
Shih, JL. et al. (Eds.) (2023). Proceedings of the 31st International Conference on Computers in 

Education. Asia-Pacific Society for Computers in Education 

 

Large Language Models (GPT) for 
automating feedback on programming 

assignments  
 

Maciej PANKIEWICZa* & Ryan S. BAKERb 
aInstitute of Information Technology, Warsaw University of Life Sciences, Poland 

bPenn Center for Learning Analytics, University of Pennsylvania, USA 
*maciej_pankiewicz@sggw.edu.pl 

 

Abstract: Addressing the challenge of generating personalized feedback for 
programming assignments is demanding due to several factors, like the complexity of 
code syntax or different ways to correctly solve a task. In this experimental study, we 
automated the process of feedback generation by employing OpenAI’s GPT-3.5 model 
to generate personalized hints for students solving programming assignments on an 
automated assessment platform. Students rated the usefulness of GPT-generated 
hints positively. The experimental group (with GPT hints enabled) relied less on the 
platform's regular feedback but performed better in terms of percentage of successful 
submissions across consecutive attempts for tasks, where GPT hints were enabled. 
For tasks where the GPT feedback was made unavailable, the experimental group 
needed significantly less time to solve assignments. Furthermore, when GPT hints 
were unavailable, students in the experimental condition were initially less likely to 
solve the assignment correctly. This suggests potential over-reliance on GPT-
generated feedback. However, students in the experimental condition were able to 
correct reasonably rapidly, reaching the same percentage correct after seven 
submission attempts. The availability of GPT hints did not significantly impact students' 
affective state. 

 

Keywords: Programming, automated assessment tools, automated feedback, LLM, 
GPT 

 

 

1. Introduction 
 
Large Language Models (LLMs) are deep neural network models able to effectively process 
and analyze complex linguistic structures (Carlini et al., 2021). LLMs have garnered significant 
attention in the field of natural language processing (NLP) because of the ability to generate 
human-like text. This feature makes LLMs a promising technology in educational settings 
(Finnie-Ansley et al., 2022; Dai et al., 2023; Pardos & Bhandari, 2023), where the provision of 
personalized feedback is integral to scaffold learning effectively (Jackson & Graesser, 2007; 
Hull & du Boulay, 2015). 

One of the most prominent examples of LLMs is the OpenAI's Generative Pre-trained 
Transformer (GPT) series (Radford et al. 2019; Brown et al. 2020), which leverages a 
transformer architecture and is able to capture long-range dependencies and positional 
information within a text. It is available through the ChatGPT application and via an Application 
Programming Interface (API), enabling integration with different existing applications, 
including educational apps. Especially in the field of computer science education, positive 
effects of such embedment may emerge earlier than in other educational domains, because 
of the significant effort conducted to develop models trained on large sets of programming 
code examples (Finnie-Ansley et al., 2022). 



 

 

The field of computer science education has already extensively leveraged software 
tools that automate the process of self-paced learning. Multiple automated assessment tools 
have been designed to evaluate and provide feedback on student performance in various 
educational tasks (Deeva et al. 2021). The proliferation of these tools in computer science 
education, in areas from introductory programming (Edwards & Murali, 2017; Brusilovsky et 
al., 2018) to databases (Stanger, 2018), has had benefits and has contributed to the 
development of self-paced learning environments in other domains (Paiva et al., 2022). Along 
with this development, there is a growing body of research on personalizing feedback to 
enhance student learning outcomes (Deeva et al. 2021). Nevertheless, effective 
implementation of this approach continues to present significant challenges, given the difficulty 
of comprehensively assessing student work (Maier & Klotz, 2022). 

In this study, we try to leverage the potential of GPT models for supporting students in 
providing feedback on programming tasks by integrating GPT through an API with an 
application for automated assessment of programming code. The GPT-3.5 model is used to 
automatically generate personalized feedback for university students taking an Object-
oriented programming course. In this paper, we presented a controlled experiment comparing 
a system that adds GPT-generated hints to a system that only uses the original, human-
developed hints. We compare the two conditions across multiple dimensions, including 
immediate performance, usage, performance on later content (without GPT-generated hints), 
time taken to complete assignments, and affect. 
 

