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Abstract 

Background: In recent years, research on online learning platforms has exploded in quantity. More and more 
researchers are using these platforms to conduct A/B tests on the impact of different designs, and multiple scientific 
communities have emerged around studying the big data becoming available from these platforms. However, it is 
not yet fully understood how each type of research influences future scientific discourse within the broader field. To 
address this gap, this paper presents the first scientometric study on how researchers build on the contributions of 
these two types of online learning platform research (particularly in STEM education). We selected a pair of papers 
(one using A/B testing, the other conducting learning analytics (LA), on platform data of an online STEM education 
platform), published in the same year, by the same research group, at the same conference. We then analyzed each of 
the papers that cited these two papers, coding from the paper text (with inter-rater reliability checks) the reason for 
each citation made.

Results: After statistically comparing the frequency of each category of citation between papers, we found that the 
A/B test paper was self-cited more and that citing papers built on its work directly more frequently, whereas the LA 
paper was more often cited without discussion.

Conclusions: Hence, the A/B test paper appeared to have had a larger impact on future work than the learning ana-
lytics (LA) paper, even though the LA paper had a higher count of total citations with a lower degree of self-citation. 
This paper also established a novel method for understanding how different types of research make different contri-
butions in learning analytics, and the broader online learning research space of STEM education.
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Introduction
Online learning platforms
In just a few short years, large-scale online learning plat-
forms have gone from a rarity in education to common-
place. From K-12 to higher education (HE) to post-HE 
workforce learning, increasing amounts of education 
take place partially or fully online via these systems. Even 
before the shutdowns and quarantines of 2020 forced 
entire school systems and universities to go fully online, 

the use of online learning platforms was expanding rap-
idly. Especially in STEM education, interactive learning 
platform usage has been rising for years. Thus, it is rea-
sonable to hypothesize that many of the schools, univer-
sities, instructors, and students who switched to much 
heavier use of online platforms—and have now become 
accustomed to their usage and benefits—will continue to 
use these platforms going forward.

Online learning platforms provide several benefits 
for learners. First of all, online learning platforms sub-
stantially increase the feasibility of access (Park & Choi, 
2009)—a benefit first to non-traditional students unable 
to come to campus at specific hours, and now to the 
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millions of learners for whom coming to a campus poses 
a risk of life-threatening infection. Furthermore, while 
not all online learning platforms provide better learn-
ing than traditional instruction (and some provide worse 
learning), heavily research-based platforms such as intel-
ligent tutoring systems can benefit learning substantially. 
A meta-analysis by VanLehn (2011) suggests that, on 
average, intelligent tutoring systems (ITS) improve learn-
ing by 0.76 standard deviations compared to traditional 
curricula. ITS have been particularly useful in enhancing 
STEM education (Fletcher, 2018; Graesser et  al., 2018), 
and STEM learning has continued to be a primary focus 
of ITS research over the years (Guo et  al., 2021). Even 
more straightforward computer-aided instruction envi-
ronments still produce benefits for learning (VanLehn, 
2011). Online learning environments also facilitate pro-
viding actionable information to instructors, information 
that can be used to drive beneficial interventions, both 
in K-12 and higher education (Valle et al., 2021; Verbert 
et al., 2013).

For these reasons alone, online learning has made a 
positive impact. However, there is another major benefit 
of online learning: facilitation of basic research on learn-
ing (Stamper et al., 2012). Broadly, there have been two 
primary uses of online learning platforms to support 
research—making it easier to conduct experimental (or 
quasi-experimental) research on learning design, and the 
availability of data that makes secondary analyses possi-
ble. This benefit has been realized in concrete improve-
ments to online STEM education platforms (Inventado 
et al., 2018; Mulqueeny et al., 2015; Nye et al., 2018).

