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Abstract 

We present a new method for analyzing a student’s learning over time, for a specific skill: 

analysis of the graph of the student’s moment-by-moment learning over time. Moment-by-

moment learning is calculated using a data-mined model which assesses the probability that a 

student learned a skill or concept at a specific time during learning (Baker, Goldstein, & 

Heffernan, 2010, 2011). Two coders labeled data from students who used an intelligent tutoring 

system for college genetics, in terms of seven forms that the moment-by-moment learning curve 

can take. These labels are correlated to test data on the robustness of students’ learning. We find 

that different visual forms are correlated with very different learning outcomes. This work 

suggests that analysis of moment-by-moment learning curves may be able to shed light on the 

implications of students’ different patterns of learning over time.  

 

Keywords: Moment-by-moment learning, learning curve, intelligent tutoring system, 

educational data mining  



Introduction 

Over recent decades, there has been increasing evidence that very fine-grained analyses 

of how individual students’ performance shifts over time can support deeper scientific 

understanding of how student knowledge, cognition, and reasoning change over time and based 

on specific experiences (cf. Siegler & Crowley, 1991). However, current paradigms for studying 

these types of changes in student knowledge and skill have often had to choose between studying 

learning over relatively brief periods, for small numbers of subjects, or with less richness than is 

possible. In this paper, we present a novel tool for tracing students’ learning over time in 

intelligent tutoring systems, the Moment-by-Moment Learning Curve, which represents a step 

towards addressing these limitations, supporting quick and relatively rich analysis of the 

conditions under which learning occurs. We demonstrate this tool’s potential through an analysis 

which shows that a combination of visual analysis of the Moment-by-Moment Learning Curve 

and data mining can produce a model that infers how robust student learning is, enabling 

prediction of which students retain their knowledge over time and/or are prepared for future 

learning.  

 

Tracing Learning Over Time 

Research on individual learning over time has been conducted in several fashions. We 

can group the majority of the methods used into three paradigms: 1) Microgenetic methods, 2) 

Qualitative video analyses, and 3) Visual analysis. Microgenetic methods have been a very 

popular method for studying individual students’ learning over time, for over two decades (cf. 

Siegler & Jenkins, 1989). Implementing a microgenetic approach involves collecting repeated 

observations and measurements of a student’s behavior and learning during a given learning 



process, ideally during a period of substantial change in the learner. These observations and 

measurements are intensively analyzed with the aim of determining the processes responsible for 

driving both qualitative and quantitative change in the student’s state or knowledge (Siegler & 

Crowley, 1991). In Siegler and Jenkins’ work, for instance, microgenetic analysis revealed that 

students of varying school years solve different types of subtraction problems using different 

strategies, but that specific types of mathematics problems can trigger the development of more 

sophisticated strategies. Kuhn and colleagues (1992, 2008) applied the microgenetic method in 

their research to study theory revision and strategy change made by students engaging in self-

directed exploration during problem solving, and to study the development of argument skills in 

a computer-supported environment. This research suggests that in addition to breaking down 

processes of change, the microgenetic method also sheds light on the fundamental nature of the 

skills being learned. One of the main advantages of microgenetic methods is their applicability 

across domains and in different learning environments. However, a major limitation of 

microgenetic methods has been the difficulty in scaling to large amounts of data or large 

numbers of students; current microgenetic methods require considerable time to study individual 

students.  

A second commonly used paradigm is qualitative video analysis to study changes in 

student reasoning over time, using data from video collected over a period of time, be it a single 

session or a full semester. As with microgenetic methods, this approach can be challenging to 

extend to large amounts of data or to large numbers of students. For example, within this 

paradigm, Cobb (1999) analyzed students’ mathematical learning as it occurred in social 

interactions within a classroom environment over a 10-week period. The social atmosphere 

promoted qualitative argumentation in the classrooms, prompting students to switch from an 



additive mode of thinking to a multiplicative mode of thinking which improved their overall 

mathematical reasoning skills over time. Additionally, Lehrer, Schauble, Strom, and Pligge 

(2001) demonstrate the importance of modeling in learning math and science concepts like 

weight, volume, and density, which can often be difficult for students. They found that having 

students create graphs to represent weight as a function of volume for different types of materials 

helped students differentiate density from weight, and helped the students conceptualize the 

relationship between these three properties of matter. 

A third category comprises tools and techniques for tracing students’ learning and change 

of knowledge, using visual representations. The most straightforward example is the use of 

learning curves, which display changes in student performance for a specific knowledge 

component (skill or concept) over time (cf. Estes, 1950; Mazur & Hastie, 1978). The statistical 

parameters underlying the learning curve quantify the learning that is occurring. In the context of 

computer-based learning environments, learning curves may be easily generated based on log 

data of student performance within the software (e.g., Martin et al., 2011; Mathan & Koedinger, 

2005). Log data can also be used for generating other visual representations of learning-related 

variables over time, such as affect (e.g., D’Mello & Graesser, 2011). An alternate visual 

representation of learning over time is Hershkovitz and Nachmias’s (2009) learnograms, which 

are visual representations of multiple learning process-related variables over time. Whereas 

learning curves are often used to represent populations of students, learnograms are typically 

used to represent the performance or behavior of a single student over time. For instance, 

Hershkovitz and Nachmias (2009) use learnograms to show how a given student switches 

between multiple learning activities. They also use learnograms to study how the intensity with 

which students engage in specific learning activities varies over time. Given the focus of 



learnograms on individual students, they have been used to study individual students’ learning 

trajectories, a type of usage that is less common with learning curves, which are typically used to 

study overall patterns across a group of learners or differences between groups of learners.  

A key limitation to learnograms, the microgentic method, and qualitative video analysis 

is the difficulty in scaling to large amounts of data or large numbers of students. The patterns 

seen in learnograms can be relatively complicated to visually analyze, and learnograms must be 

analyzed one-by-one for each student and construct, reducing their benefit for analyzing complex 

patterns across students or groups of students. The microgenetic method is slower still, requiring 

considerable time to study individual students. Using qualitative analysis of video to study 

change in students requires time consuming coding methods prior to analysis even beginning. As 

such, these methods each are limited in the scope of problems which can be studied. Specifically, 

current paradigms for studying learning over time have been limited in their usefulness for 

studying individual student differences and changes, across substantial numbers of students, and 

over long periods of time; these methods are too time-consuming to easily use to conduct 

analyses at scale. Learning curves are, by contrast, more scalable, but are not easy to use to study 

individual differences. 

Another key limitation of learning curves and learnograms is their focus on 

performance/behavior. Despite the fact that their names include the word “learning,” these 

representations do not so much show learning as they show performance or behavior – 

correctness, time taken, and use of specific learning resources at specific times. As such, learning 

must be inferred in a relatively indirect fashion. In a learning curve, it is clear that a group of 

students who makes half as many errors after a set of practice opportunity has learned, but it is 

not clear when or under what conditions specific students’ learning occurred. This limitation is 



less present in the case of slower to apply microgenetic methods and qualitative video analysis, 

where specific moments of learning are often identified (e.g., Siegler & Jenkins, 1989; Cobb, 

1999).  

 

The Moment-by-Moment Learning Curve 

However, a recent advance in student modeling creates the possibility of studying student 

learning over time, in a fashion that is scalable but also allows in-depth analysis of individual 

learners. This work, analysis of the moment-by-moment learning curve, creates visual 

representations of learning as it occurs moment-by-moment, in a three-step process. In this 

method, the probability that learning occurred at a specific moment is inferred, based on the 

probability that the student has learned the step up to that point, and the probability of their 

future actions given the probability that they learned the step at that moment. 

The first step is to use a Bayesian Knowledge Tracing (BKT) model (Corbett & 

Anderson, 1995) to calculate the probability that the student knows a specific skill at a specific 

time, based on the student’s history of success on problems or problem steps involving that skill. 

Skills are assigned to each problem or problem step (either through knowledge engineering or 

data mining – cf. Cen et al., 2006), and the BKT model is updated every time the student 

responds to a problem, based on the correctness of the response, allowing for an aggregate 

estimate of student knowledge over time.  

