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ABSTRACT
Peer feedback can be a powerful tool as it presents learning op-
portunities for both the learner receiving feedback as well as the
learner providing feedback. Despite its utility, it can be difficult to
implement effectively, particularly for younger learners, who are
often novices at providing feedback. It can be difficult for students
to learn what constitutes “good” feedback – particularly in open-
ended problem-solving contexts. To address this gap, we investigate
both classical natural language processing techniques and large
language models, specifically ChatGPT, as potential approaches to
devise an automated detector of feedback quality (including both
student progress towards goals and next steps needed). Our find-
ings indicate that the classical detectors are highly accurate and,
through feature analysis, we elucidate the pivotal elements influenc-
ing its decision process. We find that ChatGPT is less accurate than
classical NLP but illustrate the potential of ChatGPT in evaluating
feedback, by generating explanations for ratings, along with scores.
We discuss how the detector can be used for automated feedback
evaluation and to better scaffold peer feedback for younger learners.
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1 INTRODUCTION
Feedback is essential to successful learning and instruction. A con-
siderable amount of scholarly work has considered what makes
feedback effective and how it can be improved [47]. Feedback should
be a learner-centered process [37] that helps students enhance their
learning skills and encourages them to be active learners [46]. Much
of the recent feedback literature has focused on instructors provid-
ing feedback to students [27, 43], or learning systems automatically
providing feedback [29]. There is also a growing body of work con-
sidering peer feedback, where learners provide feedback to other
learners. The effect of peer feedback is two-fold: 1) learners receive
feedback from their peers, which they can use as much as they
would use feedback from an instructor [28], and 2) learners provide
feedback to others, developing their metacognitive skills in eval-
uating their own work as well as important communication and
teamwork skills [7].

In order to provide feedback, the learner must first use their
own internalized set of standards to evaluate the quality of their
peers’ work. This process allows students to develop a better un-
derstanding of the assessment process and criteria and, in turn, can
improve self-assessment skills [38, 39], which are critical to many
self-regulated learning practices [1, 45]. Some studies have shown
that giving feedback is just as effective, or more so, for improving
a learner’s understanding and communication of a topic than re-
ceiving feedback (see review in [17]). Given the benefits of both
giving and receiving feedback, incorporating peer-based feedback
into learning technologies could significantly improve learning,
while also allowing for increased scalability. However, it is not yet
clear how that technology might teach students to deliver “good”
feedback – that is, feedback that is beneficial to both the provider
and, ultimately, to the recipient. This may be especially true for
younger learners, who may be novices at providing feedback and
may not yet know the elements of “good” feedback.

The question is then how to give feedback about “good” peer
feedback, such that students are not onlymastering content, but also
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developing skills for providing helpful feedback to their peers. In
this paper, we take a step towards automated “feedback on feedback”
within an existing learning platform with a peer review element.
Helpful “feedback on feedback” would likely need to be automated
and given in real-time so that students can revise their feedback in
a timely fashion. This goal would, however, first require us to make
automated assessments about a peer’s feedback in the moment– an
objective we tackle in the current paper.

In the current study, we hand-coded peer feedback comments
from an online mathematics platform, where students provide com-
ments on their peers’ problem-solving approach. We then com-
pared two methods to provide ratings of peer feedback that could,
in turn, inform automated feedback. First, we used “classic” natural
language processing (including tokenization and parts of speech
tagging) and supervised machine learning to develop an automated
coding process for student comments. We then interrogated the
model through feature analysis to derive the most important fea-
tures of successful comments in order to provide more actionable
insights for either students or teachers.

Second, we explore advances to large language models (specifi-
cally ChatGPT 4) for the same task. Whereas the "classic" approach
dissects student comments at a granular level, identifying patterns
in successful feedback, ChatGPT offers the possibility of a more
holistic approach, where instead of breaking comments down, it
assimilates information in its entirety and provides ratings aligned
with a defined (by us) rubric. To translate ratings to actionable feed-
back for this model (as feature analysis is not possible), we include
in the ChatGPT prompt a request to include reasoning for its rating,
providing an interpretable message that can inform student feed-
back. Finally, to check for the generalizability of our models to score
peer feedback, we applied both models to a held-out test set (i.e.,
unseen data) and compared automated scores to external measures
to test for evidence of convergent validity, including measures of
executive function, metacognition, and anxiety.

2 RELATEDWORK
2.1 Peer Feedback
Providing peer feedback offers a number of potential learning oppor-
tunities for the learner providing the feedback [36]. In interviews
with 15 learners, Ertmer and colleagues (2007) show that through
providing peer feedback, students reflected more critically and thor-
oughly on their own work. Students in this study also reported that
providing feedback to their peers also strengthened their internal
representations of the problem. Similarly, a study with 143 Com-
puter Science undergraduates [24] showed that students engaging
in peer feedback developed analytical skills that, though initially
applied to their peers’ work, were then also applied to their own
work. Though students often have strong feelings about feedback
(i.e., liking or disliking it), they may not know the difference be-
tween effective and ineffective feedback [20]. As such, methods to
guide learners in providing effective peer feedback could support
both learners involved in the interaction.

