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Abstract

In recent years, there has been increased interest in engagement during learning. This is

of particular interest in the science, technology, engineering, and mathematics (STEM)

domains, in which many students struggle and where the U.S. needs skilled workers. This

article lays out some issues important for framing research on this topic, and provides a

review of some existing work with similar goals on engagement in science learning.

Specifically, here we seek to help better concretize engagement, a fuzzy construct, by

operationalizing and detecting (i.e., identifying using a computational method)

disengaged behaviors that are antithetical to engagement. We, in turn, describe our real-

time detector (i.e., machine learned model) of disengaged behavior and how it was

developed. Lastly, we address our on-going research on how our detector of disengaged

behavior will be used to intervene in real time in order to better support students’ science

inquiry learning in Inq-ITS (Inquiry-Intelligent Tutoring System; Gobert, Sao Pedro,

Baker, Toto, & Montalvo, 2012; Gobert, Sao Pedro, Raziuddin, & Baker, 2013).

Keywords: science inquiry, disengagement, off-task behavior, intelligent tutoring systems,

educational data mining
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There has been a surge of interest and research on the topic of engagement in the

last twenty years (Christenson, Reschly, & Wylie, 2012). Student engagement is an

important topic for teachers, parents, and other stakeholders. Student engagement is

critical to study for three reasons (Skinner & Pitzer, 2012). First, it is a necessary

condition for students’ learning because engagement is a critical component of long-term

achievement and academic success (see, for example, Tobin & Sugai, 1999; San Pedro,

Baker, Bowers, & Heffernan, 2013). Second, engagement shapes students’ school

experiences in school, both psychologically and socially (Skinner & Pitzer, 2012). Last,

engagement plays a role in students’ academic resilience, and the development of

resources for coping adaptively with stressors, which in turn, may affect the development

of long-term academic mindsets (Skinner & Pitzer, 2012).

In terms of research findings, engagement is associated with positive outcomes

along academic, social, and emotional lines (Klem & O’Connell, 2004) and is a very

good predictor of students’ learning, grades, achievement test scores, retention, and

graduation (Appleton, Christenson, & Furlong, 2008). Conversely, disengagement has

severe consequences, particularly for students from disadvantaged backgrounds

(Fredricks & McColskey, 2012). Disengaged students are less likely to graduate from

high school (Fredericks, Blumenfeld, & Paris, 2004; Tobin & Sugai, 1999) and less likely

to attend university (San Pedro et al., 2013).

Studying engagement and disengagement in the context of science learning is

important for many reasons (Hug, Krajcik, & Marx, 2005). First, although approaches to
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supporting STEM learning have changed considerably over the last century, one key

aspect of science education remains the same: students become disengaged and fall

behind; thus, if not addressed, this is likely to continue. Second, successful learning of

science skills and concepts is increasingly necessary to students’ future success both on

high-stakes exams and in determining access to and success in STEM careers (Autor,

Levy, & Murnane, 2003). Increasingly, engagement is thought to be critical to addressing

low achievement and high dropout rates (for a review, see Fredericks et al., 2004). For

example, off-task behavior as early as middle school is an excellent predictor of high

school dropout rate (Tobin & Sugai, 1999), and gaming the system in middle school

predicts eventual college attendance (San Pedro et al., 2013).

Difficulties with Engagement Research

Engagement is an integral aspect of learning, but is difficult to directly operationalize and

observe, and due to this, it has been historically difficult to define and thus to measure

(Fredricks et al., 2004). This is particularly true in science learning (Tytler & Osborne,

2012), likely due to its complexity and difficulty. The large variation in how this

construct is conceptualized and measured has made it challenging to compare findings

across studies (Fredricks & McColskey, 2012; Appleton et al., 2008). However, this very

diversity in conceptualizing engagement has led to an acknowledgement and appreciation

of the complexity of this construct (Skinner & Pitzer, 2012).

This article lays out some issues important to framing research in the area of

engagement in science. As noted by Tytler and Osborne (2012), what is needed are better

theoretical models that can account for student engagement (and disengagement) in

science. Specifically, we seek to shed further light on how to operationalize engagement,
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a fuzzy construct. We do this by defining and identifying behaviors that are associated

with disengagement, turning the construct “on its head” to define, operationalize, and

detect (i.e., identify using a computational technique) engagement by identifying its

opposite, dis-engagement. We provide a review of existing work on engagement with

similar general goals to ours. We briefly lay out some presuppositions and operational

terms, as well as describe other methodological approaches in order to contextualize our

work on the development of an automatic detector of disengaged behavior (i.e., a

machine learned model of disengaged behavior; Wixon, Baker, Gobert, Ocumpaugh, &

Bachmann, 2012; Wixon, 2013) in our online science learning environment, Inq-ITS

(Inquiry Intelligent Tutoring System; Gobert et al., 2012, 2013) We, in turn, describe our

real-time detector of one form of disengaged behavior, Disengaged from Task Goal

(DTG), and give an overview how it was developed. Lastly, we outline some of our on-

going research on how our detector of disengaged behavior can be used to intervene in

real time as students work in Inq-ITS in order to better support students’ science inquiry

learning.

Presuppositions and Terms

Engagement vs. Flow

It is important to differentiate engagement from flow (Csikszentmihalyi, 1990).

We do not conceive of these necessarily as different in type but different in degree.

Whereas we define engagement as being on task and aligned to the designer’s goals, flow

is often referred to as a very deep state of engagement that lead the learner to lose a sense

of one’s self. Specifically, flow is conceptualized as a state of deep absorption, as

intrinsically enjoyable, as worthwhile for its own sake, and in which the individual
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functions at his or her fullest capacity (Shernoff, Csikszentmihalyi, Schneider, & Steele

Shernoff, 2003).

School Engagement vs. Student Engagement

An important distinction is made between school engagement and student

engagement. The former concerns other educational constructs (such as school bonding,

belonging, and school “climate”). Here we address student engagement as the student is

oriented towards learning that is intended by the system’s designers.