In the second step, a recent model proposed by Baker, Goldstein, and Heffernan (2010, 

2011) is used to build on this estimation to infer the probability that a student learned a skill or a 

concept at a specific step during the problem-solving process. That is to say, instead of assessing 

the probability that a skill is known at time N, the model assesses the probability that the skill 



was learned between time N-1 and time N. As Bayesian Knowledge Tracing infers student 

knowledge from correctness (cf. Corbett & Anderson, 1995), this model’s operational definition 

of learning is when a student’s performance shifts from being (mostly) incorrect to (mostly) 

correct (taking the probability of guessing and slipping into account).  

It is worth briefly considering the difference between the approach used here, and prior 

work that attempted to identify when student performance transitions to completely correct. 

Research using the “mean trial of last error” paradigm studied how long students took to begin 

producing consistently correct answers, using this measure to compare between learning 

conditions (e.g., Bower, 1961; Bower & Trabasso, 1963). This paradigm, while useful in the 

simple concept learning paradigms it was used for, has a key limitation for complex problem-

solving domains, such as typically seen in education. In those domains, it is common to see 

students “slipping” and producing incorrect answers, on occasion, even after learning a skill. 

Restricting analysis to identifying the point where performance becomes error-free may miss 

earlier points where performance improves substantially (but not to the point of complete 

perfection). By contrast, studying the probability of transition from “mostly incorrect” to “mostly 

correct” allows for inference about the degree of improvement over time.  

The calculation of this model is discussed in detail later in the paper, but integrates across 

information about past performance, current performance, and future performance, using a 

combination of Bayesian formulas and data mining (cf. Romero & Ventura, 2007; Baker & 

Yacef, 2009), to compute a probability that a skill or concept was learned at a specific time. 

Derivatives of this model have been shown to be effective at predicting several learning 

constructs, including predicting a student’s eventual knowledge (Baker, Goldstein, & Heffernan, 

2010, 2011), and predicting tests of preparation for future learning of entirely different skills 



(Baker, Gowda, & Corbett, 2011). It is worth emphasizing that these two models infer learning, 

and the degree of learning at a specific moment, based on probabilities. The probabilities used to 

calculate learning at a specific moment are themselves estimated using the full data. For instance, 

the probability that a student achieved a correct answer by guessing (rather than by knowing the 

skill) is estimated during the initial calculation of the BKT model. 

In the third step, this model’s estimates are graphed over time for a specific student and 

skill, producing a moment-by-moment learning curve. This graph represents a specific student’s 

moment-by-moment learning for a given skill. Moment-by-moment learning curves have several 

advantages over traditional approaches to studying learning over time. First, these graphs 

visualize the measurement of learning (rather than performance) at a fine-grain level. This 

facilitates consideration of what features of an action (whether by the student, or an intervention 

directed towards the student) are associated with greater momentary learning, a statistically 

challenging question in previous paradigms (cf. Beck, 2006; Beck & Mostow, 2008). Second, a 

separate moment-by-moment learning curve can be created for each individual student, on a 

specific skill. In past works on traditional learning curves of performance, it has been argued that 

curves computed across students have different properties than curves computed for individual 

students (Anderson & Tweney, 1997; Heathcote et al., 2000). However, key visual analyses 

conducted on learning curves such as looking for unexpectedly difficult items indicating a poor 

skill-item mapping (cf. Corbett & Anderson, 1995) have not been feasible to conduct on graphs 

of individual students (for instance, graphs of correctness over time appear as 1s and 0s for 

single students). Moment-by-moment learning curves, by comparison, are easily interpretable for 

individual students.  



The first analyses of moment-by-moment learning curves focused on a specific metric, 

termed spikiness (Baker, Goldstein, & Heffernan, 2010, 2011), intended to show to what extent 

the graph has peaks that are far above other points, in order to infer if a skill is learned suddenly 

in a “eureka” moment (Lindstrom & Gulz, 2008) or more gradually (Newell & Rosenbloom, 

1981; Heathcote et al., 2000). As the graph visualizes the probability that learning occurred at 

each opportunity to use a skill, a peak in the graph corresponds to a sudden improvement in 

performance. To assess this, the following metric was used: maximum moment-by-moment 

learning in a graph, divided by the average moment-by-moment learning in the graph. 

This spikiness metric was found to predict both final student knowledge in a tutoring 

system (Baker, Goldstein, & Heffernan, 2010, 2011), and tests of preparation for future learning 

of entirely different skills (Baker, Gowda, & Corbett, 2011). However, in looking more closely 

at the data, we found that the metric of spikiness obscures considerable information. For 

example, the two (theoretical) graphs in Figure 1 have the same level of spikiness, but clearly 

represent very different patterns of learning. The graph on the left has a single spike. This 

represents a student who learned the current skill at a specific point in time. Though their earlier 

learning may prepare them for the “eureka” moment shown, and they may continue to strengthen 

their memory of the skill after the spike (cf. Cen et al., 2007), the spike represents a qualitative 

shift from not knowing the skill to knowing the skill, which likely corresponds to a qualitative 

shift from failing to demonstrate the skill to successfully demonstrating it. The graph on the right 

has two spikes. This represents a student whose performance had two substantial jumps – 

perhaps from never demonstrating the skill, to sometimes demonstrating the skill, to almost 

always demonstrating it. Two jumps may represent the transition from partially-correct 

knowledge to completely-correct knowledge, perhaps through addition or removal of a constraint 



on a cognitive rule (cf. Singley & Anderson, 1989). Another possibility is that double-spikes are 

seen for multi-faceted knowledge components (e.g., multiple skills are being treated as a single 

skill, as in Corbett & Anderson, 1995), and that each spike represents the student learning these 

sub-skills. 

 

(Place Figure 1 approximately here) 

 

In qualitatively analyzing graphs of the moment-by-moment learning curves, we have discovered 

several prominent visual patterns. However, we do not yet know if it matters which pattern a 

student demonstrates. There is evidence that spikiness generally predicts student knowledge and 

preparation for future learning, but this does not necessarily indicate whether differences in the 

form that spikiness takes matter. Hence, as a step towards understanding whether differences in 

the visual form of the moment-to-moment learning curve matter, and what the important 

differences might be, this paper studies whether different visual forms are associated with 

different learning outcomes. We leverage existing data from research on robust learning in 

college genetics (Corbett et al., 2011), including log data from use of an intelligent tutoring 

system (Koedinger & Corbett, 2006), and data from tests of students’ problem-solving skill, 

ability to transfer knowledge to new situations (cf. Singley & Anderson, 1989; Fong & Nisbett, 

1991), preparation for future learning (Bransford & Schwartz, 1999), and retention of skill in 

later weeks (Schmidt & Bjork, 1992). Hence, we investigate the degree to which differences in 

moment-by-moment learning curves can predict these indicators of robust learning.  

To study this issue, we label a set of moment-by-moment learning curves in terms of their 

visual forms, and then correlate the frequency of each visual form to learning outcome data. We 



find that some visual forms of the moment-by-moment learning curves are associated with 

substantially better learning than other visual forms, and we conclude by considering the 

implications of this result.  

Data 

Learning activity. The data set used in the analyses presented here was drawn from the 

Genetics Cognitive Tutor (Corbett et al., 2010), a learning system that aims to support students in 

developing abductive reasoning and problem-solving skills in the domain of college Genetics. 

