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Abstract: The study investigates the impact of cognitive biases on middle-school 
students' affective experiences while learning about math in a game-based learning 
environment (GBLE). The study focused on students' confrustion, an affect construct 
that unifies the several manifestations of confusion and frustration. We studied 
confrustion in the context of students self-explaining erroneous examples, where they 
had to find and fix common errors in given math problems and self-explain their 
problem-solving processes either with or without scaffolding. Text replays were utilized 
to examine student interactions during game-based learning and identify behaviors 
that emerged in response to cognitive biases and affect and its impact on learning and 
performance outcomes. The results revealed that students who demonstrated more 
pseudo-confidence in their self-explanations had higher self-reported self-efficacy, but 
were more likely to submit incongruent responses, exhibit confrustion, make errors, 
and take longer to finish the game. Overall, the findings show that students were 
vulnerable to cognitive biases and did not always respond in ways that accurately 
reflected their approach to solving math problems. The insights into how students 
approach and learn from math games inform the design and implementation of GBLEs 
by addressing cognitive biases.  
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1. Introduction 
 
Game elements designed to scaffold instructional support are essential for promoting 
behaviors that support mathematical learning (e.g., prompting students to generate 
self-explanations about their solutions; Ke et al., 2019; Wouters & van Oostendorp, 2013). A 
study by McLaren and others (2022) showed that students who generated open-ended and 
focused self-explanations (i.e., open-ended responses answering a focused prompt), 
compared to menu-based self-explanations (i.e., select an explanation from a menu), had 
significantly higher learning. However, in further studies, Johnson and Mayer (2010) found no 
differences in learning outcomes between open-ended and menu-based self-explanation 
types. 

To better understand the impact of each type of prompt, it is important to explore which 
learning behaviors, processes, and strategies that emerge during open-ended and focused 
self-explanations contribute to actively constructing knowledge. One factor impacting 
successful math learning and achievement is the student’s confidence or self-efficacy (Pan et 
al., 2022). However, students’ judgments of their abilities are vulnerable to cognitive biases, 
possibly skewing their perceptions. 

Cognitive biases stem from heuristic strategies, or decisional short cuts 
(Blumenthal-Barby & Krieger, 2015), to reduce the amount of information considered when 
making a decision (Schwenk, 1986). The emergence of biases is mediated by contextual 
factors such as attributed risk (Halpern, 1989), age and expertise (Forbes, 2005), and time 
constraints (Lehner et al., 1997), and these biases can impact a student’s confidence, interest, 



and achievement in math. For example, when students have high confidence but low 
knowledge (Pseudo-Confidence), they tend to experience a higher occurrence of confusion 
and frustration during learning (Di Leo et al., 2019). 

Previous studies have also suggested that low-knowledge learners may attempt to 
alleviate confusion by avoiding activities that require deep thought (Rodrigo et al., 2007); for 
instance, gaming the system, where a student exploits a platform’s help/feedback systems to 
succeed instead of attempting to learn (Baker et al., 2006), and Without Thinking Fastidiously 
(WTF) behaviors, where a student engages in activities that are unrelated to the learning goal 
(Wixon et al., 2012).  

In this paper, we extend previous findings by examining pseudo-confident refusal, a 
cognitive bias where a student refuses to self-explain and instead asserts their correctness 
despite system feedback indicating otherwise. Specifically, the current study seeks to identify 
and examine the role of pseudo-confidence during self-explanations on students’ affect, 
learning, and performance within a game-based learning environment (GBLE) called Decimal 
Point. Focused and open-ended prompts were used to elicit students’ problem-solving 
processes in math and identify learning behaviors that emerged during knowledge 
construction. Through the use of qualitatively coded text logs of student interactions, the 
current study investigated the influence of pseudo-confidence, on students’ affect, 
performance, self-efficacy, as well as interaction with the platform. 
 