2. Methods 
 
The study involved second-semester computer science students at the Warsaw University of 
Life Sciences (Poland) enrolled in an Object-oriented programming course that was required 
for their major. The course was conducted using the C# programming language. A total of 132 
students consented to participate (out of 174 students taking the course) and were randomly 
assigned to either the control (N=66) or the experimental group (N=66). A pre-test was 
administered at the beginning of the semester to establish a baseline understanding of the 
students' knowledge before engaging with the platform's content. The process of data 
collection spans the initial part of the semester, specifically covering a nine-week period within 
the fifteen-week academic term. This timeframe extends from the first week of March 2023 
through to the first week of May 2023. 93 students submitted at least one solution during the 
period of the study (control: 46, experimental: 47). 

The experiment utilized the RunCode online application – a platform for automated 
execution and testing of a programming code available at runcodeapp.com (Pankiewicz, 2020). 
The application has been used by students at the University since 2017 within programming 
courses. All students that participated in this experiment were familiar with the application and 
had actively used it during the Introduction to programming course taught in the previous (first) 
semester. Students submitted programming code using an editor integrated within the 
application. 

46 programming assignments covering basic object-oriented programming concepts 
(classes, objects, fields, methods, constructors, encapsulation, inheritance, and polymorphism) 
have been made available on the platform for the purpose of practicing the course material. 
These concepts were introduced during the first 6 weeks of the course. Each assignment was 
composed of a collection of more specific subtasks, such as: the creation of a class, the 
addition of fields with appropriate access modifiers, the definition of constructors, etc. A 
comprehensive suite of 809 unit tests was developed to thoroughly assess performance on 
these subtasks, ensuring a detailed evaluation of their individual components.  Multiple 
submissions on a task were allowed. Usage of the platform was voluntary, and neither usage 
nor results within the platform counted towards the final grade. 5923 code submissions were 
collected during the period of study (control: 3077, experimental: 2846). 

The unit tests were designed to validate code requirements specified by the assignment. 
For instance, a test aimed at confirming the presence of the "User" class within the submitted 
code might be denoted as TestIsClassDefined("User"), with an expected value of true. This 



 

 

approach ensured that different aspects of the assignment's requirements were thoroughly 
examined and verified in the students' code submissions. 

The application provided students with a score (0-100%) and feedback after each code 
submission. If the submitted code failed to compile, the regular feedback available on the 
platform was presented without requiring any additional clicks and included details on compiler 
errors. The platform also highlighted in the online code editor lines where errors occurred. If 
the code compiled successfully, the feedback contained information on the executed unit tests, 
including input values and expected output. Students needed to click on a specific test from 
the list to access detailed information about its execution. The tests were color-coded, with 
green indicating success and red signifying failure, to facilitate easy identification of the test 
outcomes. 

Both the control and experimental groups had access to the same set of tasks within the 
application. However, for 38 out of 46 tasks, students in the experimental group had an 
additional feature enabled, which provided them with feedback generated by a large language 
model through the GPT-3.5 API. For the remaining 8 tasks, students in the experimental group 
only had access to the regular feedback offered by the platform. These tasks were slightly 
more challenging and were designed to encapsulate the concepts introduced in previously 
solved tasks, as well as assess the comprehension of these concepts. 

Within the experimental condition, additional feedback was provided by the GPT model, 
going beyond the standard feedback provided by the application, which included information 
on compiler errors, runtime errors and details on executed unit tests. The GPT-generated 
feedback provided suggestions for code improvement, explanations of compiler errors, and 
hints for debugging. The feedback was designed to be informative and constructive, aiming to 
guide students towards correct solutions and improve their understanding of programming 
concepts, without revealing the correct code solution. This feedback was presented 
immediately after code submission, with a prompt asking students to rate the usefulness of 
the hint on a 5-point Likert scale ranging from 'Not useful at all' to 'Extremely useful'. Feedback 
was automatically generated in Polish, to match the assignments and the interface of the 
system, which also used this language. 