Within this Cognitive Tutor, students work individually with the tutoring software. This tutor 

consists of 19 modules that support problem solving across a wide range of topics in genetics, 

including pedigree analysis and carrier probabilities of pedigrees, gene interaction and epistasis, 

three-factor cross, gene regulation, and equilibrium and departures of population. Various 

subsets of the 19 modules have been piloted at 15 universities in North America. This study 

focuses on a tutor module that employs a gene mapping technique called three-factor cross, in 

which students infer the order of three genes on a chromosome based on offspring phenotypes, as 

described in (Baker, Corbett, et al., 2010). A screenshot of this module is given in Figure 2. In 

this study, 72 undergraduates enrolled in genetics or in introductory biology courses at Carnegie 

Mellon University used the three-factor cross module. The students used the software as a 

homework assignment, as part of their regular course assignments, but the study was conducted 

in a laboratory setting, to support administration of all tests. The students engaged in Cognitive 

Tutor-supported activities for one hour in each of two sessions. All students completed standard 

three-factor cross problems in both sessions. During the first session, some students were 

assigned to complete other cognitive-tutor activities designed to support deeper understanding; 

however, no differences were found between conditions for any learning measure (cf. Corbett et 



al., 2011), so in this analysis we collapse across the conditions and focus solely on student 

behavior and learning within the standard problem-solving activities undertaken after completion 

of the other activities. The 72 students completed a total of 22,885 problem solving attempts 

across 10,966 problem steps in the tutor. 

 

(Place Figure 2 approximately here) 

 

Pre/post-tests. A pre-test of student ability to solve problems in the tutor was given prior 

to usage. Post-tests, given by paper-and-pencil, consisted of four activities (cf. Baker, Corbett, et 

al., 2010): a straightforward problem-solving post-test, a transfer test, a test of preparation for 

future learning (PFL), and a delayed retention test administered one week after the student 

completed the software. The straightforward problem-solving post-test and retention test 

consisted of the same types of items seen in the tutor; three forms were developed, and each form 

served as a pre-test for 1/3 of the students, a post-test for 1/3 of the students, and a retention test 

for the remaining 1/3 of students. The transfer test included two problems intended to tap 

students’ understanding of the underlying processes. The first was a three-factor cross problem 

that could not be solved with the standard solution method and required students to improvise an 

alternative method. The second problem asked students to extend their reasoning to four genes. It 

provided a sequence of four genes on a chromosome and asked students to reason about the 

crossovers that must have occurred in different offspring groups. The PFL test consisted of 2½ 

pages of instruction on the reasoning needed for an analogous, but more complex, four-factor 

cross gene mapping task, followed by a single four-factor cross problem for students to solve. 



Students demonstrated successful learning in this tutor, with an average pre-test 

performance of 0.33 (SD = 0.2), an average post-test performance of 0.83 (SD = 0.19), and an 

average PFL performance of 0.89 (SD = 0.15). The various post-tests were only moderately 

correlated with one another, as shown in Table 1. The two most correlated tests were the transfer 

and problem-solving tests (r = 0.59) and the two least correlated tests were the retention and PFL 

tests (r = 0.33). Hence, we will analyze the four tests separately.  

 

(Place Table 1 approximately here) 

 

Creating the Moment-by-Moment Learning Curve 

As noted earlier, the moment-by-moment learning curve is composed of predictions made 

by the moment-by-moment learning model (Baker, Goldstein, & Heffernan, 2010, 2011). Within 

this section, we discuss how the model predicts the probability P(J) that a student has learned a 

specific knowledge component at a specific problem step (J stands for for “Just learned”). This 

model is developed using the following approach:  

First, training labels of the probability that a student learned a knowledge component at a 

specific problem step are generated, using a combination of predictions of current student 

knowledge from Bayesian Knowledge Tracing and data on future correctness, integrated using 

Bayes’ Theorem. In essence, we use evidence from both the past and future to assess the 

probability that learning occurred at a specific time. 

Then, a data-mined model is built using a broad set of features calculated from these 

labels. Most importantly, this model includes absolutely no data from the future. The result is a 

model that can be used either at run time or retrospectively, to assess the probability that a KC is 



learned at each practice opportunity. Refining the original training labels with data mining in this 

fashion improves the model’s predictions of individual actions. Whereas the original labels only 

use a limited degree of data, the data mined labels boost these labels with additional data 

features, and information about the level of P(J) associated with those features, across the whole 

data set. Hence, limitations or noise in the original labels can be reduced by data mining. This 

data mined model has been previously used to study the relationship between the spikiness of 

graphs – at an aggregate level – and learning, and has been shown to predict student final 

knowledge (cf. Baker, Goldstein, & Heffernan, 2010, 2011) and preparation for future learning 

(Baker, Gowda, & Corbett, 2011). In the following sub-sections, we detail the labeling process, 

the construction of the features set, and the building of the machine-learned model. 

 

Labeling Process 

The first step of the process of creating the moment-by-moment learning model is to label 

each problem step N in the data set (i.e., the Nth opportunity for the given student to use the 

given KC) with the probability that the student learned the KC at that time, to serve as inputs for 

machine learning. Our specific working definition of “learning at step N” is learning the KC 

between the instant after the student enters their first answer for step N, and the instant that the 

student enters their first answer for step N+1. 

We label step N using information about the probability that the student knew the KC 

before answering on step N (from Bayesian Knowledge Tracing) and information about 

performance on the two following steps (N+1, N+2). Using data from future actions gives 

information about the true probability that the student learned the KC during the actions at step 

N. For instance, if the student probably did not know the KC at step N (according to Bayesian 



Knowledge Tracing), but the first attempts at steps N+1 and N+2 are correct, it is relatively 

likely that the student learned the KC at step N. Correspondingly, if the first attempts to answer 

steps N+1 and N+2 are incorrect, it is relatively unlikely that the student learned the KC at step 

N. Note that these calculations are based on estimated probabilities from the BKT model, which 

are themselves estimated using the entire data set, rather than being absolute decisions based on 

heuristics. 

We can assess the probability that the student learned the KC at step N, given information 

about the actions at steps N+1 and N+2 (which we term A+1+2), as:  

P(J) = P(~Ln ^ T | A+1+2 ) 

We can find P(J)’s value with a function using Bayes’ Rule: 

ܲሺ~ܮ௡	^	ܶ	|	ܣାଵାଶ	ሻ ൌ
ܲሺܣାଵାଶ|	~ܮ௡^	ܶ	ሻ ∗ ܲሺ~ܮ௡^ܶሻ

ܲሺܣାଵାଶሻ
 

The base probability P(~Ln ^ T) can be computed fairly simply, using the student’s 

current value for P(~Ln) from Bayesian Knowledge Tracing, and the Bayesian Knowledge 

Tracing model’s value of P(T) for the current KC: 

ܲሺ~ࢀ^࢔ࡸሻ ൌ ܲሺ~࢔ࡸሻܲሺࢀሻ 

The probability of the actions at time N+1 and N+2, P(A+1+2), is computed as a function 

of the probability of the actions given each possible case (the KC was already known, P(Ln), the 

KC was unknown but was just learned, P(~Ln ^ T), or the KC was unknown and was not 

learned, P(~Ln ^~T), and the contingent probabilities of each of these cases.  

ܲሺ࡭ା૚ା૛ሻ ൌ 	ܲሺ࡭ା૚ା૛	|	࢔ࡸሻ	ܲሺ࢔ࡸሻ ൅ 	ܲሺ࡭ା૚ା૛|	~ࢀ^࢔ࡸሻ	ܲ൫~࢔ࡸ ൅	൯ࢀ^ 	ܲሺ࡭ା૚ା૛|	~ࢀ~^࢔ࡸሻ	ܲሺ~ࢀ~^࢔ࡸሻ 

The probability of the actions at time N+1 and N+2, in each of these three cases, is a 

function of the Bayesian Knowledge Tracing model’s probabilities for guessing (G), slipping (S), 

and learning the KC (T). In order to calculate the probability of each possible case of estimated 



student knowledge, we must consider all four potential scenarios of performance at actions N+1 

and N+2. In the formulas below, correct answers are written C and non-correct answers (e.g., 

errors or help requests) are written ~C. The possible scenarios are: correct/correct (C, C); 

correct/wrong (C, ~C); wrong/correct (~C, C); and wrong/wrong (~C, ~C): 