 

2. Methods 
 

Decimal Point 
 
The platform used in this study was Decimal Point, a GBLE that is based on an amusement 
park metaphor. Players were guided through different sets of mini games built within the 
Cognitive Tutor Authoring Tools (CTAT; Aleven et al., 2009) to learn about decimals. The 
students played a total of 24 mini games during regular class periods (across an average of 
3-5 days) which lasted around 45 to 55 minutes each.  

In the current study, players used the erroneous examples play mode, where they 
were required to find and fix common errors in given math problems and then self-explain their 
problem-solving process either with or without scaffolding (“Think about how you came up with 
this answer, and drag the correct option to the following blank(s).” versus “How do you know?”, 
respectively). The self-explanation prompts were designed to actively engage a student to 
develop a deeper understanding of critical concepts in mathematics. Each student was 
randomly assigned to one of three self-explanation conditions: menu-based, scaffolded, or 
focused format. In this paper, we study the focused, open-ended, self-explanations, which 
prompted students to explain their response with minimal guidance.  
 

Sample and Student Level Metrics 
 
Data were collected from a middle school in Pennsylvania between March and November 
2021. Three hundred and fifty-eight (n = 358; 44% females) students participated in the study; 
however, only 85 were retained for the current set of analyses due to data completeness 
across variables of interest. Students participated in a survey before and after they played 
Decimal Point. The survey measured Decimal Efficacy, which indicates a student’s level of 
self-efficacy or their confidence in using decimal operations. The survey was adapted from 
literature (Pintrich et al. 1993) to better align with the context of the learning session, as used 
in Hou et al. (2020). Students were asked to rate statements on a 5-point Likert scale. We 
averaged three items to compute the Decimal Efficacy score: 1) I can do an excellent job on 
decimal number math assignments, 2) I can understand the most difficult material presented 
in decimal number lessons, and 3) I can master the skills being taught in decimal number 
lessons. 

Students’ interaction data were examined using text replays (Baker et al., 2006), which 
display interaction logs from student platform usage in an easy-to-read form. Text replays 



were then investigated to identify potential behaviors that emerged from cognitive biases and 
experiences of confrustion (when a student is either confused or frustrated; Mogessie et al., 
2020). This method has been used in previous studies to label a variety of student variables 
(Baker et al. 2006; DiCerbo and Kidwai, 2013; Zhang et al., 2022) quickly and with high 
inter-rater reliability. For this study, analyses were focused on self-explanation behaviors that 
occurred within the problem-solving process. As such, the log data were divided into clips at 
the level of entire problems. 

 
Construct Operationalization and Qualitative Coding 

 
The team first analyzed student responses for indicators of self-explanation behaviors 

using qualitative categories. This approach followed the recursive, iterative process used in 
Weston et al. (2001), including reviewing literature on previous work using the Decimal Point 
platform (Forlizzi et al., 2014) and student engagement behaviors within GBLEs (Zhang et al., 
2022). Using grounded theory (Charmaz, 1983), we identified common behaviors that were 
indicative of 1) struggles involving self-explanation from the current mathematical content and 
2) were indicative of difficulty generating accurate responses for the given problem.  

Following the process used in (Zhang et al., 2022), two coders (1st and 4th authors) 
coded a set of 900 clips together, identified four behaviors occurring during self-explanations 
(see details in Table 1), outlined the criteria for each indicator, and created a rubric. The 
coding manual was reviewed and discussed by the research team to ensure a shared 
understanding of the criteria and constructs being studied. This process was repeated until the 
whole team had a mutual understanding of the codebook's criteria and constructs. 

 
Table 1. Behaviors coded through Text Replays 

Behavior Definition 
Confrustion 

k = .68 
The learner explicitly mentions they do not know what to do or how to answer the 
problem and makes repeated answer submissions that are incorrect. 

Without Thinking 
Fastidiously 

(WTF) k = .89 

The learner does not acknowledge the prompts for finding a solution and instead 
inputs text unrelated to the task at hand. 
(e.g., “F*** off,” “Stop asking me,” “Ohmygahd” 

Incongruent 
Response 

k = .62 

The learner inputs correct information, but it is phrased differently from responses 
the system can recognize. These responses often involve minimal changes 
between response submissions where changes do not semantically change the 
answer; the student is trying to find a way to phrase the answer so that the system 
will accept it. 