Relationship Between Engagement and Motivation

Another key issue to be underscored is the relationship between engagement and

motivation. In the past, researchers generally tended to reflect motivation and

engagement within a single theoretical framework and conceptualized disengagement as

emerging, at least in part, from variables including student attributes and presuppositions.

This is represented by research using instruments such as the PALS (Patterns of Adaptive

Learning Survey; Midgley, Maehr, Hicks, Roeser, Urdan, & Anderman, et al., 1997), and

the MSLQ (Motivated Strategies for Learning Questionnaire; Pintrich, Smith, Garcia, &

McKeachie, 1991). For example, goal orientation, measured by the PALS, includes the

goal of achieving mastery, the goal of avoiding failure, and the goal of avoiding work.

These have been frequently hypothesized as associated with disengagement in online

learning, although these relationships have not been borne out (e.g. Baker, Walonoski,

Heffernan, Roll, Corbett, & Koedinger, 2008; Beal, Qu, & Lee, 2007). By contrast,

relationships have been found between low grit (see, for example, Duckworth, Peterson,

Matthews, & Kelly, 2007) and disengaged behaviors in online learning (Baker,

Walonoski, et al., 2008). Given the known relationships between grit and student learning
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outcomes (Duckworth et al., 2007), it is worth studying whether disengaged behaviors

mediate the relationship between lack of grit and negative learning outcomes, as positive

learning strategies mediate the relationship between having learning goals or positive

effort beliefs and learning (Blackwell, Trzesniewski, & Dweck, 2007). Addressing these

questions effectively requires reliable and precise means of detecting when, and to what

degree, students manifest disengaged behaviors. Our detector of disengagement is

designed for this purpose.

Engagement as a Separate Construct from Motivation.

There are many researchers who conceptualize motivation and engagement as

different constructs and posit poor motivation as the underlying reason for a given

disengaged behavior. Research in this vein presupposes that engagement itself is a multi-

dimensional construct. Briefly, within this perspective, 2-, 3-, and 4-component models

have been proposed regarding the components of engagement. For example, Martin

(2008) proposes a two-dimensional model comprising mainly cognitive and behavioral

dimensions. Three-dimensional models (see, for example, Fredricks, Blumenfeld, &

Paris, 2004) add an emotional component to the cognitive and the behavioral. Emotional

engagement includes interest, boredom, happiness, anxiety, and other affective states.

Behavioral engagement includes persistence, effort, attention, participation, involvement.

Lastly, cognitive engagement includes cognitive investment in learning, meta-cognition,

and self-regulated learning. Many have adopted this 3-part framework for work in this

area (see Sinatra, Heddy, & Lombardi, this issue). A four-part model has also been

proposed by Christenson and her colleagues (Appleton, Christenson, Kim, & Reschly,

2006; Reschly & Christenson, 2006), who added an academic component as a fourth
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dimension which includes time on task, credits earned, and homework completion.

However, to us, these types of variables are better aligned with school engagement (as

opposed to student engagement), thus, our work fits better conceptually under the three-

component model, as described by Fredricks et al (2004).

Engagement is Malleable and Contextually-based

Recent theories of engagement have made a major advance by no longer

conceptualizing engagement as an attribute of the student, but rather as a malleable state

that is influenced by school, family, peers, tasks, and other factors (Reschly &

Christenson, 2006). More specifically, and important to our persepecitve, engagement

arises from the interaction of the individual with the context, task, etc. (Finn & Rock,

1997; Fredricks et al., 2004; Skinner & Pitzer, 2012). Furthermore, because the action

component of student engagement with academic tasks is observable, it can be tracked at

the level of individual students (Skinner et al., 2009). In our work, these manifestations of

disengagement are derived from students’ log files of their interactions in Inq-ITS.

Prior Methods of Measuring Engagement

With our presuppositions and terms operationalized, it is important to review prior

work on the development of measures of engagement/disengagement in science. These,

with their pros and cons, are briefly reviewed below.

Self-Report Surveys of Engagement

Self-report, often conducted via a pre- or post-test survey, is one of the most

commonly used methods for assessing student engagement (see Fredricks & McColskey,

2012; Greene, this issue) because this method is practical, easy to administer in



Running head: DETECTING LEARNER ENGAGEMENT 9

classroom settings, and is low cost for use with large numbers of students. Several of

these types of measures have been previously validated by others, which reduces the

workload of validating measures anew, and makes comparisons to others’ work easier

(Shea, & Bidjerano 2010; Liu, Horton, Olmanson, & Toprac, 2011). However, there are

cons to this approach as well. Importantly, many of these surveys differ in terms of how

they conceptualize engagement (Fredricks & McColskey, 2012). A second concern with

surveys is that they are often applied out of context, either before or after an activity

(Harmer & Cates, 2007). In this case surveys are measuring participants’ self-report of

their earlier or later engagement rather than in the context in which it is occurring. Thus,

interpreting data about the relationships between engagement and specific learning tasks

is problematic. Whereas methods exist for collecting self-report in real-time, these

methods are often disruptive to students. Thirdly, students may not answer survey

questions honestly (Appleton et al., 2006), negatively impacting the validity of the

results. Fourthly, items are often worded broadly rather than to reflect engagement in

targeted tasks and contexts. In sum, these methods have been criticized for being highly

inferential (Appleton et al., 2006).

Field Observations & Teacher Ratings

One of the common methods for obtaining data on student engagement is to use

field observations, where an observer watches students in the setting of learning, and

codes engagement multi-dimensionally in real time. There is a long history of coding

student off-task behavior using field observations stretching back over fifty years

(Lahaderne, 1968). In the 1980s, researchers began to extend field observations of

engagement to involve a wider range of behavior (e.g. Reyes & Fennema, 1981), which
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has since been extended to include affective as well as behavioral indices of engagement

(see Fredericks et al., 2004; Olitsky, 2007; Ryu & Lombardi, this issue).