ܲሺ࡭ା૚ା૛ ൌ ,࡯ ሻ࢔ࡸ	|࡯ ൌ ܲሺ~ࡿሻଶ    								ܲሺ࡭ା૚ା૛ ൌ ሻ࢔ࡸ	|࡯~,࡯ ൌ ܲሺࡿሻܲሺ~ࡿሻ 
ܲሺ࡭ା૚ା૛ ൌ ,࡯~ ሻ࢔ࡸ	|࡯ ൌ 	ܲሺࡿሻܲሺ~ࡿሻ         		ܲሺ࡭ା૚ା૛ ൌ ሻ࢔ࡸ	|࡯~,࡯~ ൌ ܲሺࡿሻଶ  
ܲሺ࡭ା૚ା૛ ൌ ,࡯ ሻࢀ^࢔ࡸ~	|࡯ ൌ ܲሺ~ࡿሻଶ              ܲሺ࡭ା૚ା૛ ൌ ሻࢀ^࢔ࡸ~	|࡯~,࡯ ൌ ܲሺࡿሻܲሺ~ࡿሻ 
ܲሺ࡭ା૚ା૛ ൌ ,࡯~ ሻࢀ^࢔ࡸ~	|࡯ ൌ 	ܲሺࡿሻܲሺ~ࡿሻ    ܲሺ࡭ା૚ା૛ ൌ ሻࢀ^࢔ࡸ~	|࡯~,࡯~ ൌ ܲሺࡿሻଶ 

 

ܲሺ࡭ା૚ା૛ ൌ ,࡯ ሻࢀ~^࢔ࡸ~	|࡯ ൌ ܲሺࡳሻܲሺ~ࢀሻܲሺࡳሻ ൅ ܲሺࡳሻܲሺࢀሻܲሺ~ࡿሻ	

ܲሺ࡭ା૚ା૛ ൌ ሻࢀ~^࢔ࡸ~	|࡯~,࡯ ൌ ܲሺࡳሻܲሺ~ࢀሻܲሺ~ࡳሻ ൅ ܲሺࡳሻܲሺࢀሻܲሺࡿሻ	

ܲሺ࡭ା૚ା૛ ൌ ,࡯~ ሻࢀ~^࢔ࡸ~	|࡯ ൌ ܲሺ~ࡳሻܲሺ~ࢀሻܲሺࡳሻ ൅ ܲሺ~ࡳሻܲሺࢀሻܲሺ~ࡿሻ	

ܲሺ࡭ା૚ା૛ ൌ ሻࢀ~^࢔ࡸ~	|࡯~,࡯~ ൌ ܲሺ~ࡳሻܲሺ~ࢀሻܲሺ~ࡳሻ ൅ ܲሺ~ࡳሻܲሺࢀሻܲሺࡿሻ	

	

Once each action is labeled with estimates of the probability P(J) that the student learned 

the KC at that time, we use these labels to create machine-learned models that can accurately 

predict P(J) at run time. The original labels of P(J) were developed using future knowledge, but 

the machine-learned models predict P(J) using only data about the action itself (no future data). 

Features 

In order to predict the training labels of P(J) created in the previous step, we distill a set 

of features that can be used as predictors. These features are quantitative (or binary) descriptors 

of key aspects of each problem step that have a reasonable potential to be statistically associated 

with the construct of interest: whether learning occurred at a specific moment. These features are 

then used within machine learning (discussed in the next section). 

For each problem step (in this learning system, a problem consists of one or more steps, each 

of which pertains to a specific skill), we used a set of features describing the first action on 



problem step N. The list consisted of 23 features previously distilled to use in the development of 

contextual models of guessing and slipping (cf. Baker, Corbett, & Aleven, 2008). These features 

had in turn been used in prior work to develop automated detectors of off-task behavior (Baker, 

2007) and gaming the system (Baker et al., 2008). The actual features selected for incorporation 

into the final models are given in a following section, in Table 2. The list of features inputted 

into the machine learning algorithm was: 

 

 Details about the action: 

o The tutoring software’s assessment of the action – was the action correct, 

incorrect and indicating a known bug (procedural misconception), incorrect but 

not indicating a known bug, or a help request?  

o The type of interface widget involved in the action – was the student choosing 

from a pull-down menu, typing in a string, typing in a number, plotting a point, or 

selecting a checkbox?  

o Was this the student’s first attempt to answer (or obtain help) on this problem 

step? 

  Measurements of time: 

o How many seconds the action took.  

o The time taken for the action, expressed in terms of the number of standard 

deviations this action’s time was faster or slower than the mean time taken by all 

students on this problem step, across problems. 



o The time taken in the last 3, or 5, actions, expressed as the sum of the numbers of 

standard deviations each action’s time was faster or slower than the mean time 

taken by all students on that problem step, across problems. (two variables). 

o How many seconds the student spent on each opportunity to practice the primary 

skill involved in this action, averaged across problems.  

 Previous interaction: 

o The total number of times the student has gotten this specific problem step wrong, 

across all problems (includes multiple attempts within one problem). 

o What percentage of past problems the student made errors on this problem step 

o The number of times the student asked for help or made errors at this skill, 

including previous problems.  

o How many of the last 3 actions involved this problem step.  

o How many of the last 5 actions involved this problem step.  

o How many times the student asked for help in the last 8 actions.  

o How many errors the student made in the last 5 actions. 

 Knowledge Assessment: 

o The tutor’s assessment, before and after the action, of the probability that the 

student knows the skill involved in this action, derived using Bayesian 

Knowledge Tracing (two variables) 

 Other measurements: 

o Total practice opportunities on this KC so far. 

 

Machine Learning 



Given the labels and the model features for each student action within the tutor (Baker, 

Goldstein, & Heffernan, 2011), we conducted linear regression within RapidMiner (Mierswa et 

al., 2006) to develop models that predict P(J). This resulted in a set of numerical predictions of 

P(J), one for each problem step that a student completed. In each case, M5’ feature selection 

(Hall, 2000) was used to determine which features were incorporated into the models. Linear 

regression with M5’ feature selection creates regression trees, a tree of linear regression models, 

and then conducts linear regression on the set of features used in the tree. The machine learned 

models generated for each system (including all features in the final models) are listed below in 

Table 2. 

To validate the generalizability of our models, we checked our results with six-fold cross-

validation at the student level (i.e., detectors are trained on five groups of students and tested on 

a sixth group of students). By cross-validating at this level, we increase confidence that detectors 

will be accurate for new groups of students. 

The goodness of the models was validated using the Pearson correlation coefficient 

between the training labels of P(J) for each step, and the values predicted for P(J) for the same 

step by the machine-learned models. As both set of values are quantitative, and there is a one-to-

one mapping between training labels and predicted values, linear correlation is a reasonable 

metric. 

The P(J) model achieved a solid correlation of 0.676 to the training labels under six-fold 

student-level cross-validation. The best-fitting model, trained across all data, is given in Table 2.  

 

(Place Table 2 approximately here) 

 



Although the degree of correlation was acceptable, one curious aspect of this model is 

that it tended to underestimate values of P(J), particularly those that were relatively high in the 

original labels. The difference between the model values of P(J) and the original label is highly 

correlated to the original label, with a correlation of 0.749 in the Cognitive Tutor. Hence, the 

predicted values of P(J) for training labels with high values remained higher than the predicted 

values of P(J) for training labels with lower values (hence the model’s reasonable correlation to 

the labels). However, the predicted values of P(J) for training labels with high values were 

lower, in absolute terms, than the original training labels for those data points. This problem 

could be addressed by weighting the (rarer) high values more heavily during model-fitting, 

although this approach would likely reduce overall correlation. Another possible solution would 

be to fit the data using a logarithmic (or other) function that scales upwards more effectively than 

a linear function; as will be seen later, the differences between maximum and minimum 

spikiness are large enough that non-linear regression may be more appropriate than our current 

approach. Nevertheless, within the current model it is likely to be more straightforward to 

interpret differences in P(J) than absolute values. As such, the curve visual forms we analyze are 

solely in terms of relative differences, rather than absolutes. 