Online learning platforms have supported an increas-
ing number of automated experiments. In the early 
years of the field, single research groups used their own 
platforms for research (Beck et  al., 1999; Mostow et  al., 
2003). In the first decade of this millennium, large-scale 
initiatives such as the Pittsburgh Science of Learning 
Center DataShop created an infrastructure that allowed 
hundreds of studies to take place in classrooms, ena-
bling the creation of a theoretical framework on when 
specific learning designs were appropriate (Koedinger 
et  al., 2012, 2013). However, each study took consider-
able effort and resources to realize in classrooms. More 
recently, the ASSISTments platform (Feng et  al., 2009; 
Heffernan & Heffernan, 2014), a STEM education plat-
form focused on math, has created an infrastructure that 
enables automatic deployment of studies across the web, 
supporting dozens of studies by external researchers in 
the thousands of mathematics classrooms using their 
platform across the USA (Ostrow & Heffernan, 2019). It 
enables researchers to conduct A/B tests using its E-TRI-
ALS architecture (previously called the ASSISTments 
Testbed), thereby simplifying the process of creating and 

conducting studies on the platform. ASSISTments has 
historically been used both for in-class blended learning 
and homework, with the proportion using it for home-
work increasing over time. Prior to COVID-19, the 
ASSISTments user base averaged around 50,000 students 
a year, but has increased tenfold (to over half a million) 
since the beginning of the pandemic. MOOC platforms 
have also increasingly supported researchers in conduct-
ing A/B tests and other types of studies (Reich, 2015). In 
one case, a group of researchers tested a specific inter-
vention across 247 courses taken by millions of learners 
(Kizilcec, 2020).

The use of online learning platform data in second-
ary learning analytics (LA) analyses has also exploded 
in recent years. Data sets from the Pittsburgh Science 
of Learning Center DataShop (Koedinger et  al., 2010) 
underpinned the earlier years of research in educational 
data mining, with 14% of analyses in early years using 
DataShop data (Baker & Yacef, 2009). Since then, a vari-
ety of other learning platforms have shared their data, 
either publicly or with smaller numbers of selected col-
leagues. Platforms such as edX, Coursera, and ASSIST-
ments have had their data used by dozens of researchers. 
Specific data sets have become the standard for com-
parison of algorithms across papers—for instance, many 
recent papers have used a specific public data set from 
the math platform, ASSISTments, to study student 
knowledge modeling (Khajah et al., 2016; Yeung & Yeung, 
2018; Zhang et al., 2017).

However, it is not yet fully understood how these two 
scientific uses of learning platforms (A/B testing and LA 
analyses) impact the scientific community, especially in 
STEM education. There are several potential impacts—
for example, the availability of these platforms opens up 
research to a broader community of scientists, facilitat-
ing research and making it less expensive to conduct. In 
this paper, we asked the question, how does the research 
these platforms afford impact scientists beyond the ones 
who specifically conduct these two types of studies using 
the platform. How does a learning platform impact edu-
cational research more broadly?

Scientometrics on learning analytics
To answer this question, we looked at ideas from scien-
tometrics, the field of scientific study which studies the 
properties of science itself, by studying the properties of 
scientific publication.

In recent years, scientometric research has become 
popular in a variety of areas of educational research, par-
ticularly in learning analytics, one of the two applications 
of large-scale online STEM learning environments that 
this paper will investigate. Learning analytics research-
ers have used scientometrics to answer a wide range of 
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questions. However, generally, these questions have been 
about understanding the current state and research top-
ics of that specific research community, rather than more 
in-depth questions about the impact of different types of 
scientific research within the field.

For instance, researchers have analyzed which papers 
are most cited in scientometrics in learning analyt-
ics (Baker & Yacef, 2009; Dawson et  al., 2014; Waheed 
et  al., 2018), and have ranked universities and scholars 
in terms of their quantity of research output and collab-
oration (Fazeli et  al., 2013; Nawaz, et  al., 2013; Waheed 
et  al., 2018). However, while these types of papers help 
to establish the current landscape of that research area, 
they do not necessarily expand our knowledge of how 
the online learning field is making progress scientifically 
through using learning analytics.