2.2 Automated Feedback Evaluation
Automated evaluation of feedback has been considered by a number
of scholars, often with older students [22, 32]. This process typically

has involved using natural language processing techniques (similar
to approaches in the current research) to extract features from text
feedback. These features can then be used in conjunction with
human coding or supervised machine learning, to provide insights
into feedback content [22] and quality [4, 32].

Thematic analysis of feedback is typically most useful to the
person receiving the feedback; by providing a summary of feedback,
the receiver of the feedback can identify broad areas that need
addressing. Analysis of feedback content, however, can break it
down into its component parts and provide more useful information
for the person providing the feedback. For example, [4] use random
forest classifiers to identify the presence of good feedback elements
within larger blocks of text from an instructor (feedback to students).
Features were extracted primarily using the Linguistic Inquiry and
Word Count (LIWC) [35] and Coh-metrix [15] tools. A follow-up
study extended this work [3] using a similar approach. In both
studies, one classifier was trained per feedback component (a total
of seven components) that could then be interpreted for overall
feedback quality and areas of improvement.

Work by Osakwe and colleagues [32] also used the text mining
tools LIWC and Coh-Metrix to investigate instructor feedback qual-
ity across datasets that included feedback in two different languages
(Portuguese and English). This study showed good classification
of feedback elements within language (e.g., a model training on
English feedback, performed well on data of the same language).
The study also investigated the transferability of the NLP features
between languages; however, models did not generalize between
languages, demonstrating the importance of context, and a potential
limitation of this approach. To date, much of the work on automated
evaluation of feedback quality has focused on instructor feedback
rather than peer feedback. There has also been limited work con-
sidering automated feedback evaluation (either instructor or peer)
in mathematics [33]. One exception to this is [50], which uses bag
of words models, sentence embeddings and parts of speech tagging
to detect individual components of effective feedback in mathemat-
ics. Their results indicated that sentence embeddings were most
successful for predicting elements of good peer feedback, but this
work did not provide an “overall” evaluation.

The recent developments (and increase in public availability) of
Large Language Models (LLMs) such as ChatGPT [31] has allowed
for the automation of coding of text. Though not yet applied to
student peer feedback in published work, LLMs have already been
shown in recent results to outperform humans in coding of text
data [14]. Due to their large training corpus, intense training pro-
cess, and highly complex underlying mechanisms (GPT 4 currently
claims over 1.7 trillion internal parameters), LLMs have the poten-
tial to outperform more specialized methods that are trained on
much smaller corpora. Similarly, LLMs can discern semantic rela-
tionships among words and concepts, capturing complex linguistic
patterns that are difficult for human beings to identify rationally
through regular expressions [48]. Furthermore, ChatGPT has an
advantage over other automated detection methods in that it is
designed to interact with human beings, rather than simply de-
liver a code or response. This ability has the potential to make the
output of an LLM-based automated feedback evaluation process
more interpretable to both students and teachers without the need
for complex feature analysis and subsequent interpretation. To our
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knowledge, no one has yet attempted to derive learning analyt-
ics regarding peer feedback quality using LLMs – an objective we
tackle in the current paper.

2.3 Components of Effective Feedback
The literature identifies good feedback as that which allows the
receiver to improve their self-regulation [30], and further describes
it based on three characteristics (Informativeness, Polarity, and
Timelines), which we examine below with an eye toward how it
can be automatically extracted from text data via natural language
processing techniques.

Two highly context-dependent elements of feedback are polar-
ity and timeliness [41]. Polarity refers to the tone of the feedback,
whether it is reinforcing good practice, or correcting a mistake.
Timeliness, meanwhile, refers to when the feedback is received, for
example, in the moment, end of class, or the following day. Both
of these components vary by context, and there is no clear con-
nection between these constructs and feedback quality (i.e., not all
in-the-moment feedback is good, depending on the student and
context). These elements are thus challenging for automated evalu-
ation from text alone. Positive and negative words can be analyzed
and extracted through parts of speech tagging (including negated
positive words), but how that translates to feedback quality is less
clear. For example, students’ motivation level might impact how
they respond to either a corrective or reinforcing comment (po-
larity) [18], which cannot be extracted from the text. Additionally,
assessing the timing of feedback requires data beyond just text data
and information regarding prior knowledge and the task context
[13, 17].

Informativeness refers to the extent to which the comments con-
tain both feed-back and feed-forward components [11, 17] and can
be easier to asses from text data alone. Feed-back elements commu-
nicate to a learner their progress toward a certain goal or expected
outcome [30]. These elements can also reinforce successful strate-
gies or methods used towards the goal. Meanwhile, feed-forward
elements direct the learner on possible future behaviors [17]. This
may include suggesting strategies or alternate approaches. By com-
bining information on current progress and future directions, feed-
back comments are informative to the learner and support them in
progressing towards the objective or goal. In this paper, we focus on
elements of informativeness in our coding scheme and detectors.