Feedback was requested from GPT when the code submitted by a student exhibited 
compiler errors, runtime errors, or failed at least one unit test. The dynamically generated 
prompt included the assignment text (in Polish) and the student's code, accompanied by 
additional information based on the testing results. This information contained a compiler 
message for non-compiling code, exception type and message for compiled code that 
generated an exception during execution, or details regarding a failed unit test: the test name, 
input values, and expected outcome. To accommodate the OpenAI GPT API's token limitation 
(4,000 tokens), assignments were designed in a way that ensured that even the most complex 
tasks and accompanying code could fit within the imposed constraint. The prompt text was 
similar for the three scenarios mentioned, with variations stemming from the testing process 
outcomes. In cases where the code did not compile, a specific prompt was generated: 

I want you to act as a Stackoverflow post that helps me to solve a programming 
assignment in C#. I want you to explain in Polish why this code does not compile. 
Don't write solution in the explanation, but focus on meaningful hints. I want you 
to also include the line where the compiler error occurred in the explanation. I 
want you to also include a line number for each detected error in the explanation. 
To help me better understand your response, highlight keywords, line numbers, class 
names, variable names, messages, line numbers and error names with the <code> </code> 
HTML markup in the explanation. Programming assignment: ### <ASSIGNMENT_TEXT> ### 
C# code: <STUDENT_CODE> ### Compiler errors: <COMPILER_ERRORS> 

The following parameters were used for the request: 'model': 'text-davinci-003', 
'temperature': 0, 'max_tokens': 500, 'n': 1, 'top_p': 1, 'frequency_penalty': 0, 

'presence_penalty': 0. 
An illustration of the hint proposed by the GPT in the event of encountering code with a 

syntax error is presented as follows (translated from Polish to English with highlights 
generated by the GPT): “A compiler error  error CS1002  occurred in line 5 of the code with 
the message  ; expected . This means that there is a missing semicolon  ;  after the 



 

 

declaration of the  string name  field in line 5. To fix the error, a semicolon  ;  should be 
added at the end of line 5. A  ;  is required at the end of every declaration in C#.” 

Students self-reported their affective states while completing tasks on the platform by 
interacting with a dynamic HTML element. The platform prompted students for their emotional 
state following the receipt of submission results by asking them to select the option that best 
described their current feelings. The response options included: Focused, Anxious, Bored, 
Confused, Frustrated, and Other (in this order), accompanied by representative emoticons. 
These affective states were chosen due to their relevance to the learning process and their 
prevalence in past research (Karumbaiah et al., 2022). To mitigate potential frustration from 
overly frequent survey prompts, the platform randomly decided after each submission whether 
to present the survey, with a probability of one in three. 
 

3. Results 
 
Due to violations of normality assumptions, non-parametric Mann-Whitney U tests were 
utilized. Benjamini-Hochberg alpha correction (Benjamini & Hochberg, 1995) was applied to 
control for multiple comparisons in analysis of differences in affective state frequencies among 
students. 
 

3.1 Pre-test results 
 
To ensure that the control and experimental groups were comparable in terms of their initial 
understanding of the relevant programming concepts at the beginning of the study, a pretest 
consisting of 7 multiple-choice questions was administered to both the control and 
experimental groups. These questions covered key topics on object-oriented programming, 
including classes, constructors, encapsulation, inheritance, and polymorphism. No statistically 
significant differences were identified between the control (Mdn=0) and the experimental 
(Mdn=1) groups (W=1791, p=0.249, Mann-Whitney U test). 
 

3.2 Usefulness of the GPT hints 
 
In the examination of the perceived usefulness of the GPT generated hints, a total of 1,442 
responses were collected from N=46 participants within the experimental group throughout 
the duration of the study. As the control group did not have access to the GPT hints, no 
responses were obtained from this group. Figure 1 displays the histogram of the frequency of 
users according to the median rating they gave to received hints, with the x-axis representing 
the median of the hint rating for a user. 
 

 
Figure 1. Distribution of users according to the median rating for received hints. 



