
srcML-DKT: Enhancing Deep Knowledge Tracing with Ro-
bust Code Representations from srcML

Maciej Pankiewicz
University of Pennsylvania

Warsaw University of Life Sciences

mpank@upenn.edu

Yang Shi
Utah State University

yang.shi@usu.edu

Ryan S. Baker
University of Pennsylvania

ryanshaunbaker@gmail.com

ABSTRACT
Knowledge Tracing (KT) models predicting student performance

in intelligent tutoring systems have been successfully deployed in

several educational domains. However, their usage in open-ended

programming problems poses multiple challenges due to the com-

plexity of the programming code and a complex interplay between

syntax and logic requirements embedded in code development. As

a result, traditional Bayesian Knowledge Tracing (BKT) and more

advanced Deep Knowledge Tracing (DKT) approaches that use bi-

nary correctness data find limited use. Code-DKT [26] is a

knowledge tracing approach that uses recurrent neural networks to

model learning progress leveraging information extracted from the

student-generated code, incorporating abstract syntax tree (AST)-

based code features, but its reliance on parsable code limits its ef-

fectiveness; unparsable submissions may constitute a substantial

part of code submitted for evaluation within platforms for auto-

mated assessment of programming assignments. To overcome the

ASTs limitations, we propose srcML-DKT, an extension of Code-

DKT that utilizes srcML-based code representations, enabling fea-

ture extraction from both parsable and unparsable code. By

capturing syntactic and structural details directly from the code

text, srcML-DKT enables including all student code submissions,

regardless of syntax errors. Empirical evaluations on a dataset of

610 students and six programming tasks focused on conditional

statements demonstrate that srcML-DKT consistently outperforms

both Code-DKT and traditional DKT models, achieving higher

AUC and F1-scores across first and all attempts. These results high-

light the model’s ability to track student knowledge progression

more accurately, in environments where trial-and-error learning is

common.

Keywords
Knowledge Tracing, CS1, Programming, Deep Knowledge Trac-

ing, Deep Learning.

1. INTRODUCTION
Knowledge tracing has been used in intelligent tutoring systems

(ITS) to monitor and support student learning across various do-

mains [21,23,26]. By capturing how students progress in mastering

specific skills, knowledge tracing models have helped educators

personalize instruction and feedback [30]. A key aspect of these

models is the concept of knowledge components (KCs [14])—

discrete units of knowledge or skills—used to track student mastery

at a granular level [6]. While certain subjects such as algebra have

well-established KCs [23], defining and identifying KCs in

programming education remains more elusive due to the complex

and multifaceted nature of coding tasks [7,24,27].

In response to these challenges, machine learning (ML) approaches

for knowledge tracing in programming have been proposed. One

such approach is Code-DKT [26], which leverages Abstract Syntax

Trees (ASTs) to represent student code submissions [16]. ASTs can

capture structural and syntactic features of code, making them suit-

able for modeling student competencies and predicting

performance on future tasks. However, Code-DKT’s reliance on

AST generation comes with a key limitation: since the standard

AST construction process requires parsable code, any unparsable

submissions are excluded. This is a non-trivial concern in educa-

tional settings. Simply discarding these submissions risks favoring

more advanced students who can already write error-free code, and

neglecting novice learners who often struggle with syntax and other

basic mistakes.

Given that novices potentially benefit the most from targeted in-

structional support in introductory programming courses, there is a

need to develop a knowledge tracing model that can incorporate the

full range of code submissions, including code that cannot be

parsed into an AST. To address this gap, we propose srcML-DKT,

an approach that integrates all code submissions via srcML [5]. Un-

like previous AST generation techniques that fail when code does

not parse, srcML can represent code structure more flexibly, ac-

commodating code structure from incomplete or erroneous

submissions across multiple programming languages (C, C++, C#

and Java). By incorporating these submissions, srcML-DKT can

provide a more comprehensive representation of student

knowledge states, improving the model’s applicability to more

code submissions.

In the following sections, we describe details of our approach. We

first summarize related work on knowledge tracing and AST-based

methods in programming education. Next, we describe the tech-

nical underpinnings of srcML-DKT, illustrating how srcML is

integrated into the workflow to handle all code submissions. We

then present our experimental setup and results, highlighting the

improvements achieved by including these overlooked submis-

sions. Finally, we discuss future implications and outline the next

steps for advancing knowledge tracing in programming education.

2. CONTEXT OF THE STUDY

2.1 Compiler Errors
A compiler error occurs when code fails to adhere to the syntactic

rules of a programming language, preventing it from being trans-

lated into an executable program. These errors detected by a

compiler are typically accompanied by messages indicating where

the code deviates from the required syntax.