A second type of scientometric research in learning 
analytics has connected to the question of whether cur-
rent research is equitable. In this vein, there have been 
multiple analyses of how nationally, racially, and eth-
nically diverse researchers in the field are (Chen et  al., 
2020; Maturana et al., 2013; Nawaz, et al., 2013; Waheed 
et al., 2018). Research has also investigated how nation-
ally, racially, and ethnically diverse the learners in learn-
ing analytics research are (Paquette et  al., 2020)—this 
research found that most papers do not even mention 
the background of learners, making it difficult to evaluate 
whether our field is paying attention to whether our find-
ings work across populations.

A third category of scientometric research focused on 
learning analytics has investigated the topics being stud-
ied. Researchers have investigated how the topics studied 
in learning analytics shift over time (Derntl et al., 2013), 
how the topics studied differ between learning analytics 
and educational data mining (Chen et al., 2020; Dormezil 
et  al., 2019), and the relationships between the topics 
published on (Zouaq et al., 2013). Relatedly, researchers 
have also analyzed the collaborations between research-
ers with different disciplinary backgrounds (Dawson 
et al., 2014).

Scientometrics on why papers are cited
As the previous section indicates, scientometrics has 
been fairly prominent within the learning analytics com-
munity. However, relatively little work has looked at why 
learning analytics papers are cited, or whether the dif-
ferent types of learning analytics research conducted 
leads to different citation patterns, in a deeper fashion 
than just comparing citation numbers between broad 
comparisons, such as asking whether learning analytics 
or educational data mining papers are cited more often 
(Chen et al., 2020; Dormezil et al., 2019). We know from 
the large numbers of citations that learning analytics 

research is making a scientific impact, but the question 
remains how that impact is being made. How are the 
papers impacting research going forward? Also, consid-
ering the issue of online learning more broadly—do dif-
ferent types of papers make different impacts on later 
research?

The broader scientometrics community has paid more 
attention to this type of question. Though early work 
in scientometrics focused on citation counts (Gross & 
Gross, 1927; Shockley, 1957) or on analyzing the relative 
contribution of different scientists (Cole & Cole, 1972), 
there was soon increasing recognition of the importance 
of understanding not just whether or how much a paper 
or scholar is cited, but why. An early list of reasons why a 
scholar might choose to cite a specific paper is given by 
Garfield (1965); this list is expanded upon in an extensive 
review by Bornmann and Daniel (2008), which reviewed 
and summarized the extensive work occurring over the 
intervening decades. This exhaustive list was in turn 
distilled into a manageable coding scheme by Lindgren 
(2011).

Increasing understanding that papers are cited for 
many reasons led to the practice of analyzing the context 
of a citation to understand why a paper is chosen for cita-
tion (Cronin, 1984), reviewed again in extensive detail by 
Bornmann and Daniel (2008). In brief, researchers may 
choose to cite a paper for a wide variety of reasons, rang-
ing from the scientific (giving credit to a key contribu-
tion, refuting a previously published idea) to the political 
(citing an important figure in the field, citing papers from 
the conference or journal being submitted to). Concern-
ingly, in one analysis of computer science education, only 
a few citations actually involved building on the ideas 
or theoretical contributions of a previous paper (Malmi 
et al., 2020).

In this paper, we built on this past work to understand 
why researchers might cite a paper based on the research 
use of an interactive STEM learning platform. Specifi-
cally, we investigated the differences between the reasons 
why researchers might choose to cite a learning analytics 
paper versus an automated experimentation (A/B test) 
paper. We did this by comparing one highly cited paper 
of each type, choosing two papers using the same STEM 
learning platform, published in the same year, at the same 
conference, by many of the same authors. For each of 
these two papers, we identified the papers that cited it 
and then studied the reasons behind those citations.

