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ABSTRACT: Sensor-free affect detectors can detect student affect using their activities within 
intelligent tutoring systems or other online learning environments rather than using sensors. 
This technology has made affect detection more scalable and less invasive. However, existing 
detectors are either interpretable but less accurate (e.g., classical algorithms such as logistic 
regression) or more accurate but uninterpretable (e.g., neural networks). We investigate the 
use of a new type of neural networks that are monotonic after the first layer for affect 
detection that can strike a balance between accuracy and interpretability. Results on a real-
world student affect dataset show that monotonic neural networks achieve comparable 
detection accuracy to their non-monotonic counterparts while offering some level of 
interpretability.  
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1 INTRODUCTION 

Affect detectors that can detect and monitor student affective states have become an important 
aspect of learning analytics research. Together with methods that can trace students’ knowledge 
levels over time, they can support timely and personalized interventions to improve student learning 
outcomes. Existing student affect detection methods can be classified into two classes. One class 
employs physical and physiological sensors to measure students as they learn, which is accurate but 
invasive and not scalable, the other “sensor-free” class uses machine learning-based classifiers to 
detect a student’s affective state from their recorded activity in the ITS, which is non-invasive, 
scalable, but is in some cases less accurate [Bosch et al., 2015; Henderson et al., 2019]. The trade-off 
a sensor-free affect detector achieves in terms of accuracy and interpretability is closely related to the 
type of classification algorithm it uses. Detectors based on classic algorithms such as logistic 
regression, i.e., [Pardos et al., 2014] can be more interpretable but less accurate, while neural 
network-based detectors can be more accurate but not interpretable [Botelho et al., 2017]. Therefore, 
there is a need to develop new classifiers that can find better trade-offs between accuracy and 
interpretability; we propose to use monotonic neural networks as a potential solution.  
 
2 MONOTONIC (FULLY-CONNECTED) NEURAL NETWORKS 

For sensor-free affect detection, we are given a student activity feature vector 𝒙 ∈ ℜ$, where 𝐾 
denotes the number of features used to summarize student activities within a learning system during 
an affect observation, and our goal is to detect whether or not a student is in a certain affective state 
𝑦, which is (typically) binary-valued. Affect detectors are typically classifiers such as logistic regression 

𝑝(𝑦 = 1) = 𝜎(𝒘.𝒙) = 1/(1 + 𝑒2𝒘3𝒙), 
where 𝒘 ∈ ℜ$  denotes the regression coefficient (bias is omitted for simplicity of exposition). The 
values of regression coefficients offer us excellent interpretability since they explicitly control the 
probability of the student being in this affective state via a linear relationship. Other classic algorithms 
such as decision trees offer reasonably high interpretability as well, e.g. [Paquette et al., 2014]. Recent 
research has suggested that neural networks can often achieve significantly better predictive accuracy 
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than logistic regression for binary classification problems [Goodfellow et al., 2016]. In this paper, we 
use fully connected neural networks to improve the accuracy of affect detection. However, these 
detectors are often uninterpretable due to the presence of multiple layers and nonlinearities. In order 
to add interpretability to these neural networks, we propose to investigate the family of “monotonic” 
neural networks by i) selecting monotonic activation functions and ii) restricting weights beyond the 
first layer to be nonnegative. We note that common nonlinearities are monotonic, such as hyperbolic 
tangent (𝑡𝑎𝑛ℎ) and rectified linear units (𝑅𝑒𝐿𝑈) [Goodfellow et al., 2016]. Using a two-layer neural 
network as an example, for hidden unit 𝑖 in the first layer, we have 

𝑝(𝑦 = 1) = 𝜎=𝑊?,@	𝑧@ + 𝑐𝑜𝑛𝑠𝑡F = 𝜎(𝑊?,@	Φ(𝒘@
.𝒙) + 𝑐𝑜𝑛𝑠𝑡), 

where Φ denotes the nonlinearity in the first layer, 𝑧@  denotes the value of this hidden unit, and 𝑊?,@  
denotes the weight in the second layer connecting this hidden unit to the output. It is easy to show 
that when Φ is monotonic and 𝑊?,@  is nonnegative, the probability of a student being in this affective 
state is also monotonic with respect to 𝒘@

.𝒙, a property shared with logistic regression. This 
observation can be generalized to multi-layer neural networks and enable us to interpret neural 
network-based affect detectors using the coefficient 𝒘@  for each hidden unit in the first layer, if 
weights in subsequent layers are nonnegative. Despite the presence of nonlinearities at each layer 
preventing us from comparing the relative importance of features using their coefficients, we can still 
conclude that whether a feature is positively or negatively correlated with an affective state.  
 