Pseudo-Confident 
Refusal 
k = .79 

The learner refuses to explain their answers or mathematical process and instead 
refers to their inherent capacity to understand the mathematical problems by citing 
themselves as an authority to know the final answer. 
(e.g., “I know because it’s the right answer,” “Because I’m smart”) 

 
 

3. Results 
 
Spearman correlations with Benjamini-Hochberg post-hoc controls were computed to find 
associations between pseudo-confidence, performance metrics, and decimal efficacy survey 
responses. Students who demonstrated more pseudo-confidence in their self-explanations 
were more likely to submit incongruent responses (r = 0.29, adj. α = 0.01, p = 0.008) and 
exhibit confrustion (r = 0.33, adj. α = 0.007, p = 0.002). In addition, pseudo-confidence in 
self-explanations were moderately and positively associated with making errors (r = 0.25, adj. 
α = 0.02, p = 0.02) and taking longer to finish the game (r = 0.37, adj. α = 0.003, p = 0.004). 
Students who demonstrated more pseudo-confidence in their self-explanations tended to 
score higher on Post-test Decimal Efficacy surveys (r = 0.25, adj. α = 0.025, p = 0.023) and 
had increases in the normalized change in self-efficacy from before to after learning with the 
game (r = 0.24, adj. α = 0.028, p = 0.028). These results implyed that pseudo-confident 
responses may emerge in response to challenges responding to self-explanation prompts. 
Experiences of confrustion were related to increased errors and time spent problem solving, 
and in response, students may turn to pseudo-confident responses to avoid further engaging 



with the material. What is interesting to note is that pseudo-confident students were also more 
likely to positively estimate their decimal self-efficacy. This relationship may point to a 
tendency of pseudo-confident students to overestimate their abilities despite generating 
multiple errors and needing more time to solve math problems. 
 
Table 2. Correlations for behaviors, achievement metrics, and survey level responses 
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Pseudo-Confident  1 0.33 0.29  0.25 0.37  0.25 0.24      
Confrustion  1   0.59 0.43 0.25 0.35  -0.53 -0.47 -0.54 -0.25  
Incongruent 
Response   1    0.06   -0.26 -0.26    
WTF    1           

Errors     1 0.67 0.31 0.28  -0.68 -0.72 -0.72  -0.29 
Time 
problem-solving      1 0.32 0.27  -0.55 -0.52 -0.49   

Decimal Efficiency 
(pre)       1 0.47  -0.25 -0.26 -0.31   
Decimal Efficiency 
(post)        1 0.75 -0.26     
Change in 
Decimal Efficacy         1      

Pre-test          1 0.83 0.76   
Post-test           1 0.84 0.41 0.58 
Delayed Post-test            1 0.69 0.43 
Change in 
Delayed Post-test             1 0.59 
Change in 
Learning              1 

 
 A linear regression predicting the rate of pseudo-confident responses using the 

interaction between time spent problem-solving and pre-test scores of achievement revealed 
that increased pre-test scores positively predicted pseudo-confidence (β = .02, p = .022), 
suggesting that students who were more familiar with the content were more likely to assert 
their perceived correctness and refuse to explain. A significant interaction was also observed 
between pre-test and time: students with higher pre-test scores who spent a longer amount of 
time problem solving also applied more pseudo-confident responses (β = .28, p = .018). 
 
Table 3. Results for linear regressions predicting achievement and Decimal Efficacy (N = 85, p 
< .05). Significant results shown in bold. 