Novice programmers frequently encounter compiler errors as they

navigate the complexities of learning syntax. This stage is critical

in programming education, as many researchers have emphasized

that overcoming these early challenges significantly impacts future

Do not delete, move, or resize this block. If the paper is accepted, this block will

need to be filled in with reference information.

success in computer science [2,3,12,13]. Gaining the ability to in-

terpret and fix compiler errors builds a foundation for tackling more

advanced programming tasks, while repeated struggles can hinder

progress, erode confidence, and limit skill development. And for

novices this may be a challenging task. A study on the use of an

online programming tool for a CS1 course reported that more than

one-third of student submissions failed to compile [20]. An even

higher failure rate was observed in classroom settings – a study an-

alyzing compilation events from CS1 laboratory sessions found that

60% of compilation attempts were unsuccessful [28].

2.2 Abstract Syntax Trees
Abstract syntax trees (ASTs) have long served as an instrument for

analyzing the structure and evolution of programming code in edu-

cational contexts [16]. Researchers have employed AST-based

methods to investigate programming style, detect plagiarism, and

even offer automated feedback on student submissions [22]. How-

ever, generating an AST requires code that can be parsed

successfully. As a result, researchers often discard non-compilable

submissions when assembling large-scale datasets for analysis

[7,17,25,32]. This limitation is particularly pronounced in novice

programming contexts, where syntax errors are frequent, and code

rarely compiles on the first attempt. Disregarding this code means

losing a significant portion of real-world submissions, thus creating

a gap in our understanding of how learners grapple with fundamen-

tal syntax rules.

2.3 srcML
srcML [5] is an XML-based representation of source code designed

to facilitate the analysis, transformation, and querying of program

structure and semantics. By encoding syntactic elements of code

into a hierarchical XML format, it enables advanced tools and al-

gorithms to process source code while preserving its original

structure. This approach has been used in software engineering re-

search and applications, including program comprehension,

refactoring, and code generation [8,29]. srcML supports languages

commonly used in introductory programming courses, such as C,

C++, C#, and Java, making it a suitable tool for educational and

academic purposes. srcML represents source code while preserving

all original text, including comments and whitespace. Unlike

strictly compiler-oriented tools, srcML can accommodate incom-

plete or erroneous code, making it especially valuable for analyzing

novice submissions.

2.4 Challenges in Knowledge Tracing for Pro-

gramming Education
Bayesian Knowledge Tracing (BKT) is one of the foundational ap-

proaches to modeling student learning [6]. It predicts whether a

student has mastered specific skills based on their performance

over time. BKT uses a probabilistic framework with the following

parameters: guess (success without mastery), slip (failure despite

mastery), and the probability of transitioning from unlearned to

learned states. While effective in some domains [23], traditional

BKT models treat student responses as binary (correct or incorrect),

which limits their applicability to complex problem-solving do-

mains like programming. These domains often require more

nuanced analysis to account for variations in student understanding

reflected in their solution attempts.

Deep Knowledge Tracing (DKT) is a neural network-based ap-

proach that initially attempted to improve predictive accuracy,

while still requiring binary correctness. Introduced by [21], DKT

employs long short-term memory (LSTM) networks – a more com-

plex variant of RNNs – to capture sequential dependencies in

students’ learning trajectory. The model processes sequences of

student attempts, encoded as problem-response pairs, and outputs a

probability distribution indicating the likelihood of a correct re-

sponse on the next attempt. By leveraging deep learning, DKT

identifies complex, nonlinear patterns in student learning, offering

a more flexible and scalable framework for modeling educational

trajectories. Recent advancements in DKT, including attention-

based mechanisms [11,18], have enhanced the model’s predictive

accuracy by incorporating richer contextual features, such as prob-

lem text and student-generated responses. DKT, in contrast to BKT,

automatically discovers relationships among problems, and no

longer needs a pre-specified knowledge component model. How-

ever, it still relies on binary correctness indicators, missing the

information embedded in student responses, which may be valuable

in such domains as programming education. Here, the nature of in-

correct or correct solutions can reveal essential details about a

student's conceptual understanding or misconceptions.

The recently proposed Code-based Deep Knowledge Tracing

(Code-DKT) [26] addresses these limitations by incorporating do-

main-specific features from students' code submissions. Code-DKT

extends the DKT framework by analyzing the actual content of pro-

gramming solutions, providing a richer representation of student

knowledge. It achieves this by utilizing the code2vec model [1],

which represents programming solutions as abstract syntax trees

and extracts paths between AST nodes to create meaningful em-

beddings. These embeddings are weighted using an attention

mechanism informed by the correctness of prior submissions, al-

lowing the model to identify the most predictive aspects of the

code.

Code-DKT's integration of code content marks a departure from

traditional domain-general approaches. While DKT and its variants

are effective on large datasets with simpler problems (e.g., multi-

ple-choice, or short-answer questions), they fail to capture the

intricacies of domains like programming. By incorporating the

structural and semantic features of code submissions, Code-DKT

enhances the predictive accuracy of KT models, enabling them to

account for subtleties like syntax errors, conceptual misunderstand-

ings, or inefficient logic, which binary correctness data cannot

capture.