2.4 Current Study and Novelty
This study includes data from 203 6-8 graders using CueThink, an
online learning environment designed to develop student problem-
solving skills in middle school mathematics. As students use the
system, they interact with their peers, providing feedback on each
other’s solutions. Using some of the components of effective feed-
back described above, we develop a coding scheme for evaluating
peer feedback comments in a mathematics problem-solving setting.
We then answer the following three research questions:

RQ1. How effective is the combination of natural language pro-
cessing and supervised machine learning for automated feedback
evaluation for younger learners (6th-8th grade)?

RQ2. How do large language models, such as ChatGPT compare
for evaluating peer feedback and providing feedback on feedback?

RQ3. How do model outputs correlate with external measures?
Through answering these research questions, we tackle the prob-
lem of providing automated “feedback on feedback” for younger
learners who are likely novices at providing feedback to others.
The work serves as an initial step towards providing scaffolds and
advice for learners as they produce peer feedback and develop their
own self-regulated learning skills.

3 DATA COLLECTION AND CODING
In this section, we describe the learning environment used in this
work, along with the data collection and data coding process. The
codes derived are then used as ground truth values in the machine
learning process discussed in the following section.

3.1 Online Learning Platform
CueThink [6] is a digital learning application that focuses on en-
hancing middle school math problem-solving skills, encouraging
students to engage in self-regulated learning and develop math
language to communicate problem-solving processes. The plat-
form asks students both to solve a math problem and to create a
shareable screen-cast video that provides the student’s solution and
demonstrates their problem-solving process. CueThink structures
a problem into a Thinklet, a process that includes four phases—
Explore, Plan, Solve, and Review—that closely align with Winne
& Hadwin’s model of SRL [45]. A full description of the CueThink
phases can be seen in [49]

Once students have completed the problem-solving process and
recorded their solution, their video is shared with their class for
peer review (following the “review” phase, where students review
their own work). In this process, teachers and peers annotate both
the textual responses and video, often asking the student for their
underlying reasoning or why the student picked specific methods.
These annotations are then sent back to the video’s author for
possible revision. These annotations are the focus of the current
analyses.

3.2 Developing the Codebook
Our coding schemewas developed using 116 peer-review comments
from 87 students. The code development process then followed a
recursive, iterative process [44], including conceptualization of
codes, generation of codes, refinement of the first coding system,
generation of the first codebook, continued revision and feedback,
coding implementation, and continued revision of the codes [12].

We initially created a four-tiered code for feedback robustness
– combining elements of “feed-back” and “feed-forward” [17, 30]
along with elements of informativeness, to create one measure of
feedback that can be used in this method [17]. In designing one
coherent metric from the literature regarding feedback, we could
not include all components, therefore we prioritized the elements
we deemed to bemost relevant to peer feedback. “Feed-up” elements
were excluded as these relate to students’ understanding of the
overall learning goal; peers are not typically expected to provide
feedback on this (instead, instructors do). Feedback tiers ranged
from tier 1, which was the least robust, and used for non-helpful,
vague, or generic comments that could be applied in any feedback
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situation, to tier 4, the most robust category with evidence of peer-
to-peer learning. Three coders then coded the same 60 annotations
individually and came together to discuss agreements. During this
process, we observed high variance in Tier 2, with two distinct
groups, with different levels of specificity. We chose to split the tier
to capture this difference, yielding our final coding scheme with 5
tiers. A further round of coding agreement was performed with the
updated codebook, and example annotations were added. The final
list of codes, along with examples, are in Table 1.

3.3 External Measures
Though our primary goal is to develop automated detectors rela-
tive to our code book, we also evaluated the convergent validity
of our detector (i.e., does it correlate with other constructs that
we would expect it to?). This was done through comparison to
external measures, including survey measures of math anxiety [2],
executive functions [42], metacognitive awareness [40], and beliefs
on problem-solving [21]. For example, for purposes of convergent
validity, we would expect that students who give better feedback
(according to the detector) would be more likely to have lower math
anxiety scores and higher metacognitive beliefs.

The modified Abbreviated Math Anxiety Scale [2] uses a two-
factor structure, which results in two subscales learning math anxi-
ety (Learning subscale), and math evaluation anxiety (Evaluation
subscale) [2, 19]. The scale was developed for math learners be-
tween 8 and 13 years old (i.e., overlapping our research sample) and
includes a 9-item self-report of math anxiety that are averaged to
produce one final scale for analysis.

Adaptive Cognitive Evaluation (ACE) is a series of 15 measures
of executive function, implemented in an interactive game envi-
ronment. Because the environment is adaptive, it can be used for a
wide variety of ages and is recommended for any age group from 7
up. Students completed a subset of the 15 measures, in the online
testing environment. Once logged in, students were allowed to
progress at their own pace, as with the other measurements.

The Junior Metacognitive Awareness Inventory (JrMAI) is a mea-
sure of metacognitive and cognitive strategies applied by learners
[40] that was developed for students in grades 6 through 12. The
current study uses a 9-item abbreviated version of the JrMAI that
was validated with student in grades 6 -8 [16]. The measure includes
5 items identified as regulation of cognition and 4 items identified
as knowledge of cognition.

