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ABSTRACT

Predictive modeling has been a core area of learning analytics re-

search over the past decade, with such models currently deployed

in a variety of educational contexts from MOOCs to K-12. However,

analyses of the differential effectiveness of these models across

demographic, identity, or other groups has been scarce. In this pa-

per, we present a method for evaluating unfairness in predictive

student models. We define this in terms of differential accuracy

between subgroups, and measure it using a new metric we term

the Absolute Between-ROC Area (ABROCA). We demonstrate the

proposed method through a gender-based łslicing analysisž using

five different models replicated from other works and a dataset of 44

unique MOOCs and over four million learners. Our results demon-

strate (1) significant differences in model fairness according to (a)

statistical algorithm and (b) feature set used; (2) that the gender im-

balance ratio, curricular area, and specific course used for a model

all display significant association with the value of the ABROCA

statistic; and (3) that there is not evidence of a strict tradeoff be-

tween performance and fairness. This work provides a framework

for quantifying and understanding how predictive models might

inadvertently privilege, or disparately impact, different student sub-

groups. Furthermore, our results suggest that learning analytics

researchers and practitioners can use slicing analysis to improve

model fairness without necessarily sacrificing performance.1
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1 INTRODUCTION

Following the rapid expansion of predictive machine learning mod-

els across many societal contexts over the past decade, recent work

has begun to assess the ethical impact of these models when de-

ployed for real-world decision-making [36]. Generally, this work

has supported the conclusion that models which ignore the differ-

ential impact of their predictions on different groups of individuals

ś e.g. those of different ethnicities, genders, or national identities ś

can yield undesirable properties which can produce and reinforce

unanticipated inequalities across groups.

While work to measure, understand, and correct unfairness pro-

duced by predictive models has gained increasing traction even

in the past year [e.g. 10, 13, 20, 23, 24], there has not yet been

sufficient attention to this issue in education, despite extensive

prior research on prediction in education, widespread deployment

of predictive models in łlivež educational environments, and the

high stakes of educational outcomes for increasing social equity.

In this work, we develop a methodology for the measurement of

unfairness in predictive models using łslicing analysisž [30], in

which model performance is evaluated across different dimensions

or categories of the data. We specifically apply this approach to

examine gender-based differences of MOOC dropout models as

a case study. Further, we propose a novel method for measuring

and evaluating the differential performance of predictive models

across groups using a metric we term the Absolute Between-ROC

Area (ABROCA). This method is particularly suited for evaluating

predictive models in education, as detailed in Section 4. In order

to demonstrate the use of the ABROCA method for slicing anal-

ysis and to provide empirical benchmarks of existing models, we

conduct a large-scale replication study of [11, 14] to evaluate five

previously-proposed models in Section 5. Our results demonstrate

(1) significant variation in model unfairness across the statistical

algorithms and feature sets evaluated; (2) significant associations

between unfairness and course gender imbalance, course curricular

area, and specific courses. Furthermore, (3) we do not observe a

strict tradeoff between unfairness and performance, suggesting that

slicing analysis may be used to improve model fairness without

sacrificing predictive performance in practice.

To date, the authors are not aware of any work which has an-

swered the original call for slicing analysis in [30]. The current

work thus provides a methodological foundation and an empiri-

cal benchmark for future work both within learning analytics and
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across domains which apply predictive models to diverse individ-

uals in practice. This work addresses the growing concern in the

field of learning analytics regarding the lack of understanding of

the differential impact of predictive models [27, 28, 31].

This analysis uses the MOOC Replication Framework (MORF)

[17], a framework for replication of previous findings and repro-

ducible research. While this analysis uses data from Massive Open

Online Courses (MOOCs) as a case study, the need for slicing anal-

ysis (and the method proposed here) applies to any educational

context in which predictive models are used.

1.1 Notation

In this work,M refers to a specific parameterization of a statistical

model, trained on a dataset {X ,A,Y }n
i=1.X is a vector of features for

each of n observations, and the aim ofM is to minimize the loss of

its predictions, Ŷ , with respect to the true labels Y ∈ {0, 1} (in Sec-

tion 5, this label represents MOOC dropout).M assigns predicted

class labels by first predicting the probability that a given observa-

tion will be a positive case, p̂(xi ) = P(Y = 1|xi ), and comparing this

predicted probability p̂ to some threshold t . M predicts ŷi = 1 if

and only if p̂(xi ) > t , and ŷi = 0 otherwise. It is important to note

that t must be selected and is not given by M; t is often selected

based on a variety of factors, including optimal model performance

and the acceptable levels of false positives vs. true positives.

Each observation also has a membership in some subgroup of a

łprotected attributež A, which is a dimension (such as race, gender,

or nationality) along which we desire the model to be fair. We use

the labels łbaselinež and łcomparisonž, denoted by {Ab ,Ac }, respec-

tively, to denote the two subgroups of A. Typically, the łbaselinež

group would be a privileged or majority group to which all other

groups are compared to ensure non-discrimination. Our analysis

does not assume that A is explicitly provided to the model (indeed,

none of the models replicated here do so). The size of A can be

arbitrarily large, but in this work, we focus on the two-class case

of A; the proposed method can be extended to such cases as long

as there is a clear notion of a baseline subgroup to which all other

subgroups might be compared.