An empirical evaluation of Code-DKT demonstrated its advantages

over traditional BKT and DKT models [26]. In a study involving

410 students across five introductory programming assignments,

Code-DKT consistently outperformed DKT by 3-4% in AUC ROC

(Area Under the Receiver Operating Characteristic Curve) across

all assignments. This improvement is on par with advancements

achieved by state-of-the-art domain-general models, like SAINT

[4] and SAKT [18], in other domains. Code-DKT is particularly

effective in identifying patterns of student learning when problems

share common programming constructs or learning objectives, alt-

hough its performance can vary for novel or unique tasks.

Despite these advancements, challenges remain. Code-DKT, like

other deep models, requires considerable data to learn effectively,

which can be a limitation in smaller datasets. Additionally, while

the inclusion of code features improves predictions, further re-

search is needed to optimize the representation and integration of

such features. Exploring alternative code representation models,

like CodeBERT [9] or ASTNN [15], may provide further enhance-

ments. Additionally, as we investigate here, Code-DKT cannot

analyze student solutions if the AST cannot be created. Neverthe-

less, Code-DKT demonstrates the potential of combining domain-

specific features with deep learning to improve knowledge tracing,

particularly in domains where problem-solving complexity extends

beyond binary correctness.

3. METHODS

3.1 Platform for Automated Assessment of

Programming Assignments
The study utilized a programming code dataset from an online plat-

form, RunCode [19], which provides an automated environment for

the execution and testing of programming code. RunCode has been

actively used since 2017 by computer science students at a large

European University. Although usage of the platform was volun-

tary and performance did not count toward the final grade, it

remained highly popular among students, with a participation rate

of around 90% over the years. The platform features a diverse set

of a few hundred programming assignments, covering fundamental

programming topics: types and variables, conditional statements,

recursion, loops, arrays, and bitwise operations, but also more ad-

vanced topics around object-oriented programming. Students

submit their programming code via an online code editor.

3.2 Assessment Process
The platform's assessment process involves compiling and testing

the submitted code. Students receive comprehensive feedback to

support their learning and debugging, which includes:

• Compiler messages: detailed information on errors, in-

cluding the line number, error message, and error ID.

Code editor highlights the lines, where compiler errors

occurred.

• Unit test results: unit tests are executed to verify if the

code logic is correct. Outcomes for each unit test exe-

cuted on the submitted code are presented as a list with

green or red marks requiring clicks to access detailed

feedback. Detailed feedback includes input values, the

expected output, and the actual output generated by stu-

dent code. A test fails if the value generated by a student

code does not equal the expected output.

• Overall score: a percentage (0–100%) representing the

proportion of successfully passed unit tests.

This detailed feedback is provided to allow students to iteratively

refine their solutions and deepen their understanding of program-

ming concepts.

3.3 Dataset
The dataset originates from a study that involved first-semester

computer science students enrolled in an Introduction to Program-

ming (CS1) course, conducted during the Winter Semester at a

large European university over four academic years (2020–2024).

The course, which uses C# as the programming language, is a man-

datory component of the computer science curriculum. The dataset

comprises submissions from N = 610 students on six programming

assignments designed to practice conditional statements. These as-

signments were completed on an automated assessment platform,

progressively increasing in complexity by introducing new opera-

tors and logical constructs (Table 1). Consent was obtained from

students prior to joining this study. Due to the COVID pandemic,

in academic year 2021-2022 the course was fully online, and the

assignments were made available during the semester, as topics

were introduced weekly during online sessions

In this paper, we analyze a selected set of tasks focusing on condi-

tional statements. These tasks were selected for the following

reasons: 1) Foundational yet approachable: Conditional statements

are the first topic that introduces logic into programming. Unlike

more complex topics, such as loops, it may be easier to interpret

underlying “knowledge components”. 2) High frequency of syntax

errors: Therefore an approach that can parse solutions with syntax

errors could be valuable. 3) Syntax errors beyond slips: At this early

stage, many syntax errors likely stem from misconceptions rather

than accidental slips, offering valuable insights into student under-

standing. 4) Incremental difficulty: Each task incrementally builds

on previous ones. The gradual progression in task complexity al-

lows for clearer interpretation of student learning patterns across

consecutive attempts.

Table 1. Summary of the number of students and total submis-

sions to the selected “if” tasks – categorized as non-compiling

(NC), compiling but incorrect and correct – across the years

2020-2023.

 2020 2021 2022 2023

Submissions 2329 1052 1626 1465

NC
828

(36%)

247

(23%)

221

(14%)

190

(13%)

Incorrect
310

(13%)

121

(12%)

373

(23%)

374

(26%)

Correct
1191

(51%)

684

(65%)

1032

(63%)

901

(61%)

Students 189 109 161 155

The six assignments were:

T1: Create a function that returns true if the input number is zero

and false otherwise (Key concepts: equality comparison).

T2: Create a function that returns true if the input number is positive

and false otherwise (Key concepts: greater-than comparison).

T3: Create a function that returns true if the input number is even

and false otherwise (Key concepts: equality comparison, modulo

operator).