Graph Replays of Visual Forms of the Moment-by-Moment Learning Curve 

In order to study the implications of different visual forms of the moment-by-moment 

learning curve, we created what we term “graph replays,” graphs of the moment-by-moment 

learning curve ready to be labeled by human coders. This work builds off past work in pretty-

printing log files as text, termed text replays (cf. Baker et al., 2006; Sao Pedro et al., 2010, in 

press), in the analysis of learning curves (Martin et al., 2011; Mathan & Koedinger, 2005), and in 

visualizing student behavior over time (Hershkovitz & Nachmias, 2009). Like text replays, there 



is automated support for human coders for sampling sub-sets of the data for analysis, looking at a 

visual representation of each sub-set of data, quickly labeling it, and automatically collating the 

data.  

The choice to leverage human judgment in identifying curve visual forms, rather than 

pre-defining specific functions, was chosen for several reasons. The initial idea of analyzing 

curve visual form came during research on spikiness and learning (Baker, Goldstein, & 

Heffernan, 2011) when it was observed that many graphs had multiple spikes. Defining what a 

multiple spike is mathematically is a challenging process, whereas it is easy for a human being to 

identify a graph with multiple spikes (as we discuss in the results section, good inter-rater 

reliability was achieved). Furthermore, several distinct visual forms were noticed when 

qualitatively examining data. Defining mathematical functions for each is considerably more 

challenging than identifying visual forms, making this a good situation to leverage human 

pattern-recognition skills (cf. Henderson, 1999).  

In order to facilitate visual inspection, Java code was written by the fourth author. The 

program presents the user with a visual display of how a specific student’s moment-by-moment 

learning changes over time, for a specific skill, across multiple opportunities to demonstrate that 

skill. The user can then click a set of check boxes in order to identify which visual features the 

graph possesses and lacks. The user was given the option to click multiple check boxes, because 

many of the visual graph features we identified were not mutually exclusive (for instance, 

closely-occurring multiple spikes are not inconsistent with also having a plateau).  

Each of the 72 students’ entire activity on each skill was used as the basis of a graph 

replay, with one exception: if a student completed their work on a skill in under 5 problems, no 



graph replay was generated. This exception was due to the difficulty of assessing visual form 

with four data points or fewer.  

A set of seven potential replay tags were chosen: 

 Single spike – One action with a significantly higher P(J) than the rest of the student’s 

responses; this pattern might indicate a sudden moment of learning or “eureka moment,” 

where a difficult skill is suddenly understood. 

 Close multi-spike – Several closely clustered actions with significantly higher P(J) values 

than neighboring actions; this pattern suggests a consecutive set of learning events. 

 Separated multi-spike – Several actions, not clustered together closely, with significantly 

higher P(J) values than neighboring actions; this pattern might correspond to a multi-

phase, more gradual learning. 

 Plateau – Three or more sequential actions that have significantly higher P(J) values than 

the rest of the student’s behavior; this patterns implies a period of continual learning. 

 Constant – No substantial changes in P(J) value across the entire replay; this pattern 

indicates very stable continual learning (which may indicate high continual learning, or 

no learning at all).  

 Immediate peak – First action has a high P(J) value, followed by an even higher value, 

which then immediately falls to low values for the rest of the replay; this pattern might 

imply that the student quickly learned the skill once starting the tutor activity. 

 Immediate drop – First action has a high P(J) value, which then immediately falls to low 

values for the rest of the replay; this pattern might tell us that the student already knew 

the skill before starting to use the tutor.  



In addition, it was possible for coders to label a graph with an unusual data feature as 

“undefined.” Graphs corresponding to each of these tags are shown in Figure 3.  

 

(Place Figure 3 approximately here) 

 

Two coders (the second and third authors) labeled the same 96 graphs separately, and 

inter-rater reliability was calculated. Next, one of the two coders (the second author) coded an 

additional 583 graphs, giving an average of 8.1 graphs coded per student (not counting graphs 

used for calculating inter-rater reliability). Again, each graph corresponds to one student’s entire 

span of activity for a specific knowledge component. 

From the 583 graphs, an average occurrence of each tag for each student was computed. 

One tag, the constant tag, was never observed in the 583 graphs for which analysis was 

conducted, and thus was not used in further statistical analysis. The average occurrence of each 

tag was then correlated to each student’s performance on each of the four post-tests of learning 

(straightforward problem-solving, transfer, preparation for future learning, and transfer). As this 

represents a substantial number of statistical analyses (6*4 = 24), we controlled for multiple 

comparisons. In specific, the analyses in this study utilize Storey et al.’s (2004) variant of the 

false discovery rate (FDR; Benjamini & Hochberg, 1995) method for hypothesis testing. This 

method produces a substitute for p-values, termed q-values, driven by controlling the proportion 

of false positives obtained via a set of tests. Whereas a p-value expresses that 5% of all tests may 

include false positives, a q-value indicates that 5% of significant tests may include false 

positives. As such, the FDR method does not guarantee each test’s significance, but guarantees a 

low overall proportion of false positives, preventing the substantial over-conservatism found in 



methods such as the Bonferroni correction (cf. Perneger, 1998). The FDR calculations in the 

results section were made using the QVALUE software package (Storey, Taylor, & Siegmund, 

2004) within the R statistical software environment (R Development Core Team, 2011). 

Results 

The coders’ inter-rater reliability, across tags, was determined by computing the inter-

rater reliability for each tag (e.g., whether that tag was included or not included), using Cohen’s 

(1960) kappa. Kappa was then averaged across tags, to find average inter-rater agreement. Kappa 

is typically used for inter-rater reliability, because it controls for the possibility that agreement 

can occur by chance. A kappa of 0 indicates that coder agreement is equal to what would be 

expected from the base rate of each code, and a kappa of 1 indicates perfect agreement. Within 

this data set, the average kappa across constructs was 0.86, indicating an acceptable level of 

agreement between coders; Landis and Koch’s (1977) guidelines for agreement suggest that 

agreement between 0.81 and 1.00 is “almost perfect.”  

 

(Place Table 3 approximately here) 

 

Of the seven visual forms of the moment-by-moment learning curve, the most prevalent 

was immediate drop at 58.3%, followed by single spike at 24.8% and separated multi-spike at 

14.5%. Other visual forms had lower prevalence, with close multi-spike at 9.6%, immediate peak 

at 8.2%, and plateau at 2.5%. The constant curve form never occurred in these graph replays. 

The prevalence of each visual form and their standard deviations are given in Table 3. We can 

infer from these results that the most frequent pattern of performance in this tutor was high initial 

performance (the immediate drop curve form), occurring a little more than half the time. Among 



the remaining students, about two thirds had a single spike, indicating a specific point where 

considerable learning occurred, or an immediate peak, indicating considerable learning early in 

the process. Only a minority had multiple spikes or a plateau. 

Across the tests, most of the visual forms were statistically significantly associated with 

at least one of the tests of learning. The full set of results is presented in Table 4. Two visual 

forms were negatively significantly associated with one or more of the learning measures: close 

multi-spike and plateau. The plateau curve form, corresponding to considerable learning 

occurring over consecutive steps, was statistically significantly negatively associated with the 

problem-solving post-test, r = -0.38, F(1,71) = 11.79, q < 0.01; the transfer test, r = -0.28, F(1,71) 

= 5.85, q = 0.04; the PFL test, r = -0.27, F(1,71) = 5.66, q = 0.04; and the problem-solving 

retention test, r = -0.52, F(1,71) = 25.65, q < 0.01. The close multi-spike curve form, 

corresponding to close multiple periods of considerable learning, was marginally statistically 

significantly associated with the problem-solving post-test, r = -0.25, F(1,71) = 4.61, q = 0.056. 

One possible explanation for these findings is that these two visual forms – both indicating on 

multiple close events of learning – characterize students who started with initial low knowledge; 

recall that values on the moment-by-moment learning curves are proportional rather than 

absolute, which means that a student with low entry-level knowledge has more chance to gain 

knowledge during using the tutor than a student with high entry-level knowledge.  