2 RELATED WORK

2.1 Predictive Modeling in Learning Analytics

There is an extensive research base on the use of predictive models

in learning analytics, and in MOOCs in particular. A comprehensive

survey of such work is beyond the scope of this paper, and we refer

the reader to [15, 26] for such reviews. However, we provide a brief

overview of the diversity of approaches taken to the task of student

success prediction in MOOCs in order to motivate the need for a

more comprehensive evaluation of these methods, beyond their

predictive accuracy, by using slicing analysis.

Research on student success prediction in MOOCs began al-

most immediately after the launch of the initial łbig threež MOOC

platforms (Coursera, edX, Udacity) in 2012. These platforms pro-

vide massive, granular, and diverse data on student activity and

understanding which serve as the foundation for complex and var-

ied student success models. The data used in predictive MOOC

models include counts of various student activity and navigation

actions [22]; natural language processing [8] and social network

metrics [35] derived from course discussion forums; measures of

student performance extracted from assignment [32] or in-video

quiz submissions [4]. The statistical algorithms used for modeling

and prediction across such research also vary, spanning from para-

metric models such as logistic regression e.g. [33], to nonparametric

tree-based models [14], to modern neural network models [11]. In

addition to being used for research, such models are increasingly

used in practice, for example, to support student interventions [2]

and data collection [34]. The active use of predictive models in-

creases the urgency of understanding whether such models are

equally effective for all student groups. Rigorous comparisons of

the relative efficacy of these models in MOOCs have been rare

[14], and existing comparisons almost exclusively evaluate models’

predictive performance.

2.2 Fairness in Machine Learning Algorithms

Recently, the machine learning research community and even the

popular press have begun to engage with and investigate issues of

fairness, bias, and the disparate impact of machine learned models

[7, 36]. Borrowing from several disciplines, recent work has made

efforts at measuring, understanding, and correcting for the presence

of such biases in machine learned models. We present an overview

of selected work relevant to the proposed method here.

Defining and measuring predictive fairness has been a central

task of prior work, with many definitions of fairness previously

proposed [13]. As we will argue below, however, many of these

definitions are inadequate for learning analytics research.

One of the simplest conceptions of fairness is the notion of de-

mographic parity. Demographic parity requires that, for all groups

of the protected attribute A (e.g. gender), the overall probability

of a positive prediction of a given outcome should be the same ś

the protected attribute should be independent of the prediction

(this condition has also been referred to as łdisparate impactž [23]).

However, as [9, 19] both argue, demographic parity is not an ideal

fairness criterion. First, it fails to ensure individual fairness, re-

quiring that we make łmatchingž predictions across demographic

groups so that, in aggregate, the probability of a positive prediction

across groups is equal, even when there are legitimate reasons for

these differences. Second, demographic parity can prevent models

from providing their intended utility in cases where the protected

attribute is correlated with the outcome. In education, for example,

such a situation might arise when membership in a disadvantaged

group is in fact correlated with a higher rate of dropout (this situa-

tion has been demonstrated, for example, among female students in

data science MOOCs [2, 5]). A demographic parity predictor would

not be able to predict higher rates of dropout for female students

relative to males in this case, despite the fact that this is both correct

and necessary for the model to support effective student interven-

tion. For further critiques of the demographic parity criterion see

[9, 19].

In [9] it is suggested that a measure of individual fairness seems

more appropriate than the group fairness measured by demographic

parity. Specifically, [9] argues that similar individuals should be

classified similarly, proposing a conception of fairness based on a

hypothetical distance metric between individuals. In the presence

of such a method, the problem of creating a łfairž classifier can be
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reduced to a tractable optimization problem. However, this shifts the

challenge of defining fairness to one of finding a suitable similarity

metric between individuals ś a task no less difficult, and which

raises many of the same questions as defining fairness itself.

Seminal work by Hardt et al. proposes a definition of fairness

based on equalized odds [19].2 A predictor satisfies equalized odds

if and only if the false positive rate and the true positive rate are

equal among the baseline and comparison classes Ab and Ac . That

is, a predictor satisfies equalized odds if and only if:

Pr {Ŷ = 1|A = Ac ,Y = 0} = Pr {Ŷ = 1|A = Ab ,Y = 0} (1)

Pr {Ŷ = 1|A = Ac ,Y = 1} = Pr {Ŷ = 1|A = Ab ,Y = 1} (2)

Equation (1) represents the condition that the predicted false pos-

itive rate must be equivalent across the two groups of the protected

attribute; (2) represents the same for the true positive rate.

There are several advantages to the equalized odds method over

previous conceptions of fairness. First, it avoids the group fairness

measures which, as noted above, can still lead to unfair outcomes

for individuals and also diminish the quality of the resulting classi-

fier. Second, this method can, in principle, be implemented directly

from a dataset and classifier ś [19] demonstrates that achieving

equalized odds amounts to solving a linear optimization program.

This can be applied in a simple post-processing step without modi-

fying a model’s training process ś a clear practical advantage. Third,

the equalized odds method does not rely on an additional metric,

such the hypothetical similarity measure required in [9] ś it is, in

this sense, a complete solution. While [19] constitutes important

progress toward defining fairness in a specific classification task,

in Section 4 we discuss characteristics of this method which limit

its usefulness in learning analytics and in a variety of other con-

texts where predictions might be used for a range of decisions or

interventions, not just a single intervention where the decision

threshold is predetermined.