 

 

 
As Figure 1 shows, the majority of users rated the GPT hints they received as useful – 

these results suggest that the hint feature was generally well-received by users. 
 

3.3 Usage of the regular platform feedback 
 
One possible impact of the GPT feedback is that learners may use the other feedback less 
often. To evaluate whether there were differences in the usage of the regular (non-GPT) 
platform feedback between the experimental and control groups, we analyzed the percentage 
of incorrect submissions for which students clicked on feedback to access details about tests 
that failed. We did not examine clicks on feedback for tests that ended successfully, as the 
application did not generate GPT hints for these tests. Therefore, students who only made 
successful submissions, and students who submitted only non-compiling code in their 
submissions (in this case the platform always presents feedback, so users are not required to 
click on it), were not included in this analysis. 

A statistically significant difference was found between the experimental (Mdn=0.321, 
N=45) and control (Mdn=0.710, N=45) groups (W=282, p<0.001, Mann-Whitney U test) for the 
set of tasks where experimental group had GPT feedback enabled (38 out of 46). The 
experimental group used the regular feedback significantly less than the control group for 
these tasks. 

However, no significant difference was found between the experimental (Mdn=0.769, 
N=23) and control (Mdn=0.667, N=25) groups (W=341, p=0.269, Mann-Whitney U test) for the 
set of tasks, where GPT feedback was not available for experimental group (8 out of 46). 
When GPT feedback was unavailable, the experimental group utilized the platform's regular 
feedback in a similar amount to the control group (Figure 2). 
 

 

 
Figure 2. Comparison of the percentage of incorrect submissions with at least one click to 

request (view) details on the test that failed (regular platform’s feedback) between the control 
and experimental group (on the left: tasks with GPT feedback enabled for experimental 

group; on the right: tasks with GPT feedback disabled for the experimental group). 
 

3.4 Performance within the platform – GPT hints enabled 
 
In order to examine the influence of the GPT hints on student performance within the platform, 
we conducted an analysis of users' consecutive task attempts for tasks where GPT hints were 
enabled for the experimental group (38 out of 46 tasks). The primary focus was on assessing 
the percentage of successful submissions after each attempt (cumulative). 

For the first attempt, the experimental group appeared to have a similar percentage of 
successes (48.3%) as the control group (48.0%). Values for the second and all consecutive 
attempts decreased for both groups, with performance worsening across attempts. Following 
the second attempt, the experimental group appeared to have a slightly higher percentage of 



 

 

successful submissions, a trend that persisted across subsequent attempts. For the purpose 
of clarity, only the first 15 attempts are depicted in the chart (Figure 3). 
 

 
Figure 3. Comparison of the percentage of successful submissions at each attempt 

(cumulative) for the control and experimental group, for tasks where GPT hints were enabled 
in the experimental group. 

 
We employed a linear mixed-effects model to test whether there was a significant 

difference in slopes between the control and experimental groups concerning the number of 
attempts. The model was fit using restricted maximum likelihood (REML) estimation with the 
nlme R package (Pinheiro et al., 2017). The fixed effects of the model consisted of the main 
effects of group and attempt, as well as the interaction between group and attempt. Our 
analysis revealed a non-significant interaction effect between group and attempt, t(13)=-0.172, 
p=0.866. This indicates that the slopes of the control and experimental groups do not 
significantly differ. Nonetheless, the main effects of group and attempt were found to be 
statistically significant, group: t(13)=5.38, p<0.001; attempt: t(13)=-7.38, p<0.001. This finding 
suggests that, averaged across all attempts, the experimental group scored higher than the 
control group on the dependent variable. 
 

3.5 Performance within the platform – without GPT hints 
 
To further evaluate the impact of the introduced platform feature on the experimental group, 
we analyzed performance of both groups on the tasks where GPT-generated hints were not 
provided for the experimental group (8 out of the total 46 tasks). 

 As in the prior section, we visualized the percentage of successful submissions following 
each attempt. For the initial six attempts, the control group performed better than the 
experimental group; however, starting from the seventh attempt correctness rates were 
comparable (Figure 4). 