To investigate this explanation further, we can test the correlations between the frequency 

of the plateau and close multi-spike forms and students’ pretest scores. In doing so, we use 

Benjamini and Hochberg’s original procedure for using False Discovery Rate controls 

(Benjamini & Hochberg, 1995), as the QVALUE software package does not work for this small 

a number of tests. According to this procedure, only two relationships between a curve form and 



pre-test scores are statistically significant: the plateau form, r = -0.25, p < 0.05, and the close 

multi-spike form, r = -0.31, p < 0.01. Hence, students who had curve forms of these types likely 

had lower post-test score due to having lower initial knowledge.  

Two visual forms were positively significantly associated with one or more of the post-

test learning measures: immediate peak and immediate drop. The immediate drop curve form 

was statistically significantly associated with the problem-solving post-test, r = 0.32, F(1,71) = 

7.93, q = 0.02; and the PFL test, r = 0.29, F(1,71) = 6.29, q = 0.04. The immediate peak curve 

form was statistically significantly positively associated with the problem-solving retention test, r 

= 0.35, F(1,71) = 9.73, q = 0.01. It was also marginally statistically significantly associated with 

the transfer test, r = 0.21, F(1,71) = 3.40, q = 0.098. These two forms correspond to either the 

student initially knowing the skill, or learning it very quickly and completely. As such, this 

finding might suggest relationships between quick learning and high achievements. 

Two visual forms were not significantly associated, in either direction, with any of the 

four learning measures: single spike and separated multi-spike.  

 

(Place Table 4 approximately here) 

 

Discussion and Conclusions 

Within this paper, we propose a new method for analyzing student learning over time, 

conducting visual analysis of the functional form of the moment-by-moment learning curve. The 

moment-by-moment learning curve is composed of measurements made by the moment-by-

moment learning model (Baker, Goldstein, & Heffernan, 2010, 2011), an approach that 

combines Bayesian analysis and educational data mining to assess the probability that a student 



acquires a skill at a specific learning opportunity. The model is computed, and graphs are created 

which display a specific student’s learning at each learning opportunity, for a specific skill. 

These graphs are then visually analyzed by human coders, in order to assess whether the graph 

possesses a set of specific, pre-defined visual forms. This application of a model developed 

through data mining to analyze a new research question is an example of the approach to using 

educational data mining which Baker and Yacef (2009) describe as “discovery with models.” 

The original concept of the moment-by-moment learning curve was introduced in (Baker, 

Goldstein, & Heffernan, 2010, 2011), but in that work the curve was inspected solely in a 

qualitative fashion, except for a single mathematical measure (spikiness). The current study 

builds upon that previous work by discussing several characteristic visual forms exist for this 

curve, interpreting those forms’ meaning, and analyzing the relationship between these forms 

and measures of robust learning, discovering that specific visual forms are significantly 

correlated with robust learning. We find that one visual form is particularly common, the 

“immediate drop” form, where a student shows high initial learning which reduces quickly. This 

visual form was present in over half of all graphs. The immediate drop visual form likely 

represents a student who already knows the relevant skill and simply must transfer the skill into 

the learning system; in some cases it may also represent a student immediately mastering a very 

easy skill. However, differences in the prevalence of the visual form between students can only 

be explained by the first explanation, that the student already knew the skill, as all students 

encountered the same skills within this data set. It is also worth noting that this visual form does 

not represent all cases where a student knows a skill in advance, as some cases along these lines 

would presumably show no learning at all (e.g., cases where the student’s performance is rapid 

and flawless from the very beginning).  



Among the visual forms, two were significantly positively associated with one or more of 

the measures of learning. The common immediate drop form was significantly positively 

associated with the problem-solving post-test. This relationship is unsurprising, as students who 

know key skills before using a tutor can be expected to perform better on a post-test of those 

skills. More surprisingly, however, the immediate drop form was also associated with better 

performance on the test of preparation for future learning. This finding may suggest that over-

practice can lead students to not only develop greater speed of performance (Newell & 

Rosenbloom, 1981) and lower probability of forgetting (Pavlik & Anderson, 2005), but also the 

deeper conceptual knowledge required to prepare the student for future learning. However, given 

the links between over-practice and lower forgetting, it is somewhat surprising that the 

immediate drop visual form was not significantly associated with better performance on the 

retention test. The second visual form that was significantly positively associated with measures 

of learning was the immediate peak visual form. This visual form is similar to immediate drop, 

but has an initial lower learning followed by higher learning and then a drop. Due to the low 

initial learning, this visual form is less likely to represent knowledge being transferred in, though 

it may still represent a delayed realization of which knowledge is relevant to the current 

situation. This visual form is more likely to represent the student quickly learning the relevant 

skill. In a strong contrast, the plateau visual form was significantly negatively associated with all 

four measures of learning. This visual form represents students who have steady learning (e.g., 

steady improvement in performance) during only part of the learning activity.  

Interestingly, visual forms involving spikes in learning were not negatively associated 

with learning to the same degree as the other visual forms. The single spike and the separated 

multi-spike visual forms were not significantly associated with any of the four measures of 



learning, and the close multi-spike form (the spike-based visual form most similar to the plateau 

visual form) was only marginally negatively associated with one of the four measures of 

learning. This finding suggests that, at least within this system, students who acquired learning 

more rapidly – in “eureka” moments punctuated by longer periods of stable performance – 

generally had better learning than students who manifested more gradual improvement. This 

finding cannot be completely explained at the current time, but has some interesting potential 

implications for research on learning. In specific, it argues that there are specific features of 

“eureka” moments of learning that lead to qualitatively different learning than the learning 

acquired more gradually. Studying what the cognitive differences are between these “eureka” 

moments may shed considerable light on important aspects of student learning. Past research on 

“eureka” moments on learning has typically focused on laboratory experiments using highly 

difficult problems thought to require a single insight for success. However, it has been argued – 

and we agree – that insight cannot be fully understood in these contexts (Bowden et al., 2005). 

Microgenetic analyses have provided evidence for factors that trigger qualitative shifts in 

performance, in specific situations (e.g., Siegler & Jenkins, 1989). Another possible 

interpretation of spikes – at least for multiple spikes – is that they represent the progressive 

deepening of a skill, where shallow understanding is replaced by deep understanding (cf. Cen et 

al., 2006). This may be another potential explanation for the better outcomes associated with 

spikes than with more gradual learning. Further analysis using the moment-by-moment learning 

model may be able to shed additional light on these possibilities, and support the development of 

greater understanding of the factors that elicit “eureka” moments, and the factors that lead to 

robust learning. 



The model used in this paper to study changes in performance in a fine-grained fashion – 

that is, the moment-by-moment learning curve – has the potential to be used in other studies. In 

fact, it can be constructed for any learning system to which a Bayesian Knowledge Tracing 

(BKT; Corbett & Anderson, 1995) model can be applied. Generally, a BKT model can be 

applied for any computer-based learning environment in which the student is repeatedly 

interacting with the learning material in a way that the student’s responses can be coded as 

“right”/”appropriate” or “wrong”/”inappropriate”, with reference to a specific skill. Previously, 

BKT models have been used in various systems and for a range of domains, including 

mathematics (Koedinger & Corbett, 2006), scientific inquiry (Sao Pedro et al., in press), 

computer programming (Corbett & Anderson, 1995), reading (Mostow & Aist, 2001), and 

physics (Gertner & VanLehn, 2000). As the model and approach proposed here is generalizable 

to other learning systems, one direction for continuing this research would be to see whether the 

results found replicate in other systems, domains, and populations. Features of the learning 

system, as well as characteristics of the domain might play a role in students’ learning, and the 

approach proposed here may eventually become a useful part of the methodological toolbox for 

studying such questions empirically.  

Another future research direction would be to increase the degree to which the analyses 

presented here can be automatized. In their current form, human labels were required to assess 

the relevant visual forms. Given the human labels of the visual forms, it may now be possible to 

develop automated methods for inferring which visual form is present, using data mining. This 

step will speed future analyses of learning over time using the moment-by-moment learning 

model. In turn, it may even be possible to apply these models at run time, to facilitate assessment 

of the probability that a student will eventually acquire robust learning (cf. Baker, Gowda, & 



Corbett, 2011). While models predicting robust learning already exist, the strong predictive 

relationships found in this paper argue that these models can be made significantly better through 

the inclusion of assessments of students’ probable learning over time.  