Within field observations, the data that is coded can be qualitative in nature

(Papastergiou, 2009) or employ a quantitative coding method to determine whether a pre-

determined category of behavior is present or absent for an individual student during a

defined time interval as indicative of engagement (Annetta, Minogue, Holmes, & Cheng,

2009; Birch & Ladd, 1997). While field observations can be effective, they are time-

consuming, and field coders need training. Quantitative field coding in particular, which

uses researcher-developed categories that are used by human coders, offers an advantage

in that it draws from richer data including subtle behaviors such as posture, facial

expression, tone of speech, eye gaze, etc. Additionally, by employing human judgment to

identify engagement, quantitative field observations have a benefit typically associated

with qualitative methods: they avoid mechanistically operationalizing participant

behaviors, thereby improving construct validity.

Field observations can be also used to create automated measures of engagement

through data mining on log files. The most common field observation method of this type

is BROMP 2.0, the Baker-Rodrigo-Ocumpaugh Monitoring Protocol (Ocumpaugh,

Baker, & Rodrigo, 2012); the first version of BROMP (Baker et al., 2004a) was built off

of earlier methods in field observation (Fennema et al., 1996). BROMP coders record the

affective state and current engaged/disengaged behavior of each student individually, in a

pre-determined order that is enforced by the Human Affect Recording Tool (HART)

application (Baker et al., 2012) for the Android phone. This strict ordering avoids bias

towards interesting or dramatic events in the classroom, ensuring that categories such as
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“engaged concentration” are accurately represented in the data. Coders have up to 20

seconds to make and verify their assessment, but record only the first affective state and

behavior they identify. To build detectors of the affective states identified by the coders,

field observations are synchronized with the log files of student interactions using the

software, and HART synchronizes each observation to within 2 seconds of internet time,

allowing researchers to accurately match each field observation window to the 20-second

clip of that student’s interactions that are recorded in the software’s log file. The

observers base their judgment of a student’s affect or behavior on the student’s work

context, actions, utterances, facial expressions, body language, and interactions with

teachers or fellow students, in line with Planalp et al.’s (1996) descriptive research on

how humans generally identify affect, using multiple cues in concert for maximum

accuracy rather than attempting to select individual cues.

Given that the number of potential observations per student is limited, BROMP is not an

ideal method for studying the development is disengagement over relatively focused

periods of time, and cannot provide the level of precision of estimate of a method that can

provide continual estimation of student engagement (such as log file based methods).

However, it can be used as the basis for obtaining the human ground truth measures (i.e.,

the accuracy of the training set's data) of engagement needed to build automated detectors

of affect (Baker et al., 2004b; Baker, 2007).

Log File and Activity-based Measurements

Another potential method for measuring engagement is via the use of automated

detectors, which infer engagement from student behavior in online learning. These

measurements rely on identifying behaviors that are quantifiable using log files generated
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as students work in online learning environments. These methods may vary in both the

dimensions of grain-size of the logs and in validity of the behavior’s relationship to

engagement. At its coarsest grain size, logs from an entire experimental condition can be

compared to those of a control group to address differences in engagement levels. For

example, Minner, Levy, & Century (2010), used differences in log files to show that

students in a constructivist environment were more engaged compared to students in a

more instructional environment. Automated detectors can be developed which identify

student engagement from log files at a second-by-second level (Baker et al., 2004b; Beck,

2005), in particular from student pauses and self-regulated learning behaviors. Rather

than simply comparing two conditions as in a typical randomized controlled trial, these

analyses allow researchers to explore more complex or conditional ways that engagement

may function (e.g. the sequences of behaviors that students perform). Later in the text, we

detail an example of automated detection of student disengagement from log files, as was

done in the development of our detector for DTG.

Mixed Methods

It is important to note that all the methods outlined previously are often not

exclusive of one another. In several cases, a qualitative analysis may lend itself to a

better-informed quantitative coding scheme. Likewise, data derived from a quantitative

coding scheme or survey measures may inform the hypotheses and expectations of

researchers in performing qualitative studies. For example, resource-intensive

quantitative field observations may be used by a researcher who is developing log file-

based models of engagement. In turn, these models can be used to identify engagement in

a practical and scalable way (Pardos et al., 2013; San Pedro et al., 2014). In cases where
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quantitative models are shown to be inadequate or generalize poorly to different

populations or settings, researchers are best served by returning to qualitative methods to

identify the factors that their models are not capturing (Ryu & Lombardi, this issue).

Prior Work on Engagement in Online Science Learning Environments

We turn now to research that is most closely associated to our goal of addressing

engagement and disengagement within science learning environments. We do so in order

to contextualize our development work on our detector (i.e., machine learned model) of

disengagement.

Studying disengaged behaviors in the context of online learning is a recent field

of study. Research has shown that many students engage in haphazard and non-goal

directed behaviors during inquiry and problem solving (Buckley, Gobert, Horwitz, &

O’Dwyer, 2010); one possible explanation for this is disengagement. Some forms of

disengaged behavior in online learning have been shown to not only have immediate

effects on domain learning (see, for example, Baker et al., 2004a), but also have shown to

result in lower achievement on standardized exams (Pardos et al., 2013), and even to lead

to lower probability of attending college (San Pedro et al., 2013).

While some researchers refer to a single behavior pattern as “disengagement”

(e.g., Beck, 2005; Cocea & Weibelzahl, 2009), work over the last several years has

suggested that learners can disengage from learning in several ways. Instead of engaging

deeply in online science learning, many students disengage by (a) gaming the system

(Baker et al., 2004); (b) by engaging in off-task behavior (Baker, 2007) or haphazard

learning (Buckley et al., 2010); (c) by becoming careless and giving wrong answers due

to lack of effort rather than lack of knowledge (Hershkovitz, Baker, Gobert, Nakama,
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2012); or (d) by engaging in player transformation (Magnussen & Misfeldt, 2004). All of

these behaviors can occur within traditional learning settings as well as in online

environments (Clements, 1982; Karweit & Slavin, 1981; Nelson-LeGall, 1985). Each of

these is briefly addressed below.