While we do not directly consider work which is rooted in le-

gal and political notions of fairness, we note that there is a rich

literature on applying legal concepts, such as disparate impact, to

prediction fairness [e.g. 3, 12, 29]. While learning analytics must, at

minimum, satisfy such concepts, we believe that learning systems

should aspire to an even higher standard of fairness.

2.3 Replication in Learning Analytics

We demonstrate our approach to measuring fairness in educational

predictive models through the replication of previous work, for

two reasons. First, there has been only limited replication research

in the field of learning analytics to date, with the replication rate

(the percentage of studies which are replications) estimated at ap-

proximately 0.13% in the field of education [25]. The limited pre-

vious efforts at replication in the field of learning analytics, e.g.

[1, 16], have demonstrated the additional insights that replication

of existing findings across large, representative datasets can bring,

particularly because of the restricted nature of most educational

data.

2The authors propose a related, but more relaxed, criterion known as equal opportunity,
which we do not address, but to which our criticism still applies.

Second, our methodology applied to previously-researched pre-

dictive models allows for a deeper understanding of the previous

work which has already already had its predictive performance

thoroughly documented. Replication thus builds on this knowledge

by contributing a new perspective on this work, viewing it through

the lens of fairness. Such analysis stands to be more informative

than merely proposing novel classification approaches without

fully evaluating previous feasible options for student performance

prediction. Additionally, a failure to conduct any slicing analysis of

prior work would fail to provide empirical benchmarks for future

work evaluated via the slicing analysis method proposed below: a

knowledge of how discriminatory (or not) previous work may be is

highly relevant to future research into non-discriminatory student

success models. Only through replication can we even determine

whether the field may have a problem that needs solving.

3 SLICING ANALYSIS: A NEW MODE OF
MODEL UNDERSTANDING

3.1 Motivation and Definition

The concept of slicing analysis was originally proposed in [30] as

a methodology necessary to correct a predictive modeling culture

focused on łwinningž above all else ś that is, to encourage deeper

evaluation of predictive models beyond their predictive perfor-

mance. Sculley et al. [30] argue that this łwinner’s cursež weakens

the overall impact of machine learning research which is pursued

with a singleminded focus on predictive performance (łwinsž), sac-

rificing deeper evaluation of model fairness and impact as a result.

The field of learning analytics has also matured to the point where

such deeper evaluation is required, particularly because its goals

often involve serving a diverse array of students [28].

The current work aims to answer the call for such increased

empirical rigor, transparency, and evaluation now that predictive

modeling research in learning analytics has reached a critical mass,

and to provide a demonstration and toolkit to support such analyses.

While standardized methods exist for evaluating a variety of high-

stakes products, from the brakes on an automobile to the autopilot

system on an airplane, no such standardized method currently

exists for predictive modeling and AI systems [20]. As [30] notes:

Performance measures such as accuracy or AUC on a

full test set may mask important effects, such as qual-

ity improving in one area but degrading in another.

Breaking down performance measures by different

dimensions or categories of the data is a critical piece

of full empirical analysis.

This captures the inspiration for slicing analysis: to evaluate

a predictive model’s performance by łslicing,ž the results of that

model across different dimensions or categories in the test set. In

doing so, we uncover the relative performance or fairness of a model

across subgroups which comprise a given dataset. The degree to

which both performance and fairness vary over all groups is of

critical importance for learning analytics research and practice.

Like the model performance analysis which is common to both

learning analytics research and machine learning research, slicing

analysis is an exploratory methodology that can be used to under-

stand models or, optionally, to inform model selection. As such,
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we do not require that slicing analyses lead to corrections of model

unfairness (although they may do so). The current work does not

explicitly offer a method for correcting for the results of a slicing

analysis post-hoc; however, such methods have been proposed [e.g.

19], and our method is indeed compatible with such a correction

(see Section 4). We see the first step of slicing analysis as identifying,

understanding, and quantifying unfairness within models.

3.2 Why Slice? The Importance of Model
Fairness in Learning Analytics

While we believe that most readers accept a priori that fairness

is a necessary component for educational predictive models, we

present several considerations in support of this intuition.

First, as we noted above, fairness (or lack of discrimination) is

a legal requirement of many systems [3]. For example, [23] notes

that in the United States, Tile VII of the Civil Rights Act of 1964

bans even facially neutral practices that might nevertheless have

an łunjustified adverse impact on members of a protected classž

(p. 2). In most developed nations, equal educational opportunity is

a specific legal requirement. Second, one of the primary aims of

education is to increase opportunity and knowledge for all learners.

This is particularly relevant for MOOCs, which have been high-

lighted for their ability to reach diverse, underserved learners across

the globe [6]. Predictive models which systematically disadvantage

these groups fail to deliver on this promise. Third, models which

unfairly discriminate against minority groups are detrimental in

a practical sense: by providing predictions which may be unfairly

biased by attributes not relevant to learning, such models fail to

support the goal of providing the optimal learning environment for

all students. Fourth, on another practical note, discriminatory mod-

els risk creating negative feedback loops, in which discriminatory

predictions become self-reinforcing [31]. Fifth, as it stands, the field

of learning analytics has little to no evidence about whether its

models display predictive bias, and identifying these biases without

a formal method such as slicing analysis is likely to only become

more challenging as state-of-the-art models used for prediction

increase in sophistication. Slicing analysis allows us to observe the

impacts of the models on sensitive groups even if we cannot explain

the underlying models.