 

Acknowledgments 

The authors would like to thank Ken Koedinger for helpful comments and suggestions, 

Albert Corbett for sharing the data set used in this paper and for helpful comments and 

suggestions, and Rob Martin for initial help in conceptualizing the visual forms of the moment-

by-moment learning curve. This research was supported via grant “Empirical Research: 

Emerging Research: Robust and Efficient Learning: Modeling and Remediating Students’ 

Domain Knowledge”, National Science Foundation award number #DRL-0910188, and by the 

Pittsburgh Science of Learning Center, National Science Foundation award number #SBE-

0836012. 

 

  



References 

Anderson, R.B., & Tweney, R.D. (1997). Artifactual power curves in forgetting. Memory & 

Cognition, 25(5), 724-730. 

Baker, R.S.J.d. (2007). Modeling and Understanding Students' Off-Task Behavior in Intelligent 

Tutoring Systems. In: Proceedings of ACM CHI: Computer-Human Interaction, 1059-

1068. 

Baker, R.S.J.d., Corbett, A.T., & Aleven, V. (2008). More Accurate Student Modeling Through 

Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing. 

In: Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 406-

415. 

Baker, R.S.J.d., Corbett, A.T., Gowda, S.M., Wagner, A.Z., MacLaren, B.M., Kauffman, L.R., 

Mitchell, A.P., & Giguere, S. (2010). Contextual Slip and Prediction of Student 

Performance After Use of an Intelligent Tutor. Proceedings of the 18th Annual 

Conference on User Modeling, Adaptation, and Personalization, 52-63. 

Baker, R.S.J.d., Corbett, A.T., Roll, I., & Koedinger, K.R. (2008). Developing a Generalizable 

Detector of When Students Game the System. User Modeling and User-Adapted 

Interaction, 18 (3), 287-314. 

Baker, R.S.J.d., Corbett, A.T., & Wagner, A.Z. (2006). Human Classification of Low-Fidelity 

Replays of Student Actions. Proceedings of the Educational Data Mining Workshop at 

the 8th International Conference on Intelligent Tutoring Systems, 29-36. 



Baker, R.S.J.d., Goldstein, A.B., & Heffernan, N.T. (2010). Detecting the Moment of 

Learning. Proceedings of the 10th Annual Conference on Intelligent Tutoring Systems, 

25-34. 

Baker, R.S.J.d., Goldstein, A.B., & Heffernan, N.T. (2011). Detecting learning moment-by-

moment. International Journal of Artificial Intelligence in Education, 21(1-2), 5-25. 

Baker, R.S.J.d., Gowda, S.M., & Corbett, A.T. (2011). Automatically Detecting a Student's 

Preparation for Future Learning: Help Use is Key. Proceedings of the 4th International 

Conference on Educational Data Mining, 179-188. 

Baker, R.S.J.d., Pardos, Z., Gowda, S., Nooraei, B., & Heffernan, N. (2011). Ensembling 

Predictions of Student Knowledge within Intelligent Tutoring Systems. Proceedings of 

19th International Conference on User Modeling, Adaptation, and Personalization, 13-

24. 

Baker, R.S.J.d., & Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review 

and Future Visions. Journal of Educational Data Mining, 1 (1), 3-17. 

Beck, J.E. (2006). Using learning decomposition to analyze student fluency development. In: 

Proceedings of the Workshop on Educational Data Mining at the 8th International 

Conference on Intelligent Tutoring Systems, 21-28. Jhongli, Taiwan. 

Beck, J. E., & Mostow, J. (2008). How who should practice: Using learning decomposition to 

evaluate the efficacy of different types of practice for different types of students. 

Proceedings of the 7th International Conference on Intelligent Tutoring Systems, 353-

362. 



Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 

57, 289–300. 

Bowden, E.M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to 

demystifying insight. Trends in Cognitive Sciences, 9(7), 322-328. 

Bower, G.H. (1961). Application of a model to paired-associate learning. Psychometrika, 26(3), 

255-280. 

Bower, G.H. & Trabasso, T. (1963). Reversals prior to solution in concept identification. Journal 

or Experimental Psychology, 66(4), 409-418. 

Bransford, J. D., & Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple 

implications. Review of Research in Education, 24, 61-100. 

Cen, H., Koedinger, K.R., & Junker, B. (2006). Learning Factors Analysis: A general method for 

cognitive model evaluation and improvement. In M. Ikeda, K. Ashley, & T. Chan 

(Eds.),Intelligent Tutoring Systems 8th International Conference (pp. 164–175). Berlin: 

Springer. 

Cen, H., Koedinger, K.R., & Junker, B. (2007). Is Over Practice Necessary? – Improving 

Learning Efficiency with the Cognitive Tutor using Educational Data Mining. In Lucken, 

R., Koedinger, K. R. and Greer, J. (Eds). Proceedings of the 13th International 

Conference on Artificial Intelligence in Education, pp. 511-518. 

Cobb, P. (1999). Individual and Collective Mathematical Development: The Case of Statistical 

Data Analysis. Mathematical Thinking and Learning, 1(1), 5-43. 



Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological 

Measurement, 20 (1), 37-46. 

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: modeling the acquisition of 

procedural knowledge. User Modeling and User-Adapted Interaction, 4, 253–278. 

Corbett, A.T., MacLaren, B., Kauffman, L., Wagner, A., & Jones, E. (2010). A Cognitive Tutor 

for genetics problem solving: Learning gains and student modeling. Journal of 

Educational Computing Research, 42, 219-239. 

Corbett, A., MacLaren, B., Wagner, A., Kauffman, L., Mitchell, A., Baker, R.S.J.d., & Gowda, 

S.M. (2011). Preparing Students for Effective Explaining of Worked Examples in the 

Genetics Tutor. Proceedings of the 33rd Annual Meeting of the Cognitive Science 

Society, 1476-1481. 

D'Mello, S., & Graesser, A. (2011). The half-life of cognitive-affective states during complex 

learning. Cognition & Emotion, 25(7), 1299-1308. 

Estes, W.K. (1950). Toward a statistical theory of learning. Psychological Review, 57(2), 94-107. 

Fong, G.T., & Nisbett, R.E. (1991). Immediate and delayed transfer of training effects in 

statistical reasoning. Journal of Experimental Psychology: General, 120, 34–45. 

Gertner, A.S., & VanLehn, K. (2000). Andes: A coached problem solving environment for 

Physics. In Proceedings of the 5th International Conference on Intelligent Tutoring 

Systems, 133-142. 



Hall, M.A. (2000). Correlation-Based Feature Selection for Discrete and Numeric Class Machine 

Learning. Proceedings of the 17th International Conference on Machine Learning, 359-

366. 

Heathcote, A., Brown, S., & Mewhort, D,J.K. (2000). The Power Law Repealed: The Case for an 

Exponential Law of Practice. Psychonomic Bulletin and Review, 7, 185-207. 

Henderson, K. (1999) On line and on paper: Visual representations, visual culture, and 

computer graphics in design engineering. Cambridge, MA: MIT Press. 

Hershkovitz, A., & Nachmias, R. (2009). Learning about online learning processes and students' 

motivation through web usage mining. Interdisciplinary Journal of E-Learning and 

Learning Objects, 5, 197-214. 

Koedinger, K. R., & Corbett, A. T. (2006). Cognitive Tutors: Technology bringing learning 

science to the classroom. In K. Sawyer (Ed.) The Cambridge Handbook of the Learning 

Sciences, 61-78. Cambridge University Press. 

Koedinger, K.R., Corbett, A.T., & Perfetti, C. (in press). The Knowledge-Learning-Instruction 

(KLI) Framework: Toward Bridging the Science-Practice Chasm to Enhance Robust 

Student Learning. To appear in Cognitive Science. 

Kuhn, D., Goh, W., Iordanou, K., & Shaenfield, D. (2008). Arguing on the computer: A 

microgenetic study of developing argument skills in a computer-supported environment. 