The Indiana Mathematics Belief Scales [21] prompts students re-
garding their beliefs about mathematics and mathematical problem-
solving over a 36-item survey. The measure is divided into six
subscales. In this work, we administered 3 of the 6 subscales. Specif-
ically, we administered shortened versions of three subscales, which
measure (a) student beliefs that they can solve time consumingmath
problems (5 items), (b) student beliefs that effort increases ability
in mathematics (3 items), and (c) student beliefs that math is useful
in their real lives, respectively (3 items). The shortened versions
were validated using middle school students.

Each of these measures were combined into a pre-test that was
delivered in three sections. Each section was delivered by the stu-
dents’ math teacher and at times convenient with other classroom
instruction. Teachers were given a two-week window to complete

the tests. The three sections could be delivered in any order, and
over multiple class periods (e.g., sections 1 in one class, and sections
2 and 3 in the next class).

Once the pre-test was complete, students were provided with
access to the learning platform. Their interaction with the platform
was integrated into their regular classroom instruction, with their
teacher assigning problems for them to complete. Students used the
learning platform for the majority of the academic year. However,
this was alongside a variety of other instruction, so on average,
students completed 3 problems during the year. Each problem took
an average of 1.8 hours. A post-test (identical to the pre-test) was
also conducted following students’ use of the platform, but this
data is not analyzed in the current work.

4 SUPERVISED MACHINE LEARNING – RQ1
We next developed supervised machine learning models using
the same peer feedback comments used to develop the codebook
(N=116), the first approachwe investigate in this paper. This process
aimed to develop automated evaluation of the peer feedback com-
ments, using the human codes from our coding scheme described
above as the ground truth. We first tokenized each peer-review
comment and then extracted features for each comment using the
nltk package in python [25]. We then recorded the length of the
comment with and without stop words (i.e., function words like
“and,” “the,” “for,” etc.) as defined by the nltk package. These two
measures gave an impression of the length of the comment; by
removing stop words, we also gain an approximate measure of the
number of content words. We next counted the number of “starter
phrases” (sentence scaffolds provided by the learning platform)
used in the comment. Finally, we generated features using nltk’s
32 tags for parts of speech, removing seven that were not found
in our data to exclude zero variance features. Our final feature set
was a total of 28 features.

We used the scikit-learn library [34] to implement commonly
used regressors: Bayesian ridge regression, linear regression, XG-
Boost (via the XGBoost library [5]), Huber regression, and random
forest regression. Hyperparameters were tuned on the training
set only using the cross-validated grid search method provided
by scikit-learn, where appropriate. As Spearman correlations (the
metric used below) do not have a predefined chance value (e.g.,
unlike AUC ROC), we also derived a Chance baseline using the
Dummy classifier in scikit-learn, which simply makes random pre-
dictions based on the prior probabilities observed in the training
data. For instance, if 20% of the training data are labeled as ’1’, this
classifier will predict ’1’ with a 20% probability, and so on for other
values. This model undergoes the same training process as other
models, and its performance is assessed using the same evaluation
techniques applied to other classifiers.

All models were trained using 4-fold student-level cross-
validation (multiple data points from the same student are in the
same fold) and repeated for ten iterations, each with a new random
seed. This type of cross-validation promotes generalizability to new
students. Multiple iterations were performed to verify the stability
of the results. For evaluation, predictions were pooled across folds,
and then results were averaged across iterations.
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Table 1: Final Annotation Coding Scheme

Tier Description
1 – Least Robust These annotations are generic and lack constructive feedback for the author. Tier 1 annotations could be

applied to any thinklet as they do not connect to specific components of the thinklet.
Example: “it was good”

2 – Somewhat Robust These annotations lack specific details and provide little or no elaboration aside from the mathematics. Authors
may attempt to connect to the work in the thinklet, but the connection is vague and not clearly explained.
Example: “I hadn’t thought of the way you found the answer. Although while you were explaining it, it became
clear.”

3 – Robust These annotations attempt to elaborate on a specific piece of the thinklet or problem related to the
problem-solving process. Authors may attempt to connect to the work in the thinklet, with specificity.
Example: “I agree with your answer but maybe next time make the numbers that are supposed to be negative,
negative in the equation to make it more clear.”

4 – More Robust These annotations also identify specific components of the thinklet, or problem related to the problem-solving
process. Authors may connect specific components of the work in the thinklet but lack recommendations for
next steps.
Example: “My strategy is like yours because I put the information in almost the exact same way. I think I just
switched the places of the two withdrawals.”

5 – Most Robust These annotations identify relevant components of the problem-solving process in a more elaborate fashion
while also providing helpful feedback that is likely to support peer-to-peer learning.
Example: “I respectfully disagree with you on the last pieces of your math as you had added a positive with a
negative. While you should have added -30 with the -83 and gotten -113 then subtractive that with the positive
76 and gotten -37.”