T4: Create a function that returns true if the input number is not

divisible by 3 and false otherwise (Key concepts: equality compar-

ison, modulo operator).

T5: Create a function that returns true if the input number is both

positive and even. This task builds on earlier functions by requiring

students to combine conditions using logical operators (Key con-

cepts: logical AND, modulo operator, equality comparison,

greater-than comparison).

T6: Create a function that returns true if the input number is posi-

tive, even, and not divisible by 3. Students must integrate multiple

conditions and reuse previously defined functions (Key concepts:

logical AND, modulo operator, equality comparison, greater-than

comparison).

These tasks were designed to progressively challenge students by

requiring them to apply foundational programming concepts and

build on their earlier work to solve more complex problems. Across

these tasks, we recorded 6,472 submissions, of which 2,018 were

non-compiling and 4,454 were successfully compiled and tested.

3,808 (59%) submissions were correct (Table 2).

3.4 srcML-DKT
srcML-DKT is an approach to extending the deep knowledge trac-

ing architecture with student code, which addresses the limitations

of abstract syntax tree (AST)-based code representations, particu-

larly when dealing with these non-compilable student submissions

that cannot be parsed into an abstract syntax tree. The original

Code-DKT approach [26] leverages AST-based representations of

student code, which relies on successfully parsing code into com-

plete syntax trees, which can be problematic when students submit

non-compilable code. The majority of the non-compilable submis-

sions in our dataset are also non-parsable (66%) and therefore AST

generation for such submissions fails.

Table 2. Summary of the number of students and total submis-

sions for selected 'if' tasks (T1–T6), categorized as non-

compiling (NC), compiling but incorrect, and correct.

 T1 T2 T3 T4 T5 T6

Submissions 1356 1063 968 918 1073 1094

NC
635

(47%)

252

(24%)

297

(31%)

157

(17%)

368

(34%)

309

(28%)

Incorrect
39

(3%)

162

(15%)

34

(3%)

133

(15%)

99

(9%)

179

(16%)

Correct
682

(50%)

649

(61%)

637

(66%)

628

(68%)

606

(57%)

606

(56%)

Students 604 594 580 578 570 564

An example of the AST represented for a code snippet is shown in

Figure 1 (a). In Code-DKT, code paths are extracted as code fea-

tures, and an example of a code path is shown in red in Figure 1.

They are represented as sequences of text and embedded as vectors

for next-step processing. For example, in the red code path of Fig-

ure 1 (a), the path is represented as [‘input’, ‘method’, ‘body’,

‘doSomething’, ‘input’].

Figure 1. Example of AST (a) and srcML tree (b) and the ex-

tracted code path features for Code-DKT specified in red. In

srcML, uncompilable code can be represented in an XML for-

mat even if it is unparsable and thus represented as a tree for

srcML-DKT feature extraction.

To overcome the issue with AST generation process not parsing

code, srcML-DKT replaces AST-based code feature extraction

with a srcML-based approach, which provides a more flexible and

robust representation of student submissions, regardless of whether

they can be parsed. An example of a non-compilable, unparsable

code and the corresponding srcML tree is shown in Figure 1 (b). In

case the code cannot be parsed due to a syntax error in the second

line (bolded), srcML still captures both the syntactic and structural

elements of source code preserving faulty parts’ plain textual for-

mat, allowing for a comprehensive analysis of both complete and

incomplete programs. srcML parses programming code into XML

format, which can be further transformed into a tree (similarly to

AST, but without strict syntax rules, where the AST generation

would fail). This representation ensures that the learning model has

access to meaningful structural features even in the presence of syn-

tax errors, improving its ability to track students’ evolving

knowledge states.

srcML-DKT leverages srcML-based features instead of the AST-

based features in the knowledge tracing framework. It encodes the

structural information of student code at each attempt. Each code

submission ct at submission t has a set of Rt codepaths (example

codepath is marked red in Figure 1), and similar to Code-DKT, they

are embedded as vectors through attention mechanisms [31]. These

code features ([z1, z2, …, zT]) are combined with student prior cor-

rectness traces (denoted as [x1, x2, …, xT]), and are then processed

using a long short-term memory (LSTM) architecture to model the

temporal progression of student learning [10,21]. Note that in case

of programming assignments, a single problem may involve differ-

ent skills across multiple attempts. Since correct solutions are not

strictly defined, we follow the approach used in Code-DKT and

consider every attempt in this model for tracing [26]. By incorpo-

rating a more flexible code representation, srcML-DKT enhances

the applicability of deep learning-based knowledge tracing in pro-

gramming education, making it more resilient to non-compilable

code, allowing it to more fully capture the progression of student

learning.

4. RESULTS
In this section, we present results obtained for the srcML-DKT

model and compare it to the Code-DKT and DKT models.