Child Development, 79(5), 1310-1328. 

Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific 

reasoning. Cognition and Instruction, 9, 285-327. 



Landis J.R., & Koch G.G. (1977). The measurement of observer agreement for categorical data. 

Biometrics, 33, 159-174. 

Lehrer, R., Schauble, L., Strom, D., & Pligge, M. (2001). Similarity of form and substance: 

Modeling material kind. In D. Klahr & S. Carver (Eds.), Cognition and instruction: 25 

years of progress. (pp. 39-74). Mahwah, NJ: Lawrence Erlbaum Associates. 

Lindstrom, P., & Gulz, A. (2008). Catching Eureka on the Fly. In: Proceedings of the AAAI 2008 

Spring Symposium. 

Martin, B., Mitrovic, A., Koedinger, K.R., & Marthan, S. (2011). Evaluating and improving 

adaptive educational systems with learning curves. User Modeling and User-Adapted 

Interaction, 21(3), 249-283. 

Mathan, S.A., & Koedinger, K.R. (2005). Fostering the Intelligent Novice: Learning From Errors 

With Metacognitive Tutoring. Educational Psychologist, 40(4), 257-265. 

Mazur, J. E., & Hastie, R. (1978). Learning as accumulation: A reexamination of the learning 

curve. Psychological Bulletin, 85(6), 1256-1274. 

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006). YALE: Rapid 

Prototyping for Complex Data Mining Tasks. Proceedings of the 12th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining (KDD 2006), 935-

940. 

Mostow, J., & Aist, G. (2001). Evaluating tutors that listen: An overview of Project LISTEN. In 

K.D. Forbus (Ed.) & Feltovich, P.J. (Eds.), Smart Machines in Education: The coming 

revolution in educational technology (pp. 169-234). Cambridge, MA: The MIT Press. 



Newell, A., & Rosenbloom, P.S. (1981). Mechanisms of Skill Acquisition and the Law of 

Practice. In J.R. Anderson (Ed.) Cognitive Skills and their Acquisition, 1-55. Hillsdale, 

NJ: Lawrence Erlbaum Associates. 

Pavlik, P.I., & Anderson, J.R. (2005). Practice and forgetting effects on vocabulary memory: An 

activation-based model of the spacing effect. Cognitive Science, 29, 559–586. 

Perneger, T.V. (1998). What's wrong with Bonferroni adjustments. British Medical Journal, 316, 

1236-1238. 

R Development Core Team (2011). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 

http://www.R-project.org/. 

Romero, C., & Ventura, S. (2007). Educational Data Mining: A Survey from 1995 to 2005. 

Expert Systems with Applications, 33 (1), 135-146. 

Sao Pedro, M. A., Baker, R. S. J. d., Montalvo, O., Nakama, A., & Gobert, J. D. (2010). Using 

text replay tagging to produce detectors of systematic experimentation behavior patterns. 

Proceedings of the 3rd International Conference on Educational Data Mining, 181-190. 

Sao Pedro, M.A., Baker, R.S.J.d., Gobert, J., Montalvo, O., & Nakama, A. (in press). Leveraging 

machine-learned detectors of systematic inquiry behavior to estimate and predict transfer 

of inquiry skill. To appear in User Modeling and User-Adapted Interaction. 

Schmidt, R.A., & Bjork, R.A. (1992). New conceptualizations of practice: Common principles in 

three paradigms suggest new concepts for training. Psychological Science, 3, 207-217. 



Siegler, R.S., & Crowley, K. (1991). The microgenetic method: A direct means for studying 

cognitive development. American Psychologist, 46(6), 606-620. 

Siegler, R.S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: 

Lawrence Erlbaum Associates, Inc. 

Singley, M.K., & Anderson, J.R. (1989). The Transfer of Cognitive Skill. Cambridge, MA: 

Harvard University Press. 

Storey, J.D., Taylor, J.E., & Siegmund, D. (2004). Strong control, conservative point estimation, 

and simultaneous conservative consistency of false discovery rates: A unified approach. 

Journal of the Royal Statistical Society, Series B, 66(1), 187-205. 

  



Figure 1 – Two graphs with equal spikiness exhibiting two different patterns of learning. 



 

Figure 2 – A screenshot from the Three-Factor Cross lesson of the Genetics Cognitive Tutor 

 



 

 

 

Figure 3 – Examples of visual forms of the moment-by-moment learning curve used in analysis. 

  



Table 1 – Correlations between the post-test measures of student learning. 

 
 Transfer PFL Retention 
Problem-solving 0.59 0.41 0.45 
Transfer  0.52 0.48 
PFL   0.33 
 

  



Table 2 – The best-fitting linear regression model of P(J). Values of P(J) can be computed by 

multiplying each feature by its coefficient (on the right) and summing all values together. 

 
Feature P(J) = 

The action is assessed by the learning system as correct -0.0069 
The action is assessed by the learning system as incorrect +0.0069 
Action is a help request - 0.0270 
Action is assessed as a misconception by the learning system +0.0511 
Action involves typing a string -0.0412 
Action involves typing a number -0.0412 
Time taken (SD faster (-) or slower (+) than average across all students) -1.3688 
Time taken in last 3 actions (calculated in SD off average across students) -0.6220 
Time taken in last 5 actions (calculated in SD off average across students) +0.7557 
The number of times the student asked for help at this skill, including previous 
problems 

-0.0070 

The number of times the student made errors at this skill, including previous 
problems 

-0.0002 

Number of last 3 actions which involved same interface element -0.0165 
Number of last 5 actions which involved same interface element +0.0051 
Number of opportunities student has already had to use current skill -0.0001 
The probability the student knew the skill, after the current action (Ln) -0.0195 
The probability the student knew the skill, before the current action (Ln-1) -0.0960 
Constant +0.1632 
 

  



Table 3 – Average prevalence of each visual form of the moment-by-moment learning curve. 

 
Average 
Prevalence 

Standard 
Deviation 

Single Spike 24.8% 14.9% 
Close Multi-Spike 9.6% 9.7% 
Separated Multi-Spike 14.5% 11.9% 
Plateau 2.5% 6.2% 
Constant 0.0% 0.0% 
Immediate Peak 8.2% 10.1% 
Immediate Drop 58.3% 23.3% 

 

  



Table 4 – The correlation between a student’s proportion of a specific visual form of the 

moment-by-moment learning curve across skills, and their performance on the four learning 

tests. Statistically significant findings (controlling for false discovery rate) are highlighted in dark 

gray; marginally significant findings are highlighted in light gray. 

 
Curve form Test r F p q 
pct single spike Post-test 0.075 0.400 0.529 0.374

Transfer test -0.036 0.095 0.759 0.446
PFL test -0.139 1.402 0.240 0.253
Retention Test -0.094 0.636 0.428 0.330

pct close multi-spike Post-test -0.247 4.610 0.035 0.056
Transfer test -0.094 0.634 0.429 0.330
PFL test -0.035 0.085 0.771 0.446
Retention Test 0.045 0.142 0.708 0.446

pct separated multi-spike Post-test -0.134 1.301 0.258 0.253
Transfer test 0.011 0.008 0.927 0.492
PFL test -0.113 0.916 0.342 0.311
Retention Test 0.063 0.285 0.595 0.399

pct plateau Post-test -0.377 11.786 0.001 0.006
Transfer test -0.276 5.847 0.018 0.036
PFL test -0.272 5.663 0.020 0.036
Retention Test -0.515 25.647 0.000 0.000

pct immediate peak Post-test 0.092 0.601 0.441 0.330
Transfer test 0.214 3.399 0.069 0.098
PFL test 0.017 0.021 0.886 0.490
Retention Test 0.347 9.725 0.003 0.011

pct immediate drop Post-test 0.317 7.930 0.006 0.020
Transfer test 0.167 2.035 0.158 0.183
PFL test 0.285 6.286 0.014 0.036
Retention Test 0.206 3.152 0.080 0.102

 
 