Methods
Research context
We investigated this research question in the context of 
the ASSISTments platform (Ostrow et al., 2019). ASSIST-
ments is a computer-based math learning system used 
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daily by thousands of students in real classrooms (over 
50,000 a year) and hosts primarily middle school math 
content. Since 2003, the ASSISTments system has sup-
ported an expanding population of learners, with par-
ticular uptake in recent years in Massachusetts, Maine, 
and North Carolina. Learners using ASSISTments com-
plete mathematics problems, and can receive multi-step 
hints or scaffolding on demand or after making errors. 
ASSISTments provides support for mastery learning, 
where learners continue working on a skill until they 
demonstrate they can answer correctly three times in a 
row, and offers spiraling practice or review functionality 
as well.

Among computer-based STEM education learning sys-
tems, ASSISTments offers substantial support for exter-
nal researchers. Learning analytics and educational data 
mining researchers are able to work with (as of this writ-
ing) 14 publicly available data sets, which offer extensive 
interaction log data, combined in some cases with addi-
tional data such as field observations of student affect or 
longitudinal student outcomes. Dozens of external learn-
ing analytics and educational data mining researchers 
have used data from the ASSISTments system in second-
ary analyses.

ASSISTments also offers substantial support for edu-
cational psychology and learning sciences researchers, 
enabling them to specify and implement randomized 
experiments on a geographically distributed population 
of learners. Again, many external educational psychology 
and learning sciences researchers have used the ASSIST-
ments system to conduct experimental research (A/B 
tests). As such, the large scale use of ASSISTments for 
both types of research investigated in this paper makes 
it an appropriate context in which to conduct a study of 
this nature.

Articles studied
In this paper, we compared the types of scientific impact 
achieved by two papers, referred to below as the “target” 
papers. These two papers were selected because of their 
substantial similarity except for their research method 
and topic. While leveraging the two different opportu-
nities for research that ASSISTments affords, the two 
papers were both published in 2006, and at the exact 
same scientific conference (Intelligent Tutoring Systems). 
These two papers even share the same second (and sen-
ior) author, controlling to a degree for citation patterns 
due to author reputation.

The first paper (henceforth referred to as the A/B test 
paper or paper AB), (Razzaq & Heffernan, 2006), com-
pares two pedagogical strategies within the ASSISTments 
system, on-demand hints and automated scaffolding, 

assigning students to receive one condition or the other, 
and then evaluating the impact on student learning.

The second paper (henceforth referred to as the log 
analysis paper or paper LA), (Walonoski & Heffernan, 
2006), uses log data to develop an automated detector of 
student disengagement, and then uses that detector to 
investigate the disengagement behavior seen.

Obtaining citations
In November 2019, we used Google Scholar to obtain 
every scientific document citing either of these two arti-
cles. An article was considered if the full text could be 
obtained either openly over the internet, through the 
University of Pennsylvania library, or through interlibrary 
loan. Both peer-reviewed and non-peer-reviewed (i.e., 
dissertations, xArxiv, white papers) documents were con-
sidered. Only articles in English were considered within 
this review. Duplicates were eliminated.

This procedure produced 55 full-text documents cit-
ing the AB paper and 159 full-text documents citing the 
LA paper. The time series of citations spanned from the 
initial year of publication of the two articles (2006) until 
the year after the citing articles were collected (2020). 
This later year was seen because we harvested the papers 
while they were still in press. The time series, in Fig.  1, 
shows how the number of citations for these two target 
papers has changed over time. As the graph shows, the 
A/B paper was most cited in the first and third years after 
its publication, waning in popularity in the years after 
that, but experiencing a second (lower) peak in popular-
ity a decade later. By contrast, the LA paper was slower 
to reach its peak, reaching its peak in the fourth year 
after publication, and slowly declining in popularity after 
that. After 3 years, the A/B paper would have appeared 
the more influential paper, but beyond that point, the 
LA paper established a yearly lead in the number of cita-
tions that it has maintained until the end of the period of 
analysis.