4.1 Hyperparameter tuning
The analysis was conducted by partitioning the dataset at the stu-

dent level into training, validation, and testing sets in a 3:1:1 ratio

that also ensured that submissions from the same student did not

appear in multiple sets. The validation set was used for hyperpa-

rameter tuning, where ten runs were performed to identify the

optimal parameter configuration. For each run, we calculated the

AUC (ROC) metric and for each configuration of hyperparameter

set we averaged obtained AUCs to find a configuration that max-

imizes the averaged AUC. Specifically, the learning rates tested

included 0.0001, 0.0005, 0.001, 0.005, and 0.01, while the number

of epochs varied within the range of 80 to 180 in increments of 20.

Once the best-performing hyperparameters were established on the

validation set, the model was evaluated on the test set 10 times to

assess its final performance. For each of these 10 runs, the model

was randomly initialized, trained from scratch using the training

dataset, and then evaluated on the test dataset. This approach ac-

counts for variability in neural network training and ensures that

the reported results are averaged over multiple runs for a more re-

liable performance estimate. The final AUC/F1 performance of

models are reported as the average of the 10 runs.

Table 3 presents the performance comparison of srcML-DKT,

Code-DKT, and the baseline DKT model, evaluated using AUC

and F1-score metrics for both first attempts and all attempts.

srcML-DKT consistently outperforms both Code-DKT and DKT

across all evaluation metrics, demonstrating the efficacy of incor-

porating srcML-based code representations into the knowledge

tracing framework. For first attempts, srcML-DKT achieves an

AUC of 0.8355 and an F1-score of 0.8278, representing an im-

provement of 1.65 percentage points in AUC and 0.53 percentage

points in F1-score over Code-DKT (AUC = 0.8190, F1 = 0.8225).

Compared to the baseline DKT model (AUC = 0.7931, F1 =

0.8132), srcML-DKT exhibits a substantial gain of 4.24 percentage

points in AUC and 1.46 percentage points in F1-score. This indi-

cates that the srcML-based feature extraction method provides

richer and more reliable information about student knowledge, par-

ticularly in predicting performance on new, unseen problems.

Similarly, when considering all attempts, srcML-DKT achieves the

highest performance with an AUC of 0.8467 and an F1-score of

0.8053. This reflects an improvement of 1.61 percentage points in

AUC and 0.88 percentage points in F1-score over Code-DKT

(AUC = 0.8306, F1 = 0.7965), and a 2.90 percentage point increase

in AUC and 1.32 percentage point improvement in F1-score com-

pared to DKT (AUC = 0.8177, F1 = 0.7921). These results

highlight srcML-DKT's enhanced capability to model student

learning trajectories.

Table 3. Performance Comparison of srcML-DKT, Code-DKT,

and DKT Using AUC and F1-Score for First and All Attempts.

 First attempts All attempts

 AUC F1 AUC F1

srcML-DKT 0.8355 0.8278 0.8467 0.8053

Code-DKT 0.8190 0.8225 0.8306 0.7965

DKT 0.7931 0.8132 0.8177 0.7921

Overall, the consistent performance gains observed in srcML-DKT

across both first and all attempts suggest that srcML-based code

feature extraction not only addresses the limitations of ASTs in

handling non-compilable code but also provides a more robust and

generalizable approach to knowledge tracing in programming edu-

cation.

4.2 Case Study: The Impact of Non-Compil-

ing Code Features on srcML-DKT

Predictions
To investigate how incorporating features from non-compiling

code submissions improves predictive performance, we conducted

a case study comparing srcML-DKT, Code-DKT, and DKT mod-

els.

4.2.1 Prediction Visualization
We utilized prediction heatmaps to visualize model performance.

In these heatmaps, each cell represents a specific student’s attempt

on task T4 (after initially solving tasks T1, T2, and T3 in 5 total

attempts: two non-compilable and 3 compilable submissions). The

numerical value inside the cell indicates the ground truth out-

come—1 for a correct (successful) submission and 0 for an

incorrect (unsuccessful) one. The cell color corresponds to the

model’s predicted probability of success: green indicates a higher

likelihood of a correct submission, while red denotes a lower prob-

ability of success.

Figure 2 presents the prediction heatmaps generated by the three

models for this student who made four submission attempts on a

task. This example was selected to highlight how incorporating fea-

tures from non-compiling code may impact prediction accuracy. In

this case, the first three submissions were incorrect and non-com-

pilable—a common scenario among novice programmers. Only the

fourth attempt was compilable – it was also the final and correct

submission.

4.2.2 Code Evolution Across Attempts
Alongside the heatmaps, we analyzed the student’s code modifica-

tions (pairs of consecutive submissions with changes tracked in a

git-style presented on Figure 2) to understand the sequence of cor-

rections made by this student while creating a function to check if

a number is divisible by 3.

 Attempt 1: The initial submission resulted in a compiler error due

to a missing semicolon (compiler reports one error).

 Attempt 2: The student added the missing semicolon, but the

code still failed to compile (compiler reports one error) due to a

misunderstanding of the /= operator. In C#, /= is a division

assignment operator, dividing the left-hand operand by the right-

hand operand and assigning the result back to the left-hand operand

(e.g., x /= y is equivalent to x = x / y).