Gaming the System

Some researchers have studied how students game the system, attempting to

succeed in an educational task by systematically taking advantage of properties in the

system used to complete that task, rather than by deeply thinking through the material

(Baker et al., 2004a). One of the first identified forms of gaming the system in online

learning was help abuse (Aleven et al., 2004), which occurs when students, who are

capable of solving problems, exploit scaffolding help to avoid cognitive effort. Some hint

systems employ progressively more direct forms of help in their hints. One common form

of help abuse, namely, “clicking through hints” occurs when students rapidly ask for

additional help without taking time to read the initial hints, which give away less of the

solution strategy (Aleven, McLaren, Roll & Koedinger, 2004). Another common strategy

is systematic guessing, where students quickly and systematically try different answers to

find a solution (Baker et al., 2004a). It has been shown that gaming the system has a

statistically significant negative correlation with mathematics pre- and post-tests, a

finding replicated in multiple studies (Baker et al., 2004a; Cocea et al., 2009). Gaming

the system is also associated with lower achievement on standardized examinations

(Pardos et al., 2013), as well as lower eventual college attendance (San Pedro et al.,

2013).

Off-Task Behavior
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Off-task behavior is typically understood as a student disengaging completely

from the learning task to participate in unrelated activity (Karweit & Slavin, 1981), for

example, surfing the web for material unrelated to the learning task. Although off-task

behavior has been found to have low but replicable negative correlations to learning in

traditional academic settings (Frederick & Walberg, 1980; Goodman, 1990), these effects

have not been thus far replicated in online learning (Baker, 2007; Cocea et al., 2009) or

longer-term learning outcomes (Pardos et al., 2013).

Player Transformation

Students also may transform the learning task to a different task entirely

(Magnussen & Misfeldt, 2004); this is called player transformation. This sort of behavior

is characterized by re-conceptualizing a learning task as a game or other structured

activity. For instance, students may choose to focus on helping each other in an online

learning activity, rather than trying to succeed themselves, to get a high score in a system

designed to reward helping behaviors. While player transformation is a relatively

underdeveloped concept compared to gaming the system, it seems to be characterized by

“play”, whereas gaming the system is characterized by “exploitation.”

Rationale

We conduct our work in the context of a science inquiry environment (Inq-ITS

system; Inquiry Intelligent Tutoring System; www.inq-its.org), a computer based

learning environment designed to hone inquiry skills using microworlds (Gobert et al.,

2012, 2013). Although it is intuitively likely that there are domain-general aspects to

engagement, as well as aspects specific to science engagement, it is beyond the scope of

this article to address these similarities and differences. But, since Inq-ITS logs all
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students’ fine-grained interactions within the system as they conduct science inquiry, this

has the affordance of generating data with which to develop a detector to identify

disengagement. In this sense, we are studying engagement specific to science learning.

As described in the prior work on this topic addressed earlier in the article, there

is now a pressing and articulated need to provide conceptual clarity and methodological

rigor to identify disengagement, which to date, has not been achieved (Glanville &

Wildhagan, 2007; Skinner et al., 2009). This can, in our view, be achieved by working

towards establishing construct validity for student engagement. Furthermore, mixed

methods (the approach taken here) may be likely very productive for this goal (Fredricks

& McColskey, 2012). Lastly, rigorous, real time, domain-specific measures of

engagement are needed because prior measures make it difficult to examine engagement

within its specific context (Fredricks & McColskey, 2012). Our work here addresses this

need for online science inquiry, making it possible, in time, to intervene when students

become disengaged within our online environment, Inq-ITS. Some domain-specific

methods have been developed for mathematics (Kong, Wong, & Lam, 2003) and for

reading (Wigfield et al., 2008); thus, our work adds to the existing work in these

domains.

Our work also builds on earlier work on behavioral engagement that tended to

focus on whether a student was primarily on-task or off-task (see, for example,

Lahaderne, 1968; Karweit & Slavin, 1981). Research since then has begun to consider the

multiple ways that disengagement or engagement can manifest behaviorally (see, for

example, Finn and Rock, 1997). However, most work on engaged and disengaged

behaviors still focuses on a student’s overall incidence of each behavior (see, for
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example, Fredericks et al., 2011). We extend this approach using educational data mining

methods to produce a new measure that is fine-grained and can be applied at scale.

Specifically, our method, described next, identifies indicators of a specific disengaged

behavior, Disengaged from Task Goal (DTG), within Inq-ITS (Inquiry Intelligent

tutoring System; Gobert et al., 2012, 2013). As has been argued elsewhere, this

computational approach in which we identify what log features are critical for predicting

a skill and/or online behavior can help further refine the construct under study (Sao Pedro

et al., 2011).

Disengaged from Task Goal (DTG)

In addition to the forms of disengagement identified earlier (e.g., gaming the

system, player transformation, and off task behavior), there are additional ways in which

a student can interact with learning tools that are not focused on using the learning

environment as it was intended by the instructional designer. We operationalize this as

“Disengaged from Task Goal.” This type of behavior has been seen in online learning,

but given a variety of names in the published literature (Sabourin, Rowe, Mott, & Lester,

2013; Buckley et al., 2010; Wixon et al., 2012). In one example, in one of the authors’

data collection sessions, students plotted points from a function in a cognitive tutor for

high school mathematics instead plotted a smiley face. In another example, referred to as

off-task behavior by the authors, learners chose to obtain virtual cacti and put them on top

of virtual patients, rather than trying to determine why the patients were sick (Sabourin,

et al., 2013). In a third example, referred to as haphazard inquiry by the authors, learners

play around with a science simulation in a fashion unrelated to the stated learning goals

of the simulation (Buckley et al., 2010).
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In the context of online science learning, DTG may take several forms, including

running an inordinately large number of identical trials, changing most of the variables

repeatedly within a single trial, and toggling a variable back and forth repeatedly for no

discernible reason. Later in the article we describe the features in students’ log files that

were identified as relevant to detecting disengagement. We label this behavior as

“Disengaged from Task Goal” (DTG) rather than as off-task behavior, as the behaviors

are different in nature. Off-task behavior typically involves disengaging completely from

the learning task, whereas in DTG the student is engaging with the task, but in a fashion

unrelated to the learning task’s design goals or incentive structure. As such, it is not clear

whether the two behaviors emerge for the same reasons, whether they impact learning in

similar way(s), and whether they can be detected by the same automated models.