Table 2: Automated Detection Results – Spearman’s rho. Cor-
relation with ground truth.

Regressor Rho

Chance .16

Linear Regression .85
Huber Regression .75
Bayesian Ridge Regression .82
Random Forest Regression .91
XGBoost Regressor .89

4.1 Model Evaluation
In order to address research question 1, we compare model accuracy
by computing the correlation between the model predictions and
human codes, used here as “ground truth” (described above in Table
1).

We used the Spearman correlation coefficient (i.e., Spearman
rho) since the true labels are on an ordinal scale and the model
predictions are continuous. All results reported are from the test
folds (reported in Table 2). All results are above the chance baseline,
with Random Forest Regression providing the best detector. The
high correlation magnitude (rho=.9) with the ground truth signifies
not only the supervised machine learning detector’s very high
performance but also indicates a robust relationship between the
feedback robustness and the input features derived.

We investigated the models to understand how features related
to predictions of feedback robustness, using SHapley Additive ex-
Planations (SHAP) values [26] as implemented in the shap library

in Python. Table 3 lists the Shapley values with the largest impact
on predictions.

5 LARGE LANGUAGE MODEL – RQ2
Large language models, such as OpenAI’s GPT series, have ad-
vanced the field of natural language processing by demonstrating a
capacity to comprehend and generate human-like text. These mod-
els are trained on significantly more text than any of the models
trained in section 4, and have significantly more parameters. The
features extracted in section 4, explicitly dissected the individual el-
ements of the peer feedback to inform the model. In contrast, large
language models present a more generalized approach to text-based
information, allowing for a more holistic approach to evaluating
feedback, that may more accurately emulate an instructor’s ap-
proach. However, as general models of language, they also do not
have the advantage of being designed for the specific purpose of
evaluating feedback.

Recognizing the potential of these models in understanding and
processing language, we employed ChatGPT via its API to exam-
ine its utility in classifying student feedback statements against a
specified rubric, thus answering our second research question. This
section outlines our methodology, the challenges we encountered,
and the results derived from using ChatGPT as a detector of student
peer feedback robustness.

5.1 Using Large Language Models as a Detector
In order to prompt the LLM, we combined the use of a rubric with a
the same data used in section 4. The rubric in Table 1 was presented
to ChatGPT along with 3 examples for each rating (within the
prompt). The examples that were provided were not part of the
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Table 3: High Shapley Value Variables for best performing model (Random Forest)

Predictor Directionality Predictor Directionality
Digits Positive Unrecognized Words Negative
Plural Nouns Positive Verb base form Negative
Length of Annotation Positive Adverbs Negative
Preposition/Subordinating Positive Modal Negative
Determiner Positive
Adjective Positive
Verb 3rd person Positive

Figure 1: ChatGPT Prompt for evaluating student peer feedback. The full rubric is not shown to avoid repeating Table 1. Yellow
highlighted and bolded section was included in the run with explanations only; in the no explanation version, it is replaced
with “Please provide a”.

data used for evaluation. This rubric used the same language that
had been given to the human coders who had previously human
coded ground truth labels for this data, independently from GPT.

The prompt was iteratively refined (on unlabeled example data)
in order to ensure that GPT provided ratings that were appropriate
for the context and accurate to the request. For example, ChatGPT
did not appear to view the rubric as restrictive. Even though the
rubric clearly had only five tiers, when the explicit instruction to
“rate from 1-5” was omitted from the prompt, GPT would generate
extraneous categories for its labeling system. The final evaluations
were performed on the entire data set, and no cross-validation was
performed for the purpose of prompt engineering or fine-tuning.

We tested two final versions of the prompt (see Figure 1), one
that included the phrase “Explain your reasoning in detail” and one
that did not. Work has shown that the reasonings from ChatGPT
when used as a classifier, may be of use in educational settings [48].
Though more expensive (due to the increased number of tokens),
this can potentially result in more explainable decision-making that
could further inform students.

Previous research has shown that even when setting the ran-
dom seed and trying to account for random elements, it is likely
that ChatGPT will not be deterministic between iterations [9]. To
address this, we ran each prompt over 5 separate iterations of the
entire dataset, gaining five sets of ratings for each peer feedback
instance to allow to assess variability and stability of the approach.

For this initial experiment, each annotation to code was deliv-
ered to ChatGPT through a separate API session, thus limiting the
amount that the system can learn from previous codes. This was
done to limit confounds or ordering effects that may arise from
delivering the annotations sequentially.

5.2 Results
Results for both versions of the ChatGPT detector (with andwithout
requiring explanations in the prompt) are shown in Table 4. To allow

comparability to earlier results, we again evaluate the model with a
Spearman correlation between the detector values and the human
codes used as ground truth. While these detectors still outperform
chance (see Table 2), they only outperform one of the classifiers
trained in section 3, and perform much more poorly than the best
detectors from that section (.91, .89).

