms of the AUC and F1 metrics. Additionally, we investigated a 

set of submissions from a student who struggled with the material  

in detail, finding that incorporating features from the full range of 

code submissions improved prediction accuracy. This suggests that 

our model better captures the nuances of novice programmers’ sub-

missions and is more responsive to students who experience 

difficulties. These findings highlight the robustness of the srcML-

DKT approach and its potential value in introductory programming 

courses, where students frequently experience wheel spinning or 

struggle with syntax comprehension. By accounting for non-com-

piling submissions, our model offers a more comprehensive view 

of student learning, with the potential to ultimately supporting more 

effective interventions for struggling learners. 

The tasks selected for this analysis all focused on the concept of 

conditional statements, which enhances the interpretability of our 

results. We assume that the model can learn from submissions made 

on assignments covering the same concept. However, its perfor-

mance when a student transitions to a different topic—such as 

moving from conditional statements to recursion or loops—has not 

yet been evaluated. Investigating this aspect is a key next step in 

our research. Although students were free to choose the order in 

which they completed tasks on the platform, most followed the se-

quence in which the tasks were listed. This behavior may have also 

influenced model performance, and further analysis is needed to 

assess the robustness of our approach. Fortunately, our dataset al-

lows for such an evaluation, as the platform supports randomized 

task ordering for individual students, and this feature was enabled 

for selected modules. Examining model performance under these 

conditions is also part of our planned future work. 

Our study has several limitations. The dataset used in this research 

includes submissions from N=610 students, which, while larger 

than some previous studies, remains relatively small for deep learn-

ing applications. This limited sample size may affect the 

generalizability of our findings, particularly when applying the 

model to more diverse student populations or different educational 

contexts. Future research should focus on validating srcML-DKT’s 

performance using larger datasets to ensure broader applicability 

and robustness. The scope of the tasks in our dataset is constrained, 

consisting of only six assignments, all centered around conditional 

statements. In addition, this model tracks every submission from 

students, and this is different from the typical setting of DKT. This 

is because of the nature of open-ended programming. Students may 

practice different skills in the same assignment, and the detailed 

definition of skills in open-ended programming is still under dis-

cussion [24,27]. While this focus allowed for a controlled 

exploration of the model's capabilities, it limits the ability to gener-

alize the findings to other programming concepts, such as loops, 

functions, or data structures. As a next step, we plan to further in-

vestigate the model's performance across a wider variety of 

programming tasks and concepts to more fully assess its effective-

ness and usefulness. 

This study suggests that adopting a more robust approach to code 

feature generation may improve knowledge tracing for program-

ming education. We hope that as a result it will ultimately provide 

benefits to introductory courses, supporting more effective and tai-

lored interventions for struggling learners, ultimately fostering 

greater success in early CS education. 
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