Collectively, these considerations provide a clear motivation for

conducting slicing analysis in learning analytics. This motivation

is particularly strong given the current state of the field, which has

seen increasing deployment of łlivež predictive modeling tools in

both digital and in-person learning environments [2, 28].

4 A METHOD FOR SLICING ANALYSIS

This section introduces the proposed method for slicing analysis,

which we apply to a large-scale predictive modeling replication

experiment in Section 5. The goal of slicing analysis is to measure

the unfairness3 of the predictions of a modelM.

We propose a method for strictly measuring fairness, and not

correcting it, for several reasons. First, measurement is a necessary

condition for correcting any detected unfairness. Second, satisfying

3The terms bias, unfairness, and discrimination are used interchangeably in this work
to refer to inequitable prediction across identity groups. We seek to avoid confusion
with the statistical definition of bias, with which the current work is not concerned.

any individual definition of fairness is not a proof of fairness: fol-

lowing [19], łwe envision our framework as providing a reasonable

way of discovering and measuring potential concerns that require

further scrutinyž [19, pp. 21]. Finally, the procedure of correcting a

fairness metric is at least marginally more complex than the mea-

surement itself, and is beyond the scope of this paper. However,

as a demonstration of a naïve solution, note that the ABROCA

statistic can be reduced to zero (at a cost to model performance)

by introducing randomization into the predictions of one or more

groups.

A primary goal of predictive modeling in learning analytics is

to produce accurate predictions to support personalized learner

support or adaptive learner pathways [15]. The concept of fairness

implies that subgroups should be treated equally by such mod-

els, and, in particular, that subgroups should benefit equally from

their predictions. Thus, the current work presents a conception of

fairness rooted in equal model performance across subgroups of A.

4.1 Proposed Method: Absolute Between-ROC
Area (ABROCA)

Measuring the extent to which a model M meets a definition of

fairness based on equivalent performance requires a robust mea-

surement of model performance across subgroups. We propose

a method based on the Receiver Operating Characteristic (ROC)

curve. The ROC curve is a plot of the false positive rate and true

positive rate of a model’s predictions across all possible thresh-

olds t ∈ [0, 1], where t determines at what predicted probability a

model predicts Ŷ = 1. The area under the ROC curve, or AUC, is

a common metric used to evaluate predictive models. AUC values

range between 0 and 1, where an AUC value of 0.5 is equivalent to

random guessing and a higher AUC indicates better performance.

This measure has been noted for its robustness to imbalanced data

[21] and its straightforward interpretation as the probability that a

randomly-selected positive observation will be (correctly) assigned

a higher predicted probability than a randomly-selected negative

observation [18]. Figure 1 shows two ROC curves (in red and blue).

AUC is one of the most commonly-used model performance

metrics in predictive modeling research in MOOCs [15, 26]. At

least one reason for this widespread adoption is that predictive

models are often used for a wide range of interventions, and for

different interventions, different thresholds are often appropriate;

AUC measures performance across all possible thresholds.

The analysis abovemay seem to suggest that we directly compare

AUC values across various demographic groups in order to compare

performance across different subgroups, perhaps by taking the

difference of the areas, given by

AUCb − AUCc (3)

However, in cases where the ROC curves cross, (3) allows differ-

ences in performance to łcancel outž across thresholds:łpositivež

differences in one area aremitigated by łnegativež differenceswhere

the other ROC curve is greater. Such a case is shown in Figure 1, and

our case study below shows that such cases are commonly encoun-

tered in practice. (3) can substantially underestimate the degree of

unfairness in such cases. (3) is, simply put, an unreliable method
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Figure 1: A łslice plot,ž which shows the Receiver Operating

Characteristic (ROC) curves for a model across two groups

(male and female learners). The shaded region between the

two curves represents the ABROCA statistic, which mea-

sures differences in model performance across groups.

for measuring how unfairness affects these subgroups across the

full range of potential thresholds for a learning analytics model.

This motivates the need for a measure which captures the differ-

ences in performance for each subgroup of the protected attribute,

across all possible thresholds, without allowing for the possibility

of differences which cancel out, or negate each other.

We propose the Absolute Between-ROC Area (ABROCA) to mea-

sure fairness. ABROCA measures the absolute value of the area

between the baseline group ROC curve ROCb and those of one or

more comparison groups ROCc . ABROCA thus captures the diver-

gence between the baseline and comparison group curves across

all possible thresholds, and aggregates this divergence without re-

spect to which subgroup’s model may achieve better performance

at any particular threshold (by taking the absolute value). Not only

does this prevent the ABROCA metric from allowing positive and

negative difference in performance at various thresholds to łcancel

outž; it also captures the unfairness present when minority-group

models outperform majority-group models (because, as described

above, equal performance across all groups is necessary to meet

our proposed conception of fairness).

The ABROCA statistic is the total difference, across all possible

thresholds, in the probability ofM correctly classifying a randomly-

selected data point from the majority vs. the non-majority group.

Formally, ABROCA is defined as:

∫ 1

0
|ROCb (t) − ROCc (t)| dt (4)

Visually and geometrically, the ABROCA statistic has a straight-

forward interpretation: it is the area between the two ROC curves,

shown in Figure 1. ABROCA can vary between 0 and 1, but in most

cases its range is practically restricted to the interval [0.5, 1], as an

AUC of 0.5 is achievable by random guessing.