We note that the version of the prompt that requested explana-
tions along with the rating had greater stability between iterations
and a higher overall correlation with human-coded ground truth
values. Though this difference in correlation is small, there was
also a wider range of correlations between single iterations for the
version without explanations (rho = .64-.78) than the version with
explanations (rho = .74-.78). We performed a paired t-test on the
standard deviations across runs for each annotation between the
two versions of the prompt, finding a significant difference between
the two distributions, t(116)=2.66, p = .008, implying that by includ-
ing the request for explanations in detail as part of the prompt, we
significantly improved the stability of the detector. One hypothesis
for this may be that ChatGPT is evaluating itself for global cohe-
sion [31], though as the exact workings of the model and response
mechanism are not known, this remains simply conjecture.

5.3 Explanations
Though a traditional “feature analysis” is not possible with Chat-
GPT, one advantage of using an LLM is that it can be asked to
explain its reasoning (see prompt above). We stored all of the given
explanations from each run of the detector. Example reasoning
statements are shown in Table 5.

We note anecdotally that the content of ChatGPT’s feedback
does not follow a strict formula, and there is considerable variance
between iterations in the wording of the feedback provided. In
some cases, the feedback quotes whole or individual elements of
the student annotation, in others, no quotation is made.
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Table 4: Results from ChatGPT Detectors of Peer Feedback Robustness

Measure ChatGPT – No
Explanations

ChatGPT – With
Explanations

Chance Baseline Correlation .16 .16
Correlation between averaged rating (across iterations) and Ground Truth .76 .79
Minimum Correlation with Ground Truth (Single Iteration) .64 .74
Maximum Correlation with Ground Truth (Single Iteration) .78 .78
Number of Instances with 5 identical ratings 64/116 90/116
Average Standard Deviation Across Instances .21 .13

Table 5: Example of rating explanation provided by ChatGPT for ratings of peer feedback

Rating Tier Example Explanation Provided by ChatGPT

1 – Least Robust The feedback "that is a really good answer" falls into the Tier 1 category. It is a generic comment that does not
provide any specific or constructive feedback to the author. It does not elaborate on any part of the problem-solving
process or provide any recommendations for improvement. Therefore, the score is "1".

2 – Somewhat
Robust

The feedback provided is somewhat specific, as it suggests a way to improve the problem-solving process by
separating addition and subtraction equations. However, it lacks a clear connection to the work in the thinklet and
does not provide any elaboration on the mathematics involved. Therefore, this feedback falls under Tier 2 -
Somewhat Robust.

3 – Robust This feedback falls into the **Tier 3 - Robust** category. The feedback is specific to the thinklet, mentioning a
particular step in the problem-solving process (adding two deposits together). However, it lacks any
recommendations for next steps or further elaboration on the problem-solving process. Therefore, it doesn’t reach
the level of Tier 4 or 5. So, the score is "3".

4 – More Robust The feedback provided falls into the Tier 4 category. The author of the feedback is connecting to the work in the
thinklet with specificity, stating that their strategy is similar to the one used in the thinklet. However, the feedback
lacks recommendations for next steps or any further elaboration on the problem-solving process. Therefore, the
score is "4".

5 – Most Robust The feedback provided is a Tier 5 - Most Robust. The author of the feedback has elaborated on a specific piece of the
problem-solving process, pointing out that the original author was finding the median, not the mean. They then go
on to explain how to correctly find the mean, demonstrating a clear understanding of the problem and providing
constructive, specific feedback for the original author. This feedback promotes peer-to-peer learning and is
therefore categorized as Tier 5.

Though these explanations are likely not good enough to be
presented directly to students without a human in the loop or
further refinement, they do present an easier interpretation than a
feature analysis as to why an automated code may have been given.
This increased interpretability is a clear advantage of the model
as the future application is to provide information to students or
instructors via the learning platform. These explanations present
a starting point for teachers to understand why a student’s rating
might be lower and to translate to direct and meaningful “feedback
on feedback”. It should be noted that the prompt did not specify
that the reasoning be constructive or aimed at a target audience
(we discuss this limitation in the future work section).

6 APPLYING TO NEW DATA – RQ3
We next applied the best-performing classic NLP model from sec-
tion 4 to the remainder of the peer feedback data (444 peer feedback
comments from 124 students). In order to avoid confounding the
analysis with training data, we consider only unseen student feed-
back (comments not used in training process) in this analysis. Using

the same feature preprocessing as above, we extracted features from
the remaining peer comments. These features were then used as
the input to the best-performing model trained above, providing
a score for each peer review comment. For the GPT model, the
process remained identical to that discussed in section 5. As it both
performed better (correlation to ground truth) and had higher sta-
bility, we used the version of the prompt that asked for detailed
explanations alongside the ratings.