A linear mixed-effects model fit using restricted maximum likelihood (REML) was 
employed to assess whether the slopes of the control and experimental groups were 
significantly different with respect to the number of attempts. The model revealed a significant 



 

 

interaction effect between group and attempt, t(13)=7.13, p<0.001. This finding indicates that 
the slopes of the control and experimental groups were significantly different. 
 

 
Figure 4. Comparison of the percentage of successful submissions at each attempt 

(cumulative) for the control and experimental group for tasks where GPT hints were disabled 
in the experimental group. 

 

3.6 Time needed to successfully complete tasks 
 
In order to assess the differences in the time required for students in the experimental and 
control groups to successfully complete tasks on the platform, we analyzed 1,784 successful 
student submissions during the study period (control: 905, experimental: 879). 

We evaluated the time taken by students in both conditions to fully solve each task, while 
excluding tasks completed by fewer than three students in each condition. Due to the 
platform's lack of keystroke-level data monitoring, a time limit of 7,200 seconds (2 hours) was 
established for tasks not solved within this duration. This decision was made because some 
students ceased working on tasks without logging out.  

A significant majority (88%) of successful student attempts were completed within this 
time frame. Due to violations of normality assumptions, we used rank-based regression – a 
non-parametric alternative to traditional likelihood or least squares estimators (Kloke & 
McKean, 2012). 

We analyzed the time performance on tasks where the GPT feedback was available for 
the experimental group. For this set of tasks, the group was not a statistically significant 
predictor of the time needed to solve tasks, t(89)=-0.24, p=0.811. However, the pretest score 
was a marginally significant predictor, t(89)=-0.69, p=0.095. 

We also conducted the analysis for tasks where the GPT feedback was not available for 
the experimental group. The group was a statistically significant predictor of the time needed 
to solve tasks, with the experimental group needing less time than the control group, t(48)=-
2.25, p=0.029. The pretest score was not significantly associated with time needed to solve 
tasks, t(48)=-0.36, p=0.723. For the set of these tasks results indicate that students in the 
experimental group took, on average, 375 seconds (6.25 min.) less time than the control group, 
controlling for the pretest score. 
 



 

 

3.7 Affective states 
 
A total of 1,304 affect survey responses were collected from participants over the course of 
the study (645 in the experimental condition, 659 control). In the analysis, we include students 
who submitted at least 3 responses in this survey: in the control N=33, and in the experimental 
group: N=35.  

Both conditions predominantly reported the focused state, which constituted over half of 
the responses in each group. No significant differences between conditions were observed for 
the reported frequency of any of the affective states (Table 1). 
 
Table 1. Affective State Survey – Statistical Evaluation of Differences in Frequencies of 
Affective States Reported by Students in Experimental and Control Group 

 
Experimental 
(Mdn/Mean) 

Control 
(Mdn/Mean) 

W 
statistic 

p-value 

Focused 0.538/0.52 0.5/0.54 537 0.620 

Frustrated 0/0.14 0/0.13 611 0.653 

Anxious 0/0.12 0/0.12 550.5 0.718 

Confused 0/0.06 0/0.09 571 0.935 

Bored 0/0.03 0/0.05 559.5 0.782 

 
Frustration did not significantly differ between the control (Mdn=0) and experimental 

(Mdn=0) groups (W=611, adjusted α=0.02, p=0.653, Mann-Whitney U test).  
Similarly, no significant difference was found for boredom between the experimental 

(Mdn=0) and control (Mdn=0) groups (W=559.5, adjusted α=0.04, p=0.782, Mann-Whitney U 
test).  

The same pattern was observed for anxiety and confusion, with no significant difference 
between the experimental (Mdn=0) and control (Mdn=0) groups for anxiety (W=550.5, 
adjusted α=0.03, p=0.718, Mann-Whitney U test) or confusion (W=571, adjusted α=0.05, 
p=0.935, Mann-Whitney U test). 

Focused also exhibited no significant differences between conditions, with the 
experimental group's median (Mdn=0.538) not statistically different from the control group 
(Mdn=0.5; W=537, adjusted α=0.01, p=0.620, Mann-Whitney U test). 
 