4.2 Advantages Over Existing Fairness Metrics

The ABROCAmetric builds on the conceptions of fairness proposed

in previous works, but overcomes several limitations of the specific

metrics discussed in Section 2.

First, ABROCA is not threshold-dependent. ABROCA accounts

for difference in model performance between subgroups across the

entire range of possible thresholds t . In contrast, many of the most

widely-used existing methods, such as the equalized odds definition

of [19], apply only for a specific threshold. As [19] states, equalized

odds can only be achieved at points where the ROC curves cross,

or by using different thresholds (or some form of a randomized

threshold) for the different demographic groups. This is problematic

because (a) it fails to account for or evaluate any difference in model

performance at any other threshold, when a fixed threshold is used;

(b) it forces an evaluator to choose a specific threshold at which the

equalized odds condition is to be evaluated, when in practice, the

actual threshold usedmay depend on the intervention or the specific

context of model deployment, which is often not known at the time

of model evaluation; or (c) it forces the modeler to vary thresholds

for different subgroups ofA in order to enforce equalized odds. Such

treatment disparity is also commonly rejected as discriminatory

and undesirable for predictive models [23]. Figure 2 demonstrates a

case where equalized odds is achieved at some thresholds, while at

others there are substantial gaps between the odds in each group.

We also note that for some use cases in learning analytics, one may

wish to compare a restricted range of potential thresholds (e.g. using

t > 0.5 to develop high-recall models). Computing ABROCA across

a restricted range of thresholds in such cases is straightforward,

and amounts to changing the limits of integration in (4).

Second, in contrast to many existing conceptions of fairness

which largely center on decision-making systems (such as credit

loan applications) where a łpositivež prediction is considered a dis-

advantageous outcome for the individual and only the probability

of positive prediction is used to evaluate fairness [e.g. 9], ABROCA

evaluates the overall accuracy of the models without strictly fixat-

ing on the positive case. This is particularly relevant to learning

analytics contexts, which are different from the contexts in which

many existing systems have been evaluated (e.g. loan applications

[19], parole decisions, graduate admissions [23]). For example, in

a MOOC modeling scenario, a prediction that a given student may

drop out is neither łgoodž nor łbadž; it is simply a prediction that

is used to inform future action used to support that student. In con-

trast, in e.g. the credit modeling scenarios used to justify metrics

such as demographic parity which evaluate only the positive case,

a prediction that the same individual is likely to default on a loan

will directly lead to a rejection of their loan application ś clearly a

disadvantageous and more undesirable outcome.

Third, this method is łcompletež: the ABROCA statistic can be

computed directly from the results of a predictive modeling experi-

ment, with minimal computation, and no additional data collection

or selection of additional metrics required: the ABROCA statistic is

computed from the predicted probabilities p̂ and the labels Y , and

is simply an integral over the ROC curve (for which there exist

several open-source implementations and a robust literature on

constructing). ABROCA does not assume the existence of another
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metric such as a hypothetical distance measure, relying only on a

simple function of the ROC.

Fourth, there are practical considerations which make ABROCA

an appealing method for slicing analysis in learning analytics, and

in similar disciplines where predictive models are used to support a

variety of interventions with different and varying thresholding re-

quirements. ABROCA has a simple interpretation mathematically,

geometrically, and visually. Additionally, because ABROCA is a

function of the ROC curve which has well-known and straightfor-

ward statistical properties [18], several useful statistical properties

of the ABROCA can also be derived. This allows us to compute

standard deviations, confidence intervals, and significance testing

for slicing analyses performed with ABROCA (an explication of

these properties is beyond the scope of the current work).

5 SLICING ANALYSIS: MOOC DROPOUT
MODELS

In this section, we conduct a slicing analysis in a large-scale case

study ofMOOC data.We apply the ABROCAmethod tomeasure the

relative discrimination of five different models replicated from two

prior predictive modeling studies [11, 14]. In addition to serving as

a case study of a slicing analysis in learning analytics generally, and

of the ABROCA method in particular, this analysis demonstrates

that model unfairness is affected by the modeling algorithm and

possibly the feature set used for this model; that course gender

imbalance, curricular area, and specific courses are all related to

unfairness; and that unfairness does not bear a direct relation to

performance in the results of our experiment.

5.1 Experiment

We conduct a dropout modeling experiment, where the goal is to

predict a binary dropout label indicating whether the student will

persist to the final week of a course. Models extract features from

the raw MOOC data exports, including clickstream files, course

assignment and video activity, and natural language and social

network processing of discussion forum posts.

We replicate five total predictive models using MORF, a platform

for large-scale replication and original research on a large repository

of MOOC data [17]. We extract the exact feature sets to replicate

[11, 14] from the raw MOOC data for every course with at least

two sessions (one for testing, and all earlier sessions for training),

a total of 44 MOOCs. We train the predictive models using all

sessions except the final session of a course, predicting on the

final, held-out session. A total of 3,080,230 students were in the

training dataset, with 1,111,591 students in the testing dataset. We

replicate three models from [11], and two from [14]. In each case,

we replicate the authors’ preferred or łbestž model according to

the original experiment, as well as additional model(s) which serve

to demonstrate a common statistical algorithm used in MOOC

dropout prediction. We also replicate the underlying feature set

used for each model. This experiment allows us to explore two very

different feature sets, along with five commonly-used statistical

algorithms for MOOC dropout modeling [15, 26]. An overview of

the models and features replicated for this experiment is shown

in Table 1. Collectively, these models represent five of the most

common algorithms for MOOC dropout modeling [15].