There are several steps in developing a detector such as this one. Each step will be

described briefly after a description of the sample upon which our detector was built (a

fuller description can be found in Wixon, 2013 and Wixon et al., 2012).

Sample and Microworld Overview

The detector developed in the work reported here was based on data produced by

144 eighth graders (generally ages 12-14), who used Inq-ITS (Inquiry Intelligent

Tutoring System, Gobert et al., 2012, 2013), specifically, its Phase Change microworld,

within their science classes. All students attended a middle school with a diverse

population in a medium-sized city in central Massachusetts. The student population

exhibits substantial economic and educational challenges: 20% oqualified for free or

reduced-price school lunches in the 2009-2010 school year and greater than 50% scored
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at or below “needs improvement” in the Science & Technology/Engineering portion of

the Massachusetts Comprehensive Assessment System (MCAS).

Within the Phase Change microworld (Figure 1), students observe and manipulate

variables in the simulation in order to conduct inquiry regarding the changes between

solids, liquids, and gases. In terms of inquiry phases, students form hypotheses regarding

the phenomenon, and test their hypotheses by running experiments within the simulation.

They then interpret their data, warrant their claims, and communicate findings (NRC,

2013). In the Phase Change microworld in which students melt a block of ice in a beaker

using a Bunsen burner, the independent variables that the students can change include

amount of ice, flame intensity, size of beaker, and whether or not the beaker is covered.

In turn, the values for the relevant dependent variables including time needed to melt the

ice, time needed to boil the resulting water, the melting point of the ice, and the boiling

point of the water are represented in a data table for the students.

[Insert Figure 1 about here]

Each of the students completed at least one data collection activity in the phase

change environment. In this article, we focus on student actions in the hypothesizing and

experimentation phases of the activity. As students conducted these tasks, their actions

within the software were logged– for a total of 144,841 actions were generated. Logs

included the action type, the relevant simulation variable values, and the time stamp.

Steps in Detector Development

The first step in our process of developing a data-mined detector of DTG behavior

is to develop ground truth labels, using text replays (Baker et al., 2006). In text replays,

human coders are presented “pretty-printed” versions of log files. Text replays have
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proven effective for providing ground truth labels for disengaged behaviors (Baker & de

Carvalho, 2008; Baker, Mitrovic, & Matthews, 2010).

In order to create text replays, the student data was segmented into “clips,” i.e.,

sequences of student behavior. In this approach, a clip begins when a student enters the

data collection phase and ends when the student leaves that phase of inquiry. The typical

order of student actions in Inq-ITS is to create hypotheses, collect data, interpret data,

warrant claims, and then communicate their findings, but a student can return to data

collection after interpreting data. Thus, a clip may start either after the student makes a

hypothesis and decides to collect data, or after the student attempts to interpret data and

decides to collect more data.

Clips were coded individually, but not in isolation. That is, coders had access to

all of the previous clips that the same student produced within the same activity so that

they could detect DTG behavior that might otherwise have been missed due to lack of

context. For example, a student may repeatedly switch between hypothesizing and

experimentation, running the same experiment each time. Although repeating the same

experiment two or three times may help the student understand the simulation better,

doing so more than twenty times might be difficult to explain except as DTG.

Two human coders practiced coding DTG on two sets of clips that were excluded

from use in detector development. In the first set of clips, they coded together and

discussed coding standards. Next, the two coders each coded a second set of 200 clips

independently. The two coders achieved acceptable agreement, with Cohen’s Kappa of

0.66.
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Afterwards, 571 clips were coded to develop the DTG detector. Because several

clips could be generated per activity, a single, randomly chosen clip was tagged per

student, per activity (however, not all students completed all activities, causing some

student-activity pairs to be missing from the data set). This ensured all students and

activities were represented approximately equally in the data set. Seventy of these clips

were excluded from analysis, due to a lack of data collection actions on the student’s part.

Of the 501 clips remaining, 15 (3.0%) were labeled as involving DTG behavior, a

proportion similar to the proportions of disengaged behavior studied in past detector

development (Baker & de Carvalho, 2008). These 15 clips were drawn from 15 (10.4%)

of the students (i.e., no student was coded as engaging in DTG behavior more than once).

Data Features

In order to develop an automated detector of DTG behavior from the log files, we

distilled features of the data corresponding to the clips of behavior labeled by the coders.

An initial set of 77 features was distilled using code that had been previously developed

to detect students’ use of experimentation strategies and testing the correct hypothesis

within Inq-ITS (Sao Pedro et al., 2013). These are general features used to distill features

of students’ performance within a microworld. Given that many of these features did not

appear relevant to detecting DTG behavior and using a greater number of features

increases the risk of over-fitting in general (Mitchell, 1997), this set was manually

reduced to 24 features without reference to the labeled data.

All of these 24 features corresponded to information about the set of actions

involved in a specific clip and prior actions that provided context for the clip. The
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features that were identified as relevant to detecting disengagement are briefly described

in Table 1. These fit under 5 categories: (a) overall statistics for the clip, (b) features

related to pauses during the run of the simulation, (c) features based on the time elapsed

during experimentation, (d) features related to resetting or pausing the experimental

apparatus (or the absence of this action), and (e) features involving changes to variables

while forming hypotheses.

[Insert Table 1 about here]

These categories are, to us, intuitively meaningful. For example, under category

(b), pausing the simulation while it is running can be appropriate in some situations, but

doing so large numbers of times may be an indicator of DTG behavior, as the point of the

simulation is to demonstrate the pattern of the phenomenon in question so stopping the

simulation repeatedly while it is running is intuitively plausible an indicator of

disengagement. Additionally, under category (d), features about variable changes are

indicative of disengagement because extremely large numbers of changes would not align

to any reasonable experimentation strategy during inquiry. Similarly, under category (e),

making many changes to the independent variable(s) during hypothesis formation seems

like an indicator of disengagement because the student is not acting in a systematic

fashion by forming a hypothesis and then experimenting towards that hypothesis.