The different total number and pattern of citations for 
each paper may be due to several factors, including the 
development of these two fields. The learning analytics 
community (and related scientific communities) have 
grown rapidly since the start of the educational data 
mining and learning analytics conferences (in 2008 and 
2011), increasing the number of papers that could cite 
a learning analytics paper, particularly in more recent 
years. In addition, it is easier to download an existing 
data set and conduct secondary analysis than to design, 
conduct, and analyze a study, lowering the barrier for 
additional researchers to follow-up a study using learn-
ing analytics as compared to A/B testing. Each of these 
factors—as well as other aspects of the scientific and 
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technical merit of the two papers—may have shaped the 
pattern of citation of these two papers over time.

Coding scheme
Within each citing article, we identified each of the cita-
tions of each target paper. For instance, in some cases, 
a citing article might cite either the AB paper or the LA 
paper (or both) multiple times. We then developed a cod-
ing scheme for the reasons why a citation might cite an 
article. The process of developing this coding scheme was 
led by the third author. Our first step for developing this 
coding scheme was to take an extensive list of reasons 
why people cite published articles. We used the list pub-
lished in Lindgren (2011), which had been distilled from 
a review of 30 studies on citing behavior (Bornmann & 
Daniel, 2008). We then eliminated reasons not found in 
our articles or that would not be explicitly stated in the 
text around a citation. For instance, Lindgren (2011) 
notes that authors may cite one paper over another due 
to the availability of full text for one of the papers—this 
may be true, but will not be easy to identify from the text 
around a citation. We then removed or merged catego-
ries that we did not feel confident could be differentiated 
from each other. Finally, based on a quick read-through 
of the citing papers, we selected and compiled the most 
relevant citing reasons into our final coding scheme for 
the two target papers. As will be noted below, not all of 
the categories we chose to code were ultimately found 
within the citing papers. The final coding scheme was as 
follows:

Publication‑dependent reasons
Citation due to some attribute of the publication being 
cited (the “target” article):

P1  The target paper was the original publication in 
which an idea or concept was discussed—a “clas-
sic” article.

P2  Using/giving credit to ideas, concepts, theories, 
methodology, and empirical findings by others.

P3  Earlier work on which current work builds.
P4  Providing background reading, to give “complete-

ness” to an introduction or discussion.
P5  Empirical findings that justified the author’s own 

statements or assumptions.
P6  Refuting or criticizing the work or ideas of others.
P7  Mentions of other work (“see also”, “see for exam-

ple”, “cf”, “e.g.”, “i.e.”) without further discussion.
P8  Used target paper’s dataset for secondary analysis.

Author‑dependent reasons
Citation due to some attribute of the author being cited 
(the “target” article):

A1  Paying homage to a pioneer in the research area/
giving general credit for related work.

A2  Ceremonial citation, the author of the cited publi-
cation is regarded as “authoritative”.

Fig. 1 The time series of the citations by year for the two articles
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A3  Self-citation: one of the authors was also an author 
on the target article.

Note that this coding scheme is not exhaustive; some 
citations may not be coded as representing any of these 
categories.

A subset of citations in each citing paper was coded 
in terms of this coding scheme by two coders (either 
the second and fourth author, or the third and fourth 
author). If a coder judged that a paper was cited for 
multiple reasons, multiple codes were given. As a pre-
processing step for our final data set, if a citing paper 
cited a target paper multiple times for the same reason, 
it was counted a single time—i.e., if the citing paper 
cited the target paper for reason P1 in three different 
places, it was treated as a single citation because of rea-
son P1.

The proportion of each citation category found across 
citing papers was compared between the two target 
papers (i.e., A/B versus LA) using the Chi-squared test. 
We discuss the implications of applying different post 
hoc controls (Bonferroni versus Benjamini–Hochberg) 
within the results section below.

Statistical power was calculated using G*Power 
3.1.9.4, assuming an effect size where one paper was 
cited 50% more than the other paper for a category 
occurring half the time in the less frequent paper 
(risk ratio  =  1.5), with the allocation ratio set to the 
same ratio as seen for papers AB and LA, and α set to 
0.05, using the Z test of the significance of the differ-
ence between two independent proportions (this test 
is mathematically equivalent to χ2 with one degree of 
freedom—for a given data set, it will obtain the exact 
same p values). For this test, statistical power of 0.8 
would be achieved with samples of 40 and 94, smaller 
than our current sample.