Cite Feature Types (N) Modeling Algorithms

[11] Activity Counts (7)

Long Short-Term Memory

Network (LSTM)*

Logistic Regression (LR)

Support Vector Machine (SVM)

[14]

Activity Counts (15)

Assignment Metrics (123)

Forum & NLP Metrics (51)

Classification Tree (CART)*

Naive Bayes (NB)

Table 1: Summary of models replicated in experiment. For

details on the exact features used, see the original publica-

tions or the open-source code for this experiment. * indi-

cates highest-performing model in original experiment.

Each model is constructed using the first three weeks of data

for each course. We use three weeks of data, rather than a smaller,

earlier window for model training, in order to allow the models

to achieve the best possible fit to the data, as some evidence in

the original experiments demonstrated that model performance

improved over time [11]. For each course, the trained model is used

to predict learner dropout in the most recent offering of the course,

again using the first three weeks of data. These predictions are

compared to the true labels in order to conduct the slicing analysis.

The ABROCA statistic and AUC are computed for each of the

five models on the held-out session of each course. We perform

both aggregated statistical analysis, as well as detailed analysis of

individual courses by inspecting informative graphical plots which

we term łslice plots.ž

The gender data used in this experiment was inferred from the

names of learners using the gender-guesser library4 which has

been used in other analyses of MOOCs [5]. This analysis only in-

cludes users for which high-confidence inferences were possible

(users with e.g. gender-neutral names were excluded). While an im-

perfect measure, it is useful for demonstrating differences between

subpopulations.

5.2 Results

The results of the experiment are summarized in Table 2, and shown

in Figures 3 and 4. We provide a detailed slicing analysis on a single

course in Section 5.2.1; we provide a more comprehensive over-

all analysis of our results in Sections 5.2.2 and 5.3. These results

demonstrate several novel findings, which we evaluate using non-

parametric statistical tests in order to make minimal assumptions

about the distribution of the ABROCA statistic.

5.2.1 Detailed Case Study. Figure 2 shows the results of a single

model (here, the LSTM model of [11]) applied to one of the 44

courses in our experiment, a business MOOC. Figure 2 shows the

ROC curves for male students (ROCb ) in red, and female students

(ROCc ) in blue. The ABROCA region is shaded (recall that the

ABROCA statistic is the area of this shaded region). This same plot,

along with the slice plots for all other models on the same course

for comparison, is shown in Figure 3.

Figure 2 illustrates several features of slicing analysis using

ABROCA. First, the plot demonstrates how much broader a slicing

4See https://pypi.org/project/gender-guesser/
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In this region, there are larger divergences between the 
odds of prediction in each group, with no points of 
intersection. This demonstrates that, with lower 
thresholds, the model cannot achieve equalized odds.

The ABROCA statistic for 
slicing analysis measures the 
area of the shaded region. At points of intersection, the two models achieve 

equalized odds between the baseline and 
comparison groups. Choosing the threshold(s) 
representing these points yields an equalized-odds 
predictor.

Each line is the Receiver Operating Characteristic curve 
(ROC) for the same model, evaluated on one demographic 
“slice” of the test data. The ROC curve visualizes model 
performance across all possible thresholds.

ROCb (Baseline Group - Male)

ROCc (Comparison Group - Female)

Figure 2: Annotated slice plot for a single course (a business course) in the case study, using gender as the protected attribute.

Results from LSTM model shown. For comparison to results from other algorithms in the same course, see Figure 3.

analysis via ABROCA is than analysis using an equalized odds crite-

rion. In particular, Figure 2 shows that there are only four thresholds

(shown as four points annotated with ▲) where the model achieves

equalized odds. Note that the equalized odds method would require

choosing a specific threshold, and computing the odds of positive

prediction for each of the two groups (comparing only the two

specific points, one on each ROC curve, representing the odds for

each group at that specific threshold). If the threshold representing

any of those four points were chosen in this case, the model would

achieve equalized odds. However, viewing the entire slice plot and

using ABROCA demonstrates a more nuanced picture. The plot

reveals that, while there are individual points where equalized odds

are achieved, for the majority of the space of potential thresholds,

the models cannot achieve even close to equalized odds, as demon-

strated by the large vertical distance between the A-conditional

ROC curves. This demonstrates that while the model might achieve

equalized odds for higher thresholds, for lower thresholds, it does

not. This is particularly relevant for models which may be used

in learning analytics, where interventions may require choosing a

very high or low threshold (such as a resource-intensive interven-

tion which requires a low false-positive rate, and therefore a lower

threshold). Unlike an equalized odds slicing analysis, ABROCA

accounts for these differences across thresholds and can support

decision making about the full range of thresholds.