Figure 2. Heatmap Comparison of DKT, Code-DKT, and

srcML-DKT Predictions with Annotated Student Code

Changes Across Four Consecutive Attempts on a Task T4.

 Attempt 3: The student attempted to fix the error by changing

/= to =/ , which is syntactically incorrect, causing another com-

pilation failure (compiler reports one error).

 Attempt 4: The student correctly replaced =/ with the inequal-

ity operator != , resulting in a compilable and correct submission.

4.2.3 Model Predictions and Analysis
Initial predictions for the first attempt of the student on task T4 var-

ied across models. The DKT model, which does not utilize code

features, was overly optimistic, predicting a high probability of suc-

cess (indicated by light green). In contrast, both Code-DKT and

srcML-DKT, which incorporate code-based features, correctly pre-

dicted the student’s failure on the first attempt. This highlights how

even basic code feature inclusion can improve predictive accuracy

for novice programmers prone to syntax errors.

As the student progressed through subsequent attempts, the pre-

dicted probability of success increased for all models. However,

key differences emerged: DKT showed a gradual increase in suc-

cess probability but lacked the contextual understanding of code

correctness, leading to less accurate predictions in earlier attempts.

Code-DKT, while leveraging code features, could not utilize non-

compiling submissions, limiting its ability to learn information

about the student’s progress when the student’s code failed to com-

pile. srcML-DKT demonstrated superior performance by

incorporating features from non-compiling code. Notably, it cor-

rectly predicted the failure on the third attempt, where the syntax

error (/=) persisted. This illustrates the model’s enhanced ability

to interpret student performance and learning, even when submis-

sions contain compilation errors

This case study demonstrates that integrating non-compiling code

features significantly enhances prediction accuracy in knowledge

tracing models. srcML-DKT’s ability to process incomplete or er-

roneous code may provide a more nuanced understanding of

student learning trajectories, particularly in early programming ed-

ucation where syntax errors are prevalent.

5. DISCUSSION
Programming poses unique challenges for knowledge tracing due

to the multi-layered nature of errors, which can occur at the syntax

level (code does not compile), runtime level (code compiles but

crashes during execution), or logic level (code runs but produces

incorrect results). Additionally, when solving programming assign-

ments, students often require multiple compilation attempts before

arriving at a correct solution. These complexities make modeling

student knowledge in programming environments particularly dif-

ficult and previous research has shown that traditional Bayesian

Knowledge Tracing and more advanced Deep Knowledge Tracing

approaches struggle with data from programming assessment plat-

forms. Code-DKT – a model that integrates features extracted from

student code has been found to outperform both BKT and DKT, but

it does not include code features if the AST cannot be generated.

To address this limitation of the Code-DKT method, we explored

the use of srcML as a structured representation of programming

code and selected a set of tasks for evaluation. In our investigation,

we focused on tasks involving conditional statements, a fundamen-

tal concept introduced early in programming courses. While these

tasks are relatively simple, many novices struggle with syntax,

making these tasks a suitable choice for this initial analysis.

In this paper, we introduced the srcML-DKT approach, hypothesiz-

ing that improved code feature extraction from both parsable and

unparsable code can enhance knowledge tracing performance. We

leveraged the srcML format to generate code features for all sub-

missions, including all non-compiling ones, ensuring that the full

range of student attempts contributes to model training. We evalu-

ated our approach on a subset of conditional statement tasks,

demonstrating improved performance over Code-DKT and DKT in

terms of the AUC and F1 metrics. Additionally, we investigated a

set of submissions from a student who struggled with the material

in detail, finding that incorporating features from the full range of

code submissions improved prediction accuracy. This suggests that

our model better captures the nuances of novice programmers’ sub-

missions and is more responsive to students who experience

difficulties. These findings highlight the robustness of the srcML-

DKT approach and its potential value in introductory programming

courses, where students frequently experience wheel spinning or

struggle with syntax comprehension. By accounting for non-com-

piling submissions, our model offers a more comprehensive view

of student learning, with the potential to ultimately supporting more

effective interventions for struggling learners.

The tasks selected for this analysis all focused on the concept of

conditional statements, which enhances the interpretability of our

results. We assume that the model can learn from submissions made

on assignments covering the same concept. However, its perfor-

mance when a student transitions to a different topic—such as

moving from conditional statements to recursion or loops—has not

yet been evaluated. Investigating this aspect is a key next step in

our research. Although students were free to choose the order in

which they completed tasks on the platform, most followed the se-

quence in which the tasks were listed. This behavior may have also

influenced model performance, and further analysis is needed to

assess the robustness of our approach. Fortunately, our dataset al-

lows for such an evaluation, as the platform supports randomized

task ordering for individual students, and this feature was enabled

for selected modules. Examining model performance under these

conditions is also part of our planned future work.