Inter‑rater reliability
Inter-rater reliability (Cohen’s Kappa) was calculated for 
each coding category, treating each category as inde-
pendent since coding was non-exclusive. The average 
Kappa across categories was 0.740 (not including cat-
egory A3, for which there was full agreement). Kappa 
was above 0.6 for every category, placing all categories 
in the “substantial agreement” or “almost perfect agree-
ment” categories of Landis and Koch’s (1997) guidelines. 
Categories P1, P6, A1, and A2 were never coded for any 
citation by either of the two coders. In the case of A1 
and A2, this may come from the difficulty in identifying 
an author-dependent reason for citation from the text 
of the paper; much of the research on author-dependent 
reasons for citation has involved self-report rather than 
content analysis of articles (Vinkler (1987), see review in 
Bornmann and Daniel (2008)).

Results
After establishing inter-rater reliability, the fourth coder 
coded every citation in every paper. We next analyzed 
the prevalence of each citation category for each paper, 
and whether the prevalence of any citation category was 
statistically significantly different for the two types of 
papers. As mentioned above, within analysis we consid-
ered each citing paper and reason combination only once 
for each target paper, even if a target paper was cited for 
the same reason more than once in the same citing paper.

Table  1 shows that the most common citation cat-
egory for both papers, was P2, using/giving credit to 
ideas, concepts, theories, methodology, and empiri-
cal findings by others. It was seen in around half of 
the citations (averaged at the level of citing papers) for 
each target paper. Two categories were seen between 
20 and 40% of the time for both papers: P4, provid-
ing background reading, to give “completeness” to an 

Table 1 The prevalence of different citation categories for each of the two paper types

Statistically significant or marginally significant differences between the two paper types are given in boldface

Reason for citation Average 
prevalence 
(paper AB) (%)

Average 
prevalence 
(paper LA) (%)

Risk ratio p‑value

P2: Using/giving credit to ideas, concepts, theories, methodology, and empirical find-
ings by others

47.9 56.5 1.18 0.314

P3: Earlier work on which current work builds 8.3 2.4 3.46 0.078
P4: Providing background reading, to give “completeness” to an introduction or discus-
sion

25.0 28.2 1.13 0.67

P5: Empirical findings that justified the author’s own statements or assumptions 4.2 2.4 1.75 0.541

P7: Mentions of other work (“see also”, “see for example”, “cf”, “e.g.”, “i.e.”) without further 
discussion

20.8 35.5 1.71 0.063

P8: Used target paper’s dataset for secondary analysis 4.2 2.4 1.75 0.541

A3: Self-citation 35.4 9.7 3.56  < 0.001
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introduction or discussion, and P7, mentions of other 
work (“see also”, “see for example”, “cf ”, “e.g.”, “i.e.”) with-
out further discussion. Self-citations (A3) were sub-
stantially more common for paper AB (35.4%) than 
paper LA (9.7%). The remaining three categories were 
seen less than 10% of the time for both papers.

We then compared the prevalence of each citation 
category between paper AB and paper LA using a Chi-
squared test. This test assumes the paper AB and paper 
LA are cited by different sets of papers. In practice, 
only 3 papers cited both of these two papers (out of a 
total of 214 papers), so this seemed like a safe assump-
tion rather than a situation where a significantly more 
complex method tailored to partial overlap of data 
sets would be warranted. All 214 papers were coded 
and included in the analysis. Our effect size measure, 
given in Table 1, was a risk ratio, which indicated how 
much more likely the more common category was than 
the less common category (1  =  equal proportion; 
1.5  =  50% greater proportion for the more common 
category).