Second, Figure 3 demonstrates an example of the variability be-

tween the models considered in this experiment. There are visible

differences between the five models when applied to this business

MOOC, both in terms of the size of the ABROCA statistic and the

difference in the shape of the ROC curves. For example, the CART

and NB models replicated from [14] achieve the lowest ABROCA

statistics, both approximately 0.013. Both models’ comparatively

higher fairness across all thresholds is indicated by the relative

closeness of the A-conditional ROC curves across their respective

slice plots in Figure 3. The CARTmodel achieves considerably better

predictive performance, as indicated by the larger area underneath

the A-conditional ROC curves (Table 1 also shows that the CART

model achieved better average performance than the NB model,

measured by AUC, across all courses in this experiment). These

differences are likely due to a combination of factors, including the

features extracted from the raw data, as well as the statistical algo-

rithms and hyperparameters used in this implementation. Third,

Figures 2 and 3 demonstrate, practically, how an educational mod-

eler or practitioner might approach the process of model selection

using slicing analysis. By conducting a visual comparison of the

ABROCA regions, and combining this analysis with knowledge of

which region(s) of the space of potential thresholds might be used

for interventions the model will support, a user can choose a model

for deployment, or determine which additional models to explore.
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ABROCA = 0.043 ABROCA = 0.017 ABROCA = 0.017 ABROCA = 0.013 ABROCA = 0.013

LSTM LR SVM CART NB

ROCb (Baseline - Male)

ROCc (Comparison - Female)

ROCb (Baseline - Male)

ROCc (Comparison - Female)

ROCb (Baseline - Male)

ROCc (Comparison - Female)

ROCb (Baseline - Male)

ROCc (Comparison - Female)

ROCb (Baseline - Male)

ROCc (Comparison - Female)

Figure 3: Slice plots for all models applied to the business MOOC used in Figure 2.

ABROCA AUC

Mean SD 95% CI Mean

LSTM [11] 0.0351 0.006 [0.0221, 0.0480] 0.653

LR [11] 0.0353 0.005 [0.0261, 0.0444] 0.669

SVM [11] 0.0311 0.004 [0.0226, 0.0395] 0.693

CART [14] 0.0280 0.005 [0.0174, 0.0387] 0.715

NB [14] 0.0177 0.0037 [0.0103, 0.0251] 0.558

Table 2: Slicing analysis results for each model replicated

across the 44 courses in MORF.

5.2.2 Overall Results. The complete results from the replication

of the five predictive models across the MORF dataset is shown in

Table 2, and ABROCA plots representing the performance of each

model across a single business MOOC are shown in Figure 3. The

results demonstrate several initial findings.

First and most generally, the results demonstrate that there is

moderate variability in the ABROCA statistic across the models

evaluated. We note, for example, that the mean ABROCA value

of the classification tree model replicated from [14] is nearly 25%

lower than the mean ABROCA value of either the LSTM or logistic

regression model replicated from [11], while achieving the highest

average AUC over all 44 courses. A Kruskal-Wallace test (a nonpara-

metric statistical test of the null hypothesis that the mean ABROCA

values are the same in each group, and of which the Wilcoxon rank

sum test is a special case for two samples) of differences by model

rejects the hypothesis that there is no difference in mean ABROCA

between models, with p = 8.106 × 10−5. These results demonstrate

non-trivial variability in the fairness of the models considered, pro-

viding evidence that it is important to consider fairness in learning

analytics models, and to make slicing analysis, not simply perfor-

mance analysis, a critical component of model evaluation for both

research and deployment.

Second, these results provide evidence that the underlying fea-

ture set used as input may be equally relevant to the fairness of the

resulting model. Note that the LSTM, LR, and SVM models use the

same underlying set of 7 base features from [11], while the CART

and NBmodels use a disjoint set of 191 features from [14] (see Table

1). Despite major differences in the way the algorithms statistically

represent input features, our results show clear differences in fair-

ness by feature set: Kruskal-Wallace test of differences by feature

set (all models from [11] vs. all models from [14]) rejects the hy-

pothesis that there is no difference in mean ABROCA between the

groups with p = 1.99 × 10−5. This coheres with the initial findings

in [14], which demonstrated similar results regarding the relative

contributions of features in comparison to statistical algorithms

or hyperparameter settings with respect to model performance.

These results suggest that exploring different feature sets might be

a particularly fruitful avenue for future slicing analyses, and that

some characteristics of the feature set in [14] might lead to better

fairness than the features in [11].

5.3 Exploratory Analysis

In this section we conduct an exploratory analysis of course fac-

tors and their association with the observed differences in model

performance. In particular, we explore whether course size, gender

imbalance, and subject area are associated with varying levels of

model unfairness measured by ABROCA, and whether our results

demonstrate a tradeoff between fairness and performance. Note

that the exploration in this section does not permit causal infer-

ence about the observed associations, but serves as an exploratory

evaluation of where such associations may exist.

Figure 4a shows the ABROCA of each model measured on the

test data (the most recent session of each course in MORF).

First, the results in Figure 4a demonstrate a clear but complex

relationship between the gender imbalance in a course and the

ABROCA. Statistical testing confirms that the quadratic curve for

each model visible in Figure 4a represents a statistically significant

quadratic relationship between gender imbalance (measured by

percentage of male students in the dataset). An F-test was used to

compare a simple linear regressionmodel and a quadratic regression

which included intercept terms for each algorithm, and the F-test

indicated (a) a statistically significant increase in the proportion of

variance explained by the quadratic model (p = 1.533×10−5), and (b)

a highly significant model fit from the resulting quadratic regression

model, withp = 2.277×10−8. Collectively, these results suggest that

very high, or moderately low (< 0.45) proportion of male students

is associated with a significantly larger ABROCA statistic. We can

see from Figure 4a that the shape of this relationship is remarkably

consistent across all five models evaluated. This means that, in

particular, models trained with highly-imbalanced training data

may be particularly susceptible to differential performance across

demographic groups, and that algorithm selection cannot overcome

the limitations of biased training data.
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Figure 4: Top (a): Relationship between gender balance in

course and ABROCA, with quadratic fitted lines by model.