3 EXPERIMENTS 

We conduct a series of experiments using monotonic networks as affect detectors on the ASSISTments 
student affect dataset1, which was collected in real classrooms as students work within the 
ASSISTments system by observers following the Baker Rodrigo Ocumpaugh monitoring protocol 
(BROMP) [Ocumpaugh et al., 2015]. The dataset contains 3109 observations. Each observation 
contains i) a student's affective state label during a 20-second observation interval and ii) a set of 88 
features that summarizes their activities within ASSISTments during this time interval. A total of 4 
affective states were coded in this data set: bored, confused, engaged concentration, and frustrated. 
In this paper, we only analyze the detection of engaged concentration, since it is the most common.  
 
We separate the entire dataset into a training set with 70% of the observations, a validation set with 
10% of the observations, and a test set with 20% of the observations. We test four different detectors 
using four different classifiers: logistic regression (LR), random forest (RF), fully-connected neural 
network (FNN), and its monotonic version (M-FNN). For each detector, we use the validation set to 
select the best parameter setting and report detection performance on the test set. For the neural 
network-based detectors, we sweep over algorithm parameters as learning rate ∈ {1𝑒 − 5, 1𝑒 −
4, 1𝑒 − 3}, number of layers ∈ {2,3}, number of units in each layer ∈ {5,10,20}, nonlinearity ∈
{𝑡𝑎𝑛ℎ, 𝑅𝑒𝐿𝑈}, and different random initializations of the network weights and biases. For the LR and 
RF detectors, we sweep over the learning rate and number of decision tree parameters, respectively, 
using a similar approach.  
 
Table 1 shows the performance of each affect detector on the test set, with means and standard 
deviations calculated over 10 random partitions of the dataset. We see that neural network-based 
detectors significantly outperform LR- and RF-based detectors, and the monotonic version of the FNN-
based detector achieves similar performance to that of its unrestricted version. Table 2 shows the top 
features and corresponding (regression) coefficients for most predictive features in the LR and M-FNN 
detectors (we selected one hidden unit in the hidden unit for the latter). We see that the top features 
(not coefficient values) match up reasonably closely across both cases.  

 
1 This dataset is taken from http://tiny.cc/affectdata. 
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Table 1: Engagement detection accuracy on the ASSISTments dataset for all detectors compared. 
 AUC 

LR 0.746 ± 0.036 

RF 0.763 ± 0.029 

FNN 0.782 ± 0.030 

M-FNN 0.780 ± 0.032 
Table 2: Most predictive features for engagement in the LR and M-FNN (1 unit) detectors. 

LR M-FNN 

Feature Coefficient Feature Coefficient 

max_frWorkingInSchool -0.101 max_frWorkingInSchool -0.471 

min_correct 0.096 avg_stlHintUsed -0.420 

avg_hintTotal -0.066 sum_hintCount -0.379 

sum_timeTaken -0.054 sum_timeTaken -0.369 

avg_stlHintUsed -0.032 avg_frPast8WrongCount -0.359 
 

4 LIMITATIONS AND FUTURE WORK 

Though this approach increases interpretability, we have found that we can only interpret the 
directionality of each unit in the first hidden layer of the neural network separately. Moreover, our 
monotonic restrictions do not apply to recurrent neural networks e.g., [Botelho et al., 2017] since 
these restrictions would enforce monotonicity on affect over time as well as activity features. Finally, 
we have not yet established if similar patterns would hold for other, less frequent affective states.  
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