6.1 Correlating with External Measures
We next considered how the peer review annotation scores related
to other measures in our dataset to investigate the model’s con-
vergent validity. As survey measures were recorded at the student
level (i.e., not repeated measures), we averaged annotation scores
by student (the annotator) to produce one value per student. These
were then correlated with the survey measures (see Table 2), a
Benjamini–Hochberg post-hoc correction for multiple comparisons
was applied (see Table 6). We note that the correlations are similar
in both magnitude and direction between the supervised approach
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Table 6: Spearman Correlations of Average Annotation Scores and External Measures

Survey Measures Correlation with
Supervised Machine
Learning Detector

Correlation with ChatGPT
Detector

Jr Metacognitive Awareness Inventory .282** .337***
Math Anxiety Scale -.271** -.188*
Indiana Math – Belief that students can solve complex Problems .234** .181*
Indiana Math – Belief that effort increases math ability .245** .223*
Indiana Math – Belief that math is useful in daily life .378*** .314***
ACE Task Switch -0.032 -.066
ACE Flanker Task -0.17 -.194*

and the GPT detector: students with higher anxiety scores were
less likely to give effective feedback, whereas students with high
metacognition scores were more likely to give effective feedback.
We saw no significant relationship for the ACE task switch task;
however, there was a significant negative correlation for the Flanker
task (typically used to assess executive function components), im-
plying that students who perform better on the Flanker task may
provide worse peer feedback. However, this effect was only sig-
nificant for the ChatGPT detector and requires further study to
examine what elements of the Flanker task may be predictive of
peer feedback quality, or vice versa. We note significant correlations
with all of the Indiana Mathematics Belief scales included for both
types of detectors. Of particular note is that students with a greater
belief that mathematics has value in the real world are more likely
to leave higher quality feedback, perhaps indicating a motivation
component to effective feedback.

Finally, we analyzed the scores for changes over the course of the
student’s interaction with the learning platform (multiple weeks)
using mixed-effects linear regressions with students as the random
intercept. We did not observe significant differences from this anal-
ysis in either the predictions from the supervised machine learning
detector (p=.348) or the ChatGPT detector (p=.174), indicating that
peer review comments did not improve (as measured by our detec-
tors) with increased usage of the platform.

6.2 Comparison of Supervised Machine
Learning to ChatGPT Detector

This paper has considered two different methodologies for analyz-
ing student peer feedback comments: supervised machine learning
and an approach based on ChatGPT. As with many learning analyt-
ics analyses, the goal is not just to obtain good model performance,
but ultimately to use that measurement in a way that can support a
students’ educational goals, put simply, inform "feedback on feed-
back," it is through these two lenses that we now compare the two
approaches.

Both the Supervised Machine Learning models and the ChatGPT-
based detector considerably surpassed the chance baseline. This
outcome implies that rather than capturing mere randomness or
noise, both methodologies discern genuine patterns or signals from
the text they evaluate, signaling their capability to genuinely pro-
cess the feedback relative to the expert-defined rubric. Considering
accuracy (as measured by Spearman correlations with ground truth)

the supervised machine learning models, for the most part, outper-
formed the ChatGPT detector. This heightened accuracy may be
attributed to the rigorous training processes and the capability to
tune model parameters and select the most relevant features.

On the other hand, the ChatGPT detector presents an advan-
tage in terms of adaptability. There is the potential to make minor
changes in the rubric without changing the detector process (or
re-training a model). The foundation of large language models in
a comprehensive knowledge base and a more generalized grasp
of language provides ChatGPT with greater flexibility with regard
to variations or modifications in feedback rubrics that the spe-
cialized models trained in section 3 may not have. Moreover, the
ChatGPT detector’s inherent understanding of context allows it
to potentially deliver more actionable feedback without necessi-
tating human design efforts. This characteristic can translate into
generating insights that are immediately comprehensible to teach-
ers and students, removing the need for additional interpretation
methods. In essence, it can pave the way for a more efficient feed-
back loop, aiding educators and learners in rapidly acting upon the
suggestions provided.

In summation, the accuracy advantage displayed by Supervised
Machine Learning models is counterbalanced by the adaptability
and directness of feedback offered by ChatGPT. As educational
paradigms continue to evolve, there is merit in leveraging the
strengths of both models for analytics, aiming to provide students
with a comprehensive and dynamic feedback mechanism.

7 DISCUSSION AND CONCLUSIONS
Peer feedback offers learning opportunities for the learner receiv-
ing feedback, but also (and perhaps more so) for the learner pro-
viding the feedback. With known benefits to the development of
self-regulated learning skills, including reflection, analysis, and
problem-solving [36], peer feedback offers a valuable learning op-
portunity for those providing feedback. However, younger learners
are typically novices in this process and require instruction as to
what constitutes effective feedback. This paper presents two meth-
ods for automated evaluation of peer feedback, with the long-term
goal of developing adaptive scaffolding for students. In the remain-
der of this section, we discuss our main findings, consider potential
applications, and discuss limitations and future work.
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7.1 Main Findings
We developed a five-tier coding system for student peer feedback,
measuring the robustness of comments in a mathematics problem-
solving environment. We extend previous work using natural lan-
guage processing to automatically evaluate feedback messages from
instructors to evaluate peer feedback comments relative to our five-
tier coding process. We consider a two-pronged approach, one that
uses supervised machine learning (RQ1), and another that leverages
an existing large language model, ChatGPT (RQ2).