Detector Development

Our detector (i.e., machine learned model) of DTG in this particular context was

built using a machine learning approach to determine the relationships between the

features (i.e., variables) in the model rather than relying on operationalization by an

expert. In machine learning, an algorithm is given access to 24 features, which is then
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used to construct a model associating those variables, thereby leveraging experts’ ability

to recognize a behavior while obviating the risk confirmation bias through researcher

operationalization. This is analogous to creating a linear regression model using a set of

variables: generation of the model only relies on the researcher’s beliefs insofar as which

variables are input as predictors. The main difference between a classification algorithm

used here and a linear regression is that the resulting model of linear regression comes in

the form of a linear equation, while our classification algorithms produce models

composed of conditional if-then statements or “rules.”

We attempted to fit detectors of DTG with machine learning using 11 common

classification algorithms. A classification algorithm is a model that attempts to predict a

binomial or polynomial variable (in this case, a binomial variable, whether an example of

student behavior represents DTG behavior or not), using a combination of other

variables. Out of those eleven algorithms, the best model performance was achieved by

the PART algorithm (Frank & Witten, 1998). A full description of how PART

classification models are constructed is out of the scope of this article (see Frank &

Witten, 1998 for a comprehensive, several-page technical description), but the resultant

model is a set of if-then rules which are considered in order. For example, the first rule is

checked and provides a single answer (either DTG, or not DTG) and a confidence for that

answer. If the first rule does not apply, the second rule is checked, and so on.

For these analyses, we create PART trees using the RapidMiner 4.6 data mining software

(Mierswa et al., 2006); the implementation of PART used within RapidMiner was

originally developed as part of the open-source data mining software
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WEKA (Witten & Frank, 1999). These models were evaluated using a process of six-fold

student-level cross-validation (Efron & Gong, 1983). In this process, students are split

randomly into six groups. Then, for each possible combination, a detector is developed

using data from five groups of students before being tested on the sixth “held out” group

of students. By cross-validating at this level, we increase confidence that detectors will be

accurate for new groups of students.

The algorithm, when fit on the entire data set, generated the following final model

of DTG. In running this model, the rules are run in order from the first to last.

1. IF the total number of independent variable changes (feature 21) is seven or

lower, AND the number of experimental trials run (feature 7) is three or lower,

THEN NOT DTG.

2. IF the maximum time spent between an incomplete run and the action preceding it

(feature 16) is 10 seconds or less, AND the total number of independent variable

changes (feature 21) is eleven or less, AND the average time spent paused

(feature 5) is 6 seconds or less, THEN NOT DTG.

3. IF the total number of independent variable changes (feature 21) is greater than

one, AND the maximum time between actions (feature 3) is 441 seconds or less,

AND the number of trials run without pauses or resets (feature 12) is 4 or less,

THEN NOT DTG.

4. IF the total number of independent variable changes (feature 21) is 12 or less,

THEN DTG.
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5. IF the maximum time spent before running each experimental trial but after

performing the previous action (feature 11) is greater than 1.8 seconds,

THEN NOT DTG.

6. All remaining instances are classified as DTG.

As can be seen, this detector used 6 rules, determined by machine learning, to

distinguish DTG behavior, which employ 8 features from the data set. Four of the rules

identify the characteristics of behavior that is NOT DTG, while only two identify the

characteristics of DTG behavior.

Detector Evaluation

The detector was assessed using four metrics, A' (Hanley & McNeil, 1982),

Kappa, precision (Davis & Goadrich, 2006), and recall (Davis & Goadrich, 2006). A' is

the probability that the detector will be able to distinguish a clip involving DTG behavior

from a clip that does not involve DTG behavior. A' is equivalent to both the area under

the ROC curve in signal detection theory and to W, the Wilcoxon statistic (Hanley &

McNeil, 1982). A model with an A' of 0.5 performs at chance, and a model with an A' of

1.0 performs perfectly. An appropriate statistical test for A' in data across students would

be to calculate A' and standard error for each student for each model, compare using z-

tests, and then aggregate across students using Stouffer’s method (Rosenthal & Rosnow,

1991). However, the standard error formula for A' (Hanley & McNeil, 1982) requires

multiple examples from each category for each student, which is not feasible in the small

samples obtained for each student in our data labeling procedure. Another possible

method, ignoring student-level differences to increase example counts, biases undesirably
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in favor of statistical significance. Hence, statistical tests for A' are not presented in this

article.

The second metric used to evaluate the detector was Cohen’s Kappa, which

assesses whether the detector is better than chance at identifying which clips involve

DTG behavior. A Kappa of 0 indicates that the detector performs at chance, and a Kappa

of 1 indicates that the detector performs perfectly. The detector was also evaluated using

precision and recall, which indicate (respectively) how good the model is at avoiding

false positives, and how good the model is at avoiding false negatives (Table 2).

[Insert Table 2 about here]

A' and Kappa were chosen because they compensate for successful classifications

occurring by chance, an important consideration in data sets with unbalanced proportions

of categories (such as this case, where DTG is observed 3.0% of the time). Precision and

recall give an indication of the detector’s balance between two forms of error. It is worth

noting that unlike Kappa, precision, and recall (which only look at the final label), A'

takes detector confidence into account.