Our study has several limitations. The dataset used in this research

includes submissions from N=610 students, which, while larger

than some previous studies, remains relatively small for deep learn-

ing applications. This limited sample size may affect the

generalizability of our findings, particularly when applying the

model to more diverse student populations or different educational

contexts. Future research should focus on validating srcML-DKT’s

performance using larger datasets to ensure broader applicability

and robustness. The scope of the tasks in our dataset is constrained,

consisting of only six assignments, all centered around conditional

statements. In addition, this model tracks every submission from

students, and this is different from the typical setting of DKT. This

is because of the nature of open-ended programming. Students may

practice different skills in the same assignment, and the detailed

definition of skills in open-ended programming is still under dis-

cussion [24,27]. While this focus allowed for a controlled

exploration of the model's capabilities, it limits the ability to gener-

alize the findings to other programming concepts, such as loops,

functions, or data structures. As a next step, we plan to further in-

vestigate the model's performance across a wider variety of

programming tasks and concepts to more fully assess its effective-

ness and usefulness.

This study suggests that adopting a more robust approach to code

feature generation may improve knowledge tracing for program-

ming education. We hope that as a result it will ultimately provide

benefits to introductory courses, supporting more effective and tai-

lored interventions for struggling learners, ultimately fostering

greater success in early CS education.

6. REFERENCES

1. Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.

2019. code2vec: learning distributed representations of

code. Proc. ACM Program. Lang. 3, POPL.

https://doi.org/10.1145/3290353

2. Brett A. Becker. 2016. A New Metric to Quantify

Repeated Compiler Errors for Novice Programmers. In

Proceedings of the 2016 ACM Conference on Innovation

and Technology in Computer Science Education, 296–

301. https://doi.org/10.1145/2899415.2899463

3. Brett A. Becker, Paul Denny, Raymond Pettit, Durell

Bouchard, Dennis J. Bouvier, Brian Harrington, Amir

Kamil, Amey Karkare, Chris McDonald, Peter-Michael

Osera, Janice L. Pearce, and James Prather. 2019.

Compiler Error Messages Considered Unhelpful. In

Proceedings of the Working Group Reports on Innovation

and Technology in Computer Science Education, 177–

210. https://doi.org/10.1145/3344429.3372508

4. Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon

Baek, Byungsoo Kim, Yeongmin Cha, Dongmin Shin,

Chan Bae, and Jaewe Heo. 2020. Towards an Appropriate

Query, Key, and Value Computation for Knowledge

Tracing. In Proceedings of the Seventh ACM Conference

on Learning @ Scale (L@S ’20), 341–344.

https://doi.org/10.1145/3386527.3405945

5. Michael L Collard, Michael John Decker, and Jonathan I

Maletic. 2013. srcML: An Infrastructure for the

Exploration, Analysis, and Manipulation of Source Code:

A Tool Demonstration. In 2013 IEEE International

Conference on Software Maintenance, 516–519.

https://doi.org/10.1109/ICSM.2013.85

6. Albert T Corbett and John R Anderson. 1994. Knowledge

tracing: Modeling the acquisition of procedural

knowledge. User modeling and user-adapted interaction

4, 4: 253–278.

7. Mehmet Arif Demirtas, Max Fowler, and Kathryn

Cunningham. 2024. Reexamining Learning Curve

Analysis in Programming Education: The Value of Many

Small Problems. In Proceedings of the 17th International

Conference on Educational Data Mining, 53–67.

https://doi.org/10.5281/zenodo.12729774

8. Zishuo Ding, Heng Li, Weiyi Shang, and Tse-Hsun Peter

Chen. 2022. Can pre-trained code embeddings improve

model performance? Revisiting the use of code

embeddings in software engineering tasks. Empirical

Software Engineering 27, 3: 63.

https://doi.org/10.1007/s10664-022-10118-5

9. Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,

Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,

Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:

A Pre-Trained Model for Programming and Natural

Languages. In Findings of the Association for

Computational Linguistics: EMNLP 2020, 1536–1547.

https://doi.org/10.18653/v1/2020.findings-emnlp.139

10. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

Short-Term Memory. Neural Comput. 9, 8: 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735

11. Shuyan Huang, Zitao Liu, Xiangyu Zhao, Weiqi Luo, and

Jian Weng. 2023. Towards robust knowledge tracing

models via k-sparse attention. In Proceedings of the 46th

International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2441–2445.

12. Matthew C. Jadud. 2006. Methods and tools for exploring

novice compilation behaviour. In Proceedings of the

second international workshop on Computing education

research, 73–84.

https://doi.org/10.1145/1151588.1151600

13. Matthew C. Jadud and Brian Dorn. 2015. Aggregate

Compilation Behavior. In Proceedings of the eleventh

annual International Conference on International

Computing Education Research, 131–139.

https://doi.org/10.1145/2787622.2787718

14. Kenneth R Koedinger, Albert T Corbett, and Charles

Perfetti. 2012. The Knowledge-Learning-Instruction

framework: Bridging the science-practice chasm to

enhance robust student learning. Cognitive science 36, 5:

757–798.