4. Discussion and summary 
 
In this study, we utilized the GPT-3.5 model to generate personalized hints for students 
working on programming assignments within an automated assessment platform. Our findings 
indicated that almost half of the students (46%) highly valued the usefulness of GPT-
generated hints, with a median rating of 4 or 5 on a 5-point Likert scale. Given that the 
assignments and generated hints were provided in Polish, these findings hold promise for the 
future development and scalability of such systems across various languages, further 
extending their applicability and impact in diverse educational contexts.  

However, 19% of the students found the hints to be not useful, with median ratings of 1 
or 2 on the same scale. Thus, there is still room for improvement and for making the hints 
more useful. Considering the varied ratings of hint usefulness, we anticipate that further 
optimization of the hint generation process could enhance the efficacy of GPT-based 
automated feedback, ultimately leading to improved student performance. Future research 
may be able to further optimize and enhance the hints, to increase the proportion of useful 
hints and the degree to which each hint is useful. Potential strategies for achieving this include 
more experimentation with prompt generation (prompt engineering), fine-tuning the GPT 
model (by providing examples on which the model can improve) or conducting correlation 
mining to identify the properties associated with less useful hints. 

Another finding is that the experimental group (with GPT hints enabled) relied less on 
the platform's regular feedback for tasks where the GPT feedback was enabled. Despite of 



 

 

significantly lower usage of this kind of feedback, the experimental condition students 
performed significantly better on the platform in terms of percentage of successful submissions 
across consecutive attempts. There was not a significant difference in the time needed to 
successfully solve each assignment with GPT feedback enabled. However, students in the 
experimental group spent an additional average of 40 seconds after each attempt compared 
to the control group. This extra time was used by the students to read and understand the hint 
that was generated before they proceeded to rate it through a survey. 

Furthermore, when GPT hints were made unavailable, students in the experimental 
group needed significantly less time to successfully solve each assignment. Since hints 
enabled for earlier tasks not only served to rectify the students' misconceptions but also 
provided supplementary information, it is our conjecture that these hints played a pivotal role 
in enhancing the students' learning process, apparently further facilitating their understanding. 
This knowledge acquisition, in turn, may have expedited their task-solving abilities, leading to 
the observed reduction in time required to complete tasks when the hints were no longer 
available. 

An unexpected outcome of this study is that when students in the experimental condition 
switched over to more difficult tasks for which GPT hints were not enabled, these students 
were significantly less likely to successfully solve the tasks in their first several attempts. Our 
findings indicate that users appeared to rely on the GPT-generated feedback during the study 
and needed some time to adapt to a lack of this kind of feedback. This may indicate that 
students were becoming overly dependent on the GPT-generated feedback, but if so, this 
problem seemed to correct itself fairly rapidly. 

Although the GPT hints impacted student performance, the availability of these hints did 
not appear to have a substantial impact on student affect. 

This study presents several limitations that warrant further investigation. First, the study 
duration spanned only 9 weeks of the 15-week semester term; future research should explore 
the longer-term effects of GPT-generated hints on student performance and learning 
outcomes. Second, the experiment focused solely on GPT-generated hints in the Polish 
language, raising the need for additional experiments in different languages to establish the 
generalizability of the results. Third, the number of participants represents a limitation to the 
robustness and external validity of our findings; future work should examine this type of 
intervention with a larger sample size. Finally, the study utilized a single programming 
language (C#), while introductory computer science education often incorporates other 
languages, such as Java and C++. Future research should expand the scope to include a 
broader range of programming languages to more comprehensively assess the efficacy and 
applicability of GPT-generated hints. 

Addressing the challenge of generating personalized feedback for programming 
assignments is a demanding task, given the myriad of potential code syntax errors and code 
complexity across different assignments. The GPT model holds the potential to tackle this 
issue more effectively and efficiently than human authoring of hints. In summary, the findings 
of this study indicate that integrating GPT-generated feedback into computer programming 
education may positively impact student performance, ultimately contributing to enhanced 
learning outcomes.  