The detector of DTG behavior developed using the PART algorithm achieved

good performance under 6-fold student-level cross-validation. The detector achieved a

very high A' of 0.8005, signifying that it could distinguish whether or not a clip involved

DTG behavior approximately 80.05% of the time. When uncertainty was not taken into

account, performance was lower, though still generally acceptable. The detector achieved

a Kappa value of 0.411, indicating that the detector was 41.1% better than chance. This

level of Kappa is comparable to past automated detectors of other constructs effectively

used in interventions (Sao Pedro et al., 2013; Baker & de Carvalho, 2008). Kappa values
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in this range, combined with good A' values, suggest that the detector is generally good at

recognizing which behavior is more likely to be “DTG,” but classifies some edge cases

incorrectly. In general, the detector’s precision and recall (which, like Kappa, do not take

certainty into account), were approximately balanced with precision = 38.9% and recall =

46.7%. Thus, it is important to use fail-soft interventions and to take detector certainty

into account when selecting interventions – but there is no evidence that the detector has

strong bias either in favor of or against detecting DTG behavior.

What Does our Detector Reveal About Disengagement in Inq-ITS?

Examining the model of DTG behavior (described in detail in Wixon et al., 2012

and Wixon, 2013) provides some interesting implications about disengagement. Previous

automated detectors of disengaged behavior have largely focused on identifying the

specific undesirable behavior studied (Baker & de Carvalho, 2008; Baker, Mitrovic, &

Mathews, 2010; Cetintas et al., 2009). By contrast, the rules produced by our detector are

targeted more towards identifying what is not DTG behavior than identifying what is

DTG behavior. As such, this model suggests that DTG behavior may be characterized by

the absence of appropriate strategies and behaviors in a student actively using the

software, as well as specific undesirable behavior.

It is also worth discussing the data feature that is most frequently employed in the

model rules is the number of times the student changes a simulation variable. Though this

feature is used in four of the six rules of the model (Wixon et al., 2012), there is not a

clear pattern where frequently changing variables is simply either good or bad. Instead,

different student actions appear to indicate DTG behavior in a student who frequently

changes simulation variables, compared to a student who seldom changes simulation
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variables. Specifically, a student who changes variables many times without stopping to

think before running the simulation is seen as displaying DTG behavior. By contrast, a

student who changes variables fewer times is categorized as displaying DTG behavior if

he or she runs a large number of experimental trials and also pauses the simulation for

long periods of time. This may indicate that the student is running the simulation far more

times than is warranted for the number of variables being changed, and that his or her

pattern of pauses does not seem to indicate that he or she is using this time to do some

meaningful during the pauses, such as study the simulation.

Discussion

Summary of Approach

In this article, we first presented a detector (i.e., machine learner model) of what

we term Disengaged from Task Goal (DTG), based on data from the Phase Change

microworld in Inq-ITS (Gobert et al., 2012, 2013). In this type of disengagement, the

student is interacting with the software, but their actions appear to have little relationship

to the intended learning task and/or the designer’s goals. DTG behavior has been reported

in multiple online learning environments, but has not yet been modeled or studied to the

degree that it warrants.

We also presented an overview of the detector development process using human

labels of the behavior and educational data mining techniques, and described how the

detector was validated. Our work is a proof of concept that this behavior can be identified

both by human coding of log files and by an automated detector. It is important to note

that our automated detector of disengagement can be used to replicate the identification

of scoring of engagement in a more practical and scalable way (see, for example, Pardos
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et al., 2013), thereby providing opportunities for fine-grained basic research on this

construct as well as empirical studies testing the efficacy of interventions based on

disengagement. Lastly, our data show that this behavior has prevalence similar to another

index of disengagement, namely, gaming the system, a behavior known to be associated

with poor learning outcomes (Baker et al., 2004a; Cocea et al., 2009; Pardos et al., 2013).

Value Added by the Detector

Our work addresses two main issues, which we, and others, see as pressing and

imperative (Glanville & Wildhagan, 2007) for the field of research on engagement to

continue to move forward. The first is the need for measures of engagement that are well

aligned to the current theoretical position that engagement is highly contextualized

(Fredricks et al., 2004) – a standard met by this detector that can infer a specific

disengaged behavior within Inq-ITS. The second related need is to study engagement in a

way that acknowledges that engagement is malleable (Appleton et al., 2008; Fredricks et

al., 2004; Reschly & Christenson, 2006). Each is addressed in turn.

Precise measures of engagement. As previously stated, there has been a problem

in this research area due to the lack of precision in defining and thus, in identifying

engagement. Following Finn and Kasza (2009), we believe that engagement needed more

clearly defined boundaries. We addressed this by operationalizing its counterpart, namely

disengagement, very concretely, and in turn, developing a method using a computational

technique to identify disengagement while students are engaging in online inquiry within

Inq-ITS (Gobert et al., 2012, 2013). Ours is the first (to our knowledge) automated

detector of this type.
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Our development approach uses machine-learning techniques (i.e., educational

data mining) to identify disengagement in real time within the context of learning. As

such, our method is an advance over the most commonly used method, namely, self-

report (Fredricks & McCloskey, 2012), in which items are often worded too broadly to

reflect engagement in targeted tasks and contexts (Appleton et al., 2006) and are often

administered out of context. While self-report can be obtained at a moment-to-moment

level, doing so frequently is disruptive, and doing so retrospectively risks inaccuracy

(see, for example, Porayska-Pomsta et al., 2013).

Automated detectors can be developed either using field observations

(Ocumpaugh et al., 2012) or text replay hand-tagging of log files (as was done in the

work here). Field observations are more time-intensive but more appropriate for

constructs that cannot be assessed by human coders solely from log files. In our

development process, resource-intensive hand labeling of log data was used as “ground

truth,” as opposed to an operationalized rubric, to obtain human judgments that were

used, in turn, to derive fine-grained log file-based models of disengagement. This

approach has the advantage of leveraging both the benefits of the activity-based, nuanced

character of qualitative methods and the rigor of having a precise automated measure that

can be applied at a very fine grain-size. Another advantage is that once developed, the

detector can also be at scale (Pardos et al., 2013).