For the supervised machine learning (RQ1), we use relatively
simple descriptive features (i.e., length, parts of speech) to develop
an automated model with high accuracy when compared to human-
coded ground truth examples. We also observed acceptable per-
formance for the ChatGPT detector (RQ2), though it was overall
less accurate when compared to the supervised machine learning
approach. The ChatGPT-based detectors also had significantly less
variance in performance between iterations when a request for a
detailed explanation for result was included in the prompt. Notably,
such explanations also have the potential to improve interpretabil-
ity of the predictions for both students and teachers and form the
basis for automated feedback.

We applied both models to previously unseen data (RQ3) and
assessed convergent and external validity through the relationship
between generated codes and external survey measures collected
from the same students. We observed strong convergence: students
who value mathematics more or who have higher metacognitive
scores are giving better feedback to their peers (as measured by our
detectors). Our results also indicated that students’ scores are not
improving over time, and thus, students may not currently be de-
veloping their feedback skills in the platform. Given the benefit to a
learner of providing feedback [8, 36], it is clear that learners should
receive more support or instruction in producing high-quality feed-
back for their peers.

7.2 Application
There are two principal applications of this work, real-time support
of students, and reporting to teacher dashboards. For direct student
support, the model developed in this work could be used to provide
real-time scaffolding to learners as they write feedback comments.
For example, students providing peer feedback that would be cat-
egorized as “1-least robust,” might be encouraged to increase the
length of their annotation, or include more adjectives, Personalized
feedback would ideally be based on how the feature importance
measures of the classic models match up with the feature values
for the student’s feedback. For example, length of annotation was
a positive predictor of robustness, so when a student is about to
submit a short annotation, they could be encouraged to expand
upon their ideas to provide more constructive feedback. Through
simulation, the detector can also be used to see how an adapted
version of the student’s feedback would be evaluated. Such simu-
lations could then be shown to the student as a way to concretely
demonstrate how they could improve, along with detail as to why.
For the ChatGPT-based detector, students could be shown the ex-
planation of why their feedback was rated a particular way, and
this explanation could also identify areas of improvement relative
to the rubric for the student to consider next time.

With regard to providing data to teachers, summative data on
the quality of peer comments could be presented to teachers. Using
feature analysis similar to what was done here, the model could
also identify trends in the students’ comments. Such trends could
be communicated to teachers to aid them in their instructional
design or provide students with class-level feedback. Feedback for
individual students is also possible though likely will require some
human editing or interpretation from domain experts (in this case
teachers).

7.3 Limitations and Future Work
The features used in the supervised machine learning approach are
fairly basic, compared to what has been used in other work, but
already achieve very good correlation. Though it is encouraging
that we can achieve such positive results from a limited feature set,
future work should consider expanding this feature set to provide
a deeper insight into components of successful peer assessment.
One example of this might be sentiment analysis [23], which could
provide more detail regarding the polarity of feedback comments
(and could be done both with classical ML and ChatGPT). It should
be noted, however, that this analysis may be harder to turn into
real-time scaffolding for learners leaving comments since, as the
complexity of the features increases, so too does the complexity of
the interpretation. In addition, more complex NLP approaches are
often at their most effective with larger amounts of source material
than the short student response that we use in this work.

As with feature engineering, prompt engineering could further
refine the ChatGPT based approach. As GPT continues to be de-
veloped and adapted, prompts may also need to evolve – many
researchers have reported that prompts can cease to function cor-
rectly when OpenAI updates ChatGPT. It should also be consid-
ered that the ChatGPT approach leveraged the OpenAI API, which
charges users a fee for usage. The supervised machine learning
models can be run at much lower cost, making them more accessi-
ble to a wider audience, and feasible to be integrated into a platform
in the long term. However, this limitation of ChatGPT could be
addressed by switching to an open source LLM, when one of equiv-
alent quality becomes available. It is also of note that we did not
do any cross validated prompt engineering within the ‘training’
process. As methods with LLMs improve, one avenue of future
work may be to refine this approach with micro-level fine-tuning
within the detection process.

In this work, we have considered only considered one learning
environment. Though our results are promising, it is not clear
how well the findings will generalize across platforms. Future work
should thus consider a similar approach for feedback acrossmultiple
learning environments to evaluate the robustness of this approach.

7.4 Concluding Remarks
In this study, we used data from 203 middle school students (6-8
graders) engaged in the CueThink online learning environment, to
explore methods of analyzing student peer feedback. In address-
ing RQ1, we showed that with a combination of simplistic NLP
approaches and supervised machine learning, we could detect feed-
back robustness for young learners significantly above chance lev-
els. We further showed that we could use ChatGPT to provide
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similar classifications, and that it also provided plain text expla-
nations for the classification, though with lower accuracy than
classic NLP (RQ2). Lastly, we show convergent validity by apply-
ing the detectors to new data and comparing to external measures
(RQ3). Overall, this study shows the feasibility of automating feed-
back mechanisms for young learners who are novices at providing
feedback and provides the groundwork for providing automated
“feedback on feedback”.
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