The only category that was fully statistically significant 
was the self-citation rate. Paper AB was self-cited 35.4% 
of the time, while paper LA was self-cited 9.7% of the 
time, χ2 (1, N  =  214)  =  16.35, p < 0.001.

Two other categories were marginally statistically sig-
nificant: P3 and P7. Category P3 represents earlier work 
on which current work builds. Category P3 was over 
three times more common for paper AB (8.3%) than 
paper LA (2.4%), χ2 (1, N = 214) = 3.10, p = 0.078. Cate-
gory P7 represents mentions of other work (cf., e.g., i.e., 
etc.) without further discussion. Category P7 was more 
common for paper LA (35.5%) than paper AB (20.8%), χ2 
(1, N = 214) = 3.45, p = 0.063. The full pattern of statisti-
cal evidence is given in Table 1.

Since we ran seven statistical tests, there was an 
inflated risk of Type I error. One comparison (A3) had 
p < 0.001, so would have been significant even under the 
highly conservative Bonferroni post hoc adjustment. All 
other tests were marginally significant or non-significant, 
and therefore would have been non-significant under 
an appropriately conservative post hoc adjustment that 
would attempt to achieve a false discovery rate of 5%, 
such as (Benjamini & Hochberg, 1995). Therefore, we 
should consider all apparent findings as tentative; more 
conclusive evidence on the findings seen here will need 
to await a substantially larger sample. Given the rela-
tive rarity and small frequency of category P3 in spe-
cific, statistical power appeared to have been insufficient 
despite our initial check. Repeating our statistical power 
check from earlier, we determined that achieving statisti-
cal power of 0.8 for a category as rare as this one would 
require a sample of 583 citing papers. Therefore, a larger 

number of target papers will need to be analyzed in order 
to have more conclusive confidence.

Discussion
In this paper, we investigated the reasons behind why sci-
entists cited the two papers, which used the same STEM 
education learning platform to do two different kinds of 
research—automated A/B testing and learning analytics 
research.

Our findings show that both papers appeared to be 
cited primarily in terms of publication-based reasons 
rather than author-based reasons (except for self-cita-
tion). However, this may simply reflect the difficulty of 
identifying author-based reasons for citation. Even if a 
citation is made solely due to the cited author’s political 
power, it may still be couched in terms of scientific merit. 
For instance, some of the category P7 (citations to a paper 
as an example of some more general category, without 
further discussion) may actually reflect political/author-
based citation. More reliably determining whether some 
citations are political in nature may require another 
method of analysis, such as surveying authors anony-
mously (Vinkler, 1987).

In comparing the two articles, we found only one fully 
statistically significant difference between the two papers: 
the A/B testing paper was self-cited over three times as 
often as the LA paper. Given that both papers involved an 
overlapping senior author, and almost all of the self-cita-
tions involved this senior author rather than the junior 
authors, this difference is probably not due to differences 
between the papers in author egos or the desire to self-
promote. This is an important check as Lindgren (2011) 
identified that professional status affects the citation 
count. Instead, there may have been different reasons for 
self-citation between the two papers (which did not show 
up in the formally coded reasons). One possibility is that 
paper AB built a methodological base that future papers 
by the same group built on top of. A second possibility is 
that the paper’s results were more foundational for that 
group’s later work. A prior study suggests that conceptual 
papers are currently cited heavily to set the groundwork 
for this emerging field (Dawson et al., 2014). A third pos-
sibility is that the A/B paper was self-cited more often 
than the LA paper in response to that paper’s lower rate 
of external citation—the authors saw the paper receiv-
ing less attention and attempted to attract attention to it 
through self-citation; in other words, the same desire to 
self-promote manifested differently for these two papers. 
There is some evidence in favor of the second possible 
explanation coming from the marginally significant dif-
ference between the papers in reason P3 (earlier work on 
which current work builds)—over three times as many 
citations to paper AB were for reason P3 than in paper 
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LA. Of course, it is uncertain from our limited data set 
whether this finding would apply to other papers based 
on A/B testing as well.