Studying engagement and its interactions. Another benefit of the automated

detector approach is that its fine-grain size allows for an in-depth exploration of

participants’ behaviors, and thus, allows for greater refinement in the conclusions that

may be drawn from analyses. Rather than simply comparing two conditions as in a
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typical randomized controlled trial, these analyses allow researchers to explore more

complex or conditional ways that engagement may function (e.g. the sequences of

behaviors that students perform). As such, automated detectors of disengagement can be

applied with consistency across studies, making it easier to compare findings across

studies, as well as provide data about the relationship between disengagement and

learning (see, for example, Cocea et al., 2009; Pardos et al., 2013), and the precursors of

disengagement (see, for example, Baker, D’Mello, Rodrigo, & Graesser, 2010).

Another important application for automated detectors of disengagement such as

DTG behavior is to study the individual differences and situational factors leading

students to disengage from learning. By measuring various types of disengaged behavior

separately, we can better understand the factors leading to the emergence of different

types of disengaged behavior, for example a student’s choice to misuse a learning

simulation rather than simply going off-task. We will also be able to study how different

types of disengaged behavior impact learning differently (see, for example, Cocea et al.,

2009; Pardos et al., 2013). For example, DTG behavior could be expected to emerge for

several reasons, including attitudinal reasons such as not valuing the learning task, or

affective states such as confusion, frustration, and boredom. Previous research has shown

that affect is associated with differences in future disengaged behavior (Baker et al.,

2010). Regarding off-task behavior, Sabourin et al. (2011) found that students who go off

task when they are confused later can become bored or frustrated; by contrast, students

who go off task when they are frustrated often become re-engaged later in the task. These

findings suggest that intelligent tutors should offer different interventions, depending on

the affective context of disengaged behavior, but further research is needed to determine



Running head: DETECTING LEARNER ENGAGEMENT 32

which strategies are most appropriate and effective for specific learning situations and for

learners with specific characteristics. For example, a confused student who is DTG may

need additional support in understanding how to learn from the learning environment. By

contrast, a student who is DTG due to boredom or because they do not value the learning

task may require intervention targeted towards demonstrating the long-term value of the

task for the student’s goals (Pekrun, 2006). By applying automated detectors, it will

become feasible to study this behavior across a greater number of situations (Baker et al.,

2009), helping us to better understand the factors leading to DTG behavior. By

understanding the causes of DTG behavior, and how learning software should respond to

it, we can take another step towards developing learning software that can effectively

adapt to the full range of students’ interaction choices across the full range of inquiry

activities offered in Inq-ITS.

Our detector as a means to scaffold students’ engagement. Our detector can

identify disengagement moment-to-moment as students use Inq-ITS; this is consistent

with a conceptualization of engagement as malleable (Appleton et al., 2008; Fredricks et

al., 2004; Reschly & Christenson, 2006). Automated detectors are a potentially important

resource for intervening when students become disengaged because teachers can often

have negative reactions to students’ disengagement. Specifically, several studies have

shown that teachers often withdraw their support from disengaged students, which in

turn, exacerbates student disengagement (Skinner & Pitzer, 2012). Baker et al. (2006) and

Arroyo et al. (2007) have shown that for gaming the system, automated interventions

based on detectors can be an effective method for reducing gaming and improving

learning.
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Because we now have a valid and reliable method of identifying disengagement

for Inq-ITS, we can develop automated interventions targeted to get students back on

track in real time directly via our pedagogical agent, Rex, a cartoon dinosaur who

currently provides scaffolds to students in real time on their inquiry skills (Sao Pedro,

2013). Rex can prompt students to re-engage in meaningful academic activities with

playful feedback to get students back on track before critical knowledge in STEM is

missed. The advantage of doing this via a pedagogical agent is that it reacts objectively,

not judgmentally, and without other students in the class knowing that the student needed

intervention. In doing so we can provide empirical data about how malleable engagement

is because interventions to remediate this behavior and get students back on track could

be tested. In this way, our disengagement detector provides “value added” to both the

field of engagement (Fredricks et al., 2004), and in future, to personalized, adaptive

learning environments. Additionally, this would add to the growing set of strategies for

engagement intervention (Christenson et al., 2012).

All told, research along these lines will support the field in developing and testing

the next-generation theory about engagement, and its relationship to other constructs,

such as motivation and learning, as well as allowing researchers to develop interventions

that target very specific kinds of disengaged behavior (Martin, 2007; 2008).
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Table 1

Features Used in Detector Development

(a)

Overall
Statistics

(b)

Features
Based on
Pauses

(c)
Features Based on

Time Elapsed
During

Experiment Phase

(d)
Features Related to

Resetting or Pausing
Experimental

Apparatus

(e)
Features Involving

Changes to Variables
While Forming

Hypotheses
Total # of
actions

Number of
pauses to
simulation
during runs

Total time spent
before running each
experimental trial
(but after
performing the
previous action)

Number of
experimental trials run
without either pauses
or resets

Number of changes to
independent variable(s)
during the experiment
phase

Average
time
between
actions

Average
duration of
student-
initiated
pauses of
the
simulation

Average time spent
by the student
before running each
experimental trial
(but after
performing the
previous action)

Average time spent by
the student before
running each
experimental trial
which was completed
without being reset
(but after performing
the previous action)

Period of time elapsed
before the student
changed a variable for:
(a) the sum total of time
elapsed in all these
periods, (b) the mean
time elapsed across these
periods, and (c) the
standard deviation of
time elapsed across these
periods

Average
time
between
actions

Duration of
the longest
single
pause

Standard deviation
of time spent before
running each trial
(but after
performing the
previous action)

Number of trials
where the system was
reset

Maximum
time
between
actions

Maximum time
spent before running
each experimental
trial (but after
performing the
previous action)

Average time spent
before running each
experimental trial that
were reset (but after
performing the
previous action)

Number of
experimental
trials

Maximum time spent
before running an
experimental trial that
was reset before
completion (but after
performing the
previous action)
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Table 2

Disengaged from Task Goal Detector Confusion Matrix

Clips Coded as DTG
by Humans

Clips Coded as NOT
DTG by Humans

Detector Predicted
DTG

7 10 (false positives)

Detector Predicted
NOT DTG

8 (false negatives) 476
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Figure 1. A screen shot of the Phase Change microworld (early version) in Inq-ITS.