15. Ye Mao, Yang Shi, Samiha Marwan, Thomas W Price,

Tiffany Barnes, and Min Chi. 2021. Knowing When and

Where: Temporal-ASTNN for Student Learning

Progression in Novice Programming Tasks. 14th

International Conference on Educational Data Mining,

EDM 2021: 172–182.

16. Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks.

2005. Understanding source code evolution using abstract

syntax tree matching. In Proceedings of the 2005

international workshop on Mining software repositories,

1–5.

17. Linus Östlund, Niklas Wicklund, and Richard Glassey.

2023. It’s Never too Early to Learn About Code Quality:

A Longitudinal Study of Code Quality in First-year

Computer Science Students. In Proceedings of the 54th

ACM Technical Symposium on Computer Science

Education V. 1 (SIGCSE 2023), 792–798.

https://doi.org/10.1145/3545945.3569829

18. Shalini Pandey and George Karypis. 2019. A self-attentive

model for knowledge tracing. In 12th International

Conference on Educational Data Mining, EDM 2019,

384–389.

19. Maciej Pankiewicz. 2020. Measuring task difficulty for

online learning environments where multiple attempts are

allowed — the Elo rating algorithm approach. In

Proceedings of the 13th International Conference on

Educational Data Mining, EDM 2020, 648–652.

20. Maciej Pankiewicz and Ryan S Baker. 2024. Navigating

Compiler Errors with AI Assistance - A Study of GPT

Hints in an Introductory Programming Course. In

Proceedings of the 2024 on Innovation and Technology in

Computer Science Education V. 1 (ITiCSE 2024), 94–100.

https://doi.org/10.1145/3649217.3653608

21. Chris Piech, Jonathan Bassen, Jonathan Huang, Surya

Ganguli, Mehran Sahami, Leonidas Guibas, and Jascha

Sohl-Dickstein. 2015. Deep knowledge tracing. In

Advances in Neural Information Processing Systems,

505–513. Retrieved from

https://proceedings.neurips.cc/paper_files/paper/2015/file

/bac9162b47c56fc8a4d2a519803d51b3-Paper.pdf

22. Chris Piech, Mehran Sahami, Daphne Koller, Steve

Cooper, and Paulo Blikstein. 2012. Modeling how

students learn to program. In Proceedings of the 43rd

ACM Technical Symposium on Computer Science

Education (SIGCSE ’12), 153–160.

https://doi.org/10.1145/2157136.2157182

23. Steven Ritter, John R Anderson, Kenneth R Koedinger,

and Albert Corbett. 2007. Cognitive Tutor: Applied

research in mathematics education. Psychonomic Bulletin

& Review 14, 2: 249–255.

https://doi.org/10.3758/BF03194060

24. Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016.

Learning Curve Analysis for Programming: Which

Concepts do Students Struggle With? In Proceedings of

the 2016 ACM Conference on International Computing

Education Research (ICER ’16), 143–151.

https://doi.org/10.1145/2960310.2960333

25. Kelly Rivers and Kenneth R Koedinger. 2017. Data-

driven hint generation in vast solution spaces: a self-

improving python programming tutor. International

Journal of Artificial Intelligence in Education 27: 37–64.

26. Yang Shi, Min Chi, Tiffany Barnes, and Thomas Price.

2022. {Code-DKT}: A Code-based Knowledge Tracing

Model for Programming Tasks. In Proceedings of the 15th

International Conference on Educational Data Mining,

50–61. https://doi.org/10.5281/zenodo.6853105

27. Yang Shi, Robin Schmucker, Min Chi, Tiffany Barnes,

and Thomas Price. 2023. KC-Finder: Automated

Knowledge Component Discovery for Programming

Problems. International Educational Data Mining

Society.

28. Emily S Tabanao, Ma. Mercedes T Rodrigo, and Matthew

C Jadud. 2011. Predicting at-risk novice Java

programmers through the analysis of online protocols. In

Proceedings of the Seventh International Workshop on

Computing Education Research (ICER ’11), 85–92.

https://doi.org/10.1145/2016911.2016930

29. Luca Traini, Daniele Di Pompeo, Michele Tucci, Bin Lin,

Simone Scalabrino, Gabriele Bavota, Michele Lanza,

Rocco Oliveto, and Vittorio Cortellessa. 2021. How

Software Refactoring Impacts Execution Time. ACM

Trans. Softw. Eng. Methodol. 31, 2.

https://doi.org/10.1145/3485136

30. Kurt VanLehn. 2011. The relative effectiveness of human

tutoring, intelligent tutoring systems, and other tutoring

systems. Educational psychologist 46, 4: 197–221.

31. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, \Lukasz Kaiser,

and Illia Polosukhin. 2017. Attention is all you need. In

Proceedings of the 31st International Conference on

Neural Information Processing Systems (NIPS’17), 6000–

6010.

32. Mengxia Zhu, Siqi Han, Peisen Yuan, and Xuesong Lu.

2022. Enhancing programming knowledge tracing by

interacting programming skills and student code. In

LAK22: 12th International Learning Analytics and

Knowledge Conference, 438–443.