By contrast, references to paper LA were margin-
ally significantly more likely (a little under double as 
likely) to be for reason P7 (mentions of past work with-
out future discussion). This suggests that paper LA may 
have been seen as an important result by the field, but 
was not directly built on by future researchers. Again, it 
is not yet clear whether this finding would apply to other 
papers using learning analytics methods, or whether it 
was specific to this result. P7, an author using citations 
to direct their audience to further reading, has also been 
cited as one of the most common reasons for citation 
in computer science research within (Harwood, 2009), 
which used qualitative interviews to study the functions 
of citations.

One key limitation to this study is that it investigated 
only a single matched pair of articles (albeit a closely 
matched pair). To draw more substantial conclusions, this 
work must be replicated with a broader range of publica-
tions, drawn from a greater variety of publication venues, 
and learning platforms. By doing so, we can determine if 
the tentative findings seen here apply across the full spec-
trum of papers that use STEM learning platforms.

In considering these research findings, it is impor-
tant to acknowledge the multiple confounding variables 
which might play a role in these results, but which are not 
addressed in the current study. For instance, the histories 
and patterns of usage of the two techniques—A/B test-
ing and Learning Analytics—differ which in turn has led 
to a different set of researchers being interested in each 
technique. Various aspects of the training of research-
ers in each community may lead to papers being cited in 
different ways. Although the two papers were presented 
at the same conference in the same year, the two papers 
were presented in separate sessions—the AB paper was 
presented in the ‘Scaffolding’ session, and the LA paper 
was presented in the ‘Gaming Behavior’ session. For the 
AB paper, no other author who presented in that ses-
sion cited the target paper. However, for the LA paper, 
the first three authors of the other two presentations in 
that session cited the target LA paper (Baker, Corbett, 
and Koedinger). However, while this could reflect an 
influence of attending the session, this also might simply 
reflect that the topic of the LA paper (gaming the system) 
was a topic that Baker, Corbett, and Koedinger had previ-
ously published on and continued to publish on after that 
point. In other words, these researchers probably would 
have cited the LA paper regardless of whether they had 
been in the session. Nonetheless, it cannot be discounted 
as a possibility that the attendees or other presenters in 
the session could have influenced the citation patterns of 

the article going forward. There also could be differences 
in the expectations of the communities of researchers 
publishing in each of these areas as well as in the jour-
nal editors who select the reviewers who encourage or 
discourage specific types of citation. These factors might 
have shaped the patterns we report in this article. Finally, 
the timeline and feasibility of conducting work of each 
type, and other structural barriers and opportunities to 
conduct these two kinds of research vary, and may have 
had an impact on what research was conducted in ways 
that could have driven how each paper was cited.

Conclusion
This article compared two previously published papers 
carefully matched on several dimensions, to study the 
differing citation patterns of papers using a STEM learn-
ing platform for different types of research. Overall, 
within the specific case study paper comparison here, an 
A/B testing paper appears to have had a larger impact on 
subsequent work than a learning analytics (LA) paper, 
despite the fact that the LA paper had a greater total cita-
tion count and a lower degree of self-citation.

However, as discussed above, our findings remain 
tentative due to the limited scope of this case study. To 
draw more substantial conclusions, particularly for rarer 
citation categories, this work must be replicated with 
a broader range of publications, drawn from a greater 
variety of publication venues and learning platforms. 
Our current work is a first step towards this larger-scale 
effort—it establishes a coding scheme for publication rea-
sons relevant to the use of learning platforms in research. 
More importantly, perhaps, this paper starts the process 
of building a corpus of codes that can be used to train a 
machine-learned model to recognize each of these publi-
cation reasons. There have been initial efforts along these 
lines in other domains studied by scientometricians (e.g., 
Athar & Teufel, 2012; Garzone & Mercer, 2000). Develop-
ing such a model will have the potential to greatly speed 
research of this nature—helping us, in the long term, to 
understand the impact that different research involving 
STEM learning platforms has on the broader research 
community studying STEM learning.
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