Although this experiment employed the default GPT-3.5 model, it is plausible that fine-
tuning the model could further improve the quality of generated hints, thereby facilitating more 
effective programming education on a larger scale. 
 
 
 
 
 
 
 
 
 



 

 

Acknowledgements 
 
This paper was written with the assistance of ChatGPT, which was used to improve the writing 
clarity and grammar of first drafts written by humans. All outputs were reviewed and modified 
by two human authors prior to submission. 
 

References 
 
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 
57(1), pp. 289–300. 

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). 
Language models are few-shot learners. Advances in neural information processing systems, 33, 
pp. 1877-1901. 

Brusilovsky, P., Malmi, L., Hosseini, R., Guerra, J., Sirkiä, T., & Pollari-Malmi, K. (2018). An integrated 
practice system for learning programming in Python: design and evaluation. Research and practice 
in technology enhanced learning, 13(1), pp. 1-40. 

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., ... & Raffel, C. (2021). 
Extracting Training Data from Large Language Models. In USENIX Security Symposium (Vol. 6). 

Dai, W., Lin, J., Jin, F., Li, T., Tsai, Y., Gasevic, D., & Chen, G. (2023). Can Large Language Models 
Provide Feedback to Students? A Case Study on ChatGPT. https://doi.org/10.35542/osf.io/hcgzj 

Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., & De Weerdt, J. (2021). A review of automated 
feedback systems for learners: Classification framework, challenges and opportunities. Computers 
& Education, 162, 104094. 

Edwards, S. H., & Murali, K. P. (2017). CodeWorkout: short programming exercises with built-in data 
collection. In Proceedings of the 2017 ACM conference on innovation and technology in computer 
science education, pp. 188-193. 

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., and Prather, J. (2022). The robots are 
coming: Exploring the implications of openai codex on introductory programming. In Australasian 
Computing Education Conference, pp. 10–19 

Hull, A., & du Boulay, B. (2015). Motivational and metacognitive feedback in SQL-Tutor. Computer 
Science Education, 25(2), pp. 238-256. 

Jackson, G. T., & Graesser, A. C. (2007). Content matters: An investigation of feedback categories 
within an ITS. Frontiers in Artificial Intelligence and Applications, 158, 127.  

Karumbaiah, S., Baker, R.S., Tao, Y., Liu, Z. (2022). How does Students' Affect in Virtual Learning 
Relate to Their Outcomes? A Systematic Review Challenging the Positive-Negative Dichotomy. In 
Proc. of the Int’l Learning Analytics and Knowledge Conference, pp. 24–33. 

Kloke, J. D., & McKean, J. W. (2012). Rfit: Rank-based estimation for linear models. The R Journal, 
4(2), pp. 57–64.  

Maier, U., & Klotz, C. (2022). Personalized feedback in digital learning environments: Classification 
framework and literature review. Computers and Education: Artificial Intelligence, vol 3. 

Paiva, J. C., Leal, J. P., & Figueira, Á. (2022). Automated assessment in computer science education: 
A state-of-the-art review. ACM Transactions on Computing Education (TOCE), 22(3), pp. 1-40. 

Pankiewicz, M. (2020). Move in the Right Direction: Impacting Students’ Engagement With Gamification 
in a Programming Course. In EdMedia+ Innovate Learning, pp. 1180-1185. Association for the 
Advancement of Computing in Education (AACE). 

Pardos, Z. A., & Bhandari, S. (2023). Learning gain differences between ChatGPT and human tutor 
generated algebra hints. arXiv preprint arXiv:2302.06871. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., & Maintainer, R. 
(2017). Package ‘nlme’. Linear and nonlinear mixed effects models, version, 3(1), 274. 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are 
unsupervised multitask learners. OpenAI blog, 1(8), 9. 

Stanger, N. (2018). Semi-automated assessment of SQL schemas via database unit testing. In 
Proceedings of the 26th International Conference on Computers in Education (ICCE 2018). Asia-
Pacific Society for Computers in Education (APSCE). 