 
Post-test Learning Gains 

Decimal Efficacy 
(post-test) 

Decimal Efficacy 
(Gains) 

 β P β p β p β P 

(Intercept) -0.07 <0.001 -0.03 0.001 0.01 <0.001 -0.01 0.22 
Pseudo-confidence -0.13 0.02 -0.05 0.43 0.15 0.56 0.09 0.95 

Time -0.48 <0.001 -0.25 0.03 0.20 0.11 0.08 0.65 
Interaction 

(Pseudo-confidence 
* Time) 

0.21 0.02 0.08 0.43 -0.02 0.87 0.02 0.81 

R
2
 0.29  0.07  0.08  0.02  

 
Table 3 shows that across both achievement metrics (post-test and learning gains), a student 
who spent more time problem solving was related to decreases in their math performance. 
Students who gave more pseudo-confident responses were less likely to perform well on the 
post-test math assessment. A significant interaction was observed between time and the rate 
of pseudo-confident behaviors for predicting post-test. There is a complicated relationship 
here -- a simple slopes analysis revealed a significant relationship where pseudo-confident 
students who spent less time were less likely to have increases in their post-test scores. 
However, pseudo-confident students who spent more time did better. 
 



4. Discussion 
 
This study examined pseudo-confidence, a cognitive bias impacting math learning, and its 
relation to affect (e.g., confrustion) and other learning behaviors (e.g., WTF, incongruent 
responses) during open-ended and focused self-explanations within a GBLE. We found 
positive associations between pseudo-confident responses with time spent problem solving 
and errors made during game-based learning about math. The positive correlation between 
these variables indicated a potential struggle self-explaining problem solving, where students 
may defer to heuristics to complete the activity. Additionally, students may demonstrate 
pseudo-confident responses as a means of self-presentation and impression management 
around math difficulties (Schwenk, 1986). 

We also found that higher pseudo-confidence was associated with more confrustion 
and incongruent responses during game-based learning. These relationships can be 
explained by the student failing to actively construct their knowledge when self-explaining, 
contributing to more cognitive incongruencies (i.e., confrustion) or more incongruent 
responses (Di Leo et al., 2020). If a student made multiple errors during problem solving, but 
continued to refuse to explain their problem-solving approach (pseudo-confident), this may 
result in more confrustion in the long term. The results also showed that the more 
pseudo-confident a student was, the higher their self-reported Decimal Efficacy was after 
game-based learning, indicating that responding in this fashion may increase student efficacy 
despite lower knowledge. 

Next, we examined whether pre-test scores and time spent in the game impacted the 
rate of pseudo-confidence in self-explanations. The results showed that students with higher 
pre-test scores also had higher rates of pseudo-confidence in their self-explanations. This 
finding suggested that students who had more prior knowledge of math topics demonstrated 
more pseudo-confidence. Students with higher prior knowledge may be vulnerable to the 
Dunning-Kruger effect; they may be knowledgeable enough to be confident in their responses, 
but unable to detect blind spots in their knowledge. 

Lastly, linear regression analyses revealed that the more time spent in the game and 
pseudo-confident responses made, the worse students performed on the post-test 
assessment. A simple slopes analysis revealed that pseudo-confident students who spend 
less time problem solving performed worse on the post-test assessment. These findings may 
align with previous research which suggest that students tend to make less effective decisions 
when required to solve problems or make decisions with less time (Lehner et al., 1997). 
However, pseudo-confident students who spent more time performed better on the post-test, 
possibly suggesting that this subset of students was still learning. 

This study used a mixed-methods approach to investigate pseudo-confidence while 
students explained their approach to solving math problems during game-based learning. 
While self-report data outside the context of the activity was valuable for measuring global 
confidence in math, this approach presents challenges for studying the role of confidence 
during math learning. Confidence is a dynamic construct, one that changes during a learning 
session based on a student’s goals and in response to various types of feedback they may 
receive (e.g., time left or confrustion; Pavlas, 2010). Thus, real-time measurement of 
confidence is important for advancing our understanding on if, when, and how confidence 
evolves during game-based learning about math. Future research should evaluate the role of 
other common cognitive biases that impact math learning, including examining the presence 
of stereotype threat or the hard-easy effect (overconfidence on harder problems) during math 
learning. For example, to what extent does the rate of pseudo-confidence change depending 
on how difficult the math problems are? This research has implications for identifying key 
learning behaviors and building adaptive self-explanation prompts and interventions that 
maximize students actively constructing knowledge about math with GBLEs. 
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