Below (b): Relationship between performance (measured by

AUC) and unfairness (measured by ABROCA) with fitted re-

gression lines by model. 95% confidence regions shaded.

Second, Figure 4 demonstrates findings related to both curricular

area (coded according to the four-category grouping from [6]) and

specific courses. With respect to curricular area, the results demon-

strate an association between curricular area and ABROCA statistic:

a Kruskal-Wallis rank sum test shows p = 0.03692, suggesting ev-

idence of an association between curricular area and ABROCA

statistic across the courses and models surveyed. An analysis by

course, where each individual course is treated as a group (note that

there are five observations of ABROCA for a given course, one per

model in our experiment), shows p = 1.195 × 10−8. This indicates

that differences between courses are quite strong: different courses

in the dataset were associated with very different ABROCA sta-

tistics. This is visible in Figure 4 by noting that the same course

(indicated by same-sized points, aligned vertically) often occupies a

similar relative position for each model. These results suggest that

modeling which accounts for course topic (measured by curricu-

lar area), and course-specific modeling, are promising avenues for

future research on constructing unbiased MOOC models.

Third, and perhaps most critically, we present Figure 4b. Fig-

ure 4b shows the observed relationship between model perfor-

mance (measured by overall AUC) and model fairness (measured

by ABROCA) across each individual course-model pair applied to

the test data, with fitted regression lines. Figure 4b demonstrates

that we observe almost no relationship between performance and

fairness across any of the five models evaluated. The overall corre-

lation between AUC and ABROCA is 0.029, with p = 0.6692 using

a Pearson test of whether the correlation ρ = 0. This means that

we fail to reject a null hypothesis that there is no correlation be-

tween performance (AUC) and fairness (ABROCA) in the observed

data. For every individual model, Figure 4b shows that a flat line is

within the 95% linear regression band. This demonstrates strong

initial evidence that we can have models that are both fair and

accurate: if there is no correlation between the two, there is likely

no strict tradeoff, or the bound at which a theoretical tradeoff may

limit performance has not been reached by state-of-the-art MOOC

modeling methods), providing further impetus for the use of slicing

analysis to support learning analytics models.

6 CONCLUSION AND FUTURE RESEARCH

6.1 Discussion

This paper demonstrates a method for evaluating the fairness of

predictive models in learning analytics through slicing analysis, and

the specific insights that such an analysis can achieve. While we

must be careful not to overstate the generalizability of the results of

this specific experiment, our results reveal that slicing analysis in

general, and the proposed ABROCA statistic in particular, can pro-

vide a perspective on model performance beyond mere predictive

accuracy. ABROCA can provide insights into model discrimination

across the entire range of possible thresholds. In particular, our

analysis revealed that there were differences between various sta-

tistical algorithms and feature sets. Furthermore, our results show

that model discrimination is related to the course gender imbal-

ance, course curricular area, and the individual course itself. Finally,

these results show that there does not appear to be a strict tradeoff

between model performance and discrimination encountered by

state-of-the-art MOOC dropout models. Some of these results may

confirm readers’ intuitions ś e.g., that models trained on courses

most skewed toward a subgroup also produce the greatest bias

toward these students; model performance varies considerably by

course and some courses may simply be łharderž to predict fairly

on than others. The results demonstrating lower (although statisti-

cally significant) variability across algorithms, in particular, may

also be counterintuitive to many learning analytics researchers ś

largely, prior research has primarily focused on applying and eval-

uating different feature engineering methods and algorithms, not

evaluating the demographic balance of the training data or spe-

cific course characteristics [15]. This analysis suggests that better
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transfer methods, or models which incorporate course-level char-

acteristics, may produce considerable advances in both fairness

and, potentially, predictive performance. Finally, our demonstra-

tion that these results do not show a strict tradeoff between fairness

and performance suggests that slicing analysis can support the

improvement of biased models without necessarily detracting from

performance in practice.

6.2 Future Research

This work suggests several promising lines of future research, re-

lated to theory, methods, and applications extending its analysis.

While the ABROCA statistic itself represents a useful measure for

conducting slicing analysis, future work detailing the asymptotic

properties of this statistic, which is a function of the ROC curve,

which itself has well-established statistical properties [18], would

aid in developing procedures for inference (for example, providing

estimates of standard errors and significance for ABROCA). With

respect to methods, the slicing analysis methodology can be added

as an additional informative section to results reporting for applied

predictive modeling research both within and outside learning an-

alytics. Finally, the case study presented here represents only an

initial demonstrative application of the slicing analysis method

via ABROCA. Extensive future work detailing further predictive

models, both replicated and novel, and slicing them along several

demographic characteristics, would contribute to the learning an-

alytics community’s understanding of the potential impact of its

predictive models across the many complex dimensions of student

identity.
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