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ABSTRACT 

Computer science (CS) education at the university level is often 

challenging, particularly for students with no prior 

programming experience. To help scaffold students’ CS 

learning, instructors often utilize systems for automated 

assessment of programming assignments, where students can 

individually learn online using automatically generated 

feedback. However, despite the growing usage of these 

systems, learning outcomes are often mixed and not all 

students benefit equally from using these applications. In this 

study, we utilize Ordered Network Analysis (ONA) to examine 

data from a system for automated assessment of programming 

assignments and compare platform activity between novice 

students (N=110) achieving high (N=43) and low (N=67) 

scores on the final test of an introductory CS course. We 

identify and visualize differences in the activity patterns 

between the groups. High performing novice students tend to 

request feedback more often, while low performing students 

more often leave the assignment unsolved after experiencing 

an unsuccessful attempt. These findings show that Ordered 

Network Analysis can serve as a useful tool for understanding 

student behaviors, facilitating the design of targeted 

interventions that might support learners at key moments in 

their programming engagement towards task success. 
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1  Introduction 

In recent years, increasing recognition of the relevance of 

Computer Science (CS) skills has resulted in global initiatives to 

expand and refine CS Education [9, 23]. In pursuit of this goal, 

CS Education research and practice has long included the use of 

automated assessment tools for both the improvement of 

grading efficiency and the design of timely and personalized 

feedback that can support programming success when 

repeated attempts are necessary [5, 10, 11]. While summative 

evaluations of automated programming assessments have 

broadly demonstrated their utility and efficacy for learning 

(e.g., [3, 10]) such benefits are often inconsistent in practice 

based on the specific actions taken or strategies enacted by 

novice learners. For example, behavioral self-regulation skills 

[4, 8, 19] and metacognitive awareness of the steps needed to 

complete a problem [13, 14] have been identified as key 
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mediators of ultimate success. Students who can successfully 

apply such skills often demonstrate markedly different 

performance from those who cannot. Ultimately, the ways in 

which such processes are enacted remains relatively 

underexplored in CS education, suggesting the need for 

research on the differences in activity patterns associated with 

novices who struggle or ultimately succeed in a programming 

task. 

To address this need, this work leverages Ordered Network 

Analysis (ONA) [21] to examine data from a system for 

automated assessment of programming assignments and 

compare platform activity between novice students in an 

introductory CS course who achieved high and low scores on 

the final test. Specifically, our research question is: What are 

the differences in the patterns of programming actions made 

by high and low achieving students using an automated 

assessment programming assignment platform? 

1.1  Epistemic Network Analysis 

Epistemic Network Analysis (ENA) is a methodological 

framework used for identifying and quantifying connections 

within coded qualitative data, visually representing the 

strength of associations between the codes as they appear 

across a discourse using network models [18]. A growing 

number of researchers have employed ENA in recent years to 

visualize and compare the relationships between variables in 

complex phenomena such as self-regulation (e.g., [15, 25]), 

affect (e.g., [6]) and collaboration practices (e.g., [27]). The 

structure of epistemic networks also supports visual and 

statistical comparisons of network patterns across defined 

groups (e.g., high versus low achieving students, see [18]). 

Two recent innovations to the application of ENA in the 

research community have helped to improve the relevance of 

applying this approach in the context of programming 

education where systems for automated assessment of 

programming assignments are used. First, there is now 

increasing understanding of how to apply ENA to interaction 

data, where events in log files may serve as the codes 

themselves [17]. Examples of this approach in practice have 

included epistemic networks that compared patterns of player 

actions in a puzzle-based video game [7], and the use of a series 

of in-game actions from log data to identify significant 

differences in how players responded to game events when 

they replay a scientific educational game [16]. The second 

advancement is the expansion of ENA techniques to also 

calculate the direction of code relationships in chronological 

data (Ordered Network Analysis, described in detail in Methods 

section; [21]). ONA has demonstrated utility for data and 

contexts in which it is important to understand the order of 

events as they unfold over time, such as instances of 

collaborative problem solving [21], or player actions in games 

[26]. Taken together, these innovations position this approach 

as well-suited for comparing activity patterns over time for 

high and low achieving learners using data from an automated 

programming assessment tool. 

1.2  ENA for Analyzing Computer Education 

Research in the field of CS education has begun to apply ENA 

to examine complex phenomena, with a particular emphasis on 

collaborative learning practices. In K-12 learning settings, Su 

and colleagues [20] and Vandenberg and colleagues [22] used 

epistemic networks to relate elements within conversations 

within pairs of students using pair programming [20] and 

course learning topics [22]. Research in CS education at the 

university level has also leveraged ENA to compare 

computational thinking approaches enacted by low and high 

performing novice groups in a university-level CS course based 

on collaborative problem-solving discussion data [24]. Pinto 

and colleagues’ [12] extended the application of ENA to 

understand student programming actions more directly. These 

authors built network models to investigate the evolution of 

debugging behaviors in code submission assignments, 

ultimately showcasing the unique approaches enacted by more 

and less experienced programmers. Our work is an effort to 

extend this innovation by using Ordered Network Analysis to 

understand what patterns of events emerge when high and low 

performing novice students engage in programming tasks.  

2  Methods 

2.1  Data collection 

The data used in this study was collected in fall semester 

2022/2023 as a part of the “Introduction to programming” 

course: a mandatory first-semester course for computer 

science students at a large university in Poland. It consists of 

answers submitted in a questionnaire at the beginning of the 

semester, the results of the pre-test conducted directly after 

submitting a questionnaire, activity within an online platform 

for automated assessment of programming assignments 

collected during the semester, and the results of the final test 

submitted as a graded assignment at the end of the semester. 

Consent was obtained from students (N=198) prior to joining 

this study. 

This work examines the patterns of behaviors made by 

learners we conceptualize as novice students who indicated 

having little to no programming experience prior to joining the 

course. The novice categorization was based on student 

responses to a survey item deployed during the first classes: 

“On the scale 1-5, where 1 is zero experience, and 5 is a lot of 

experience, please rate your basic programming knowledge 

(types, variables, conditional statement, recursion, loops, 

arrays).” We consider novices to be students that responded 

with a 1 or 2 (N=110) in the questionnaire and excluded more 

experienced students that responded with a 3-5 (N=88). We 

validated students’ self-reports of expertise by asking students 

to take a pre-test assessing their general programming 
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knowledge. This test was administered immediately  after 

students submitted the questionnaire. The difference between 

the novice group (Mdn=16%) and the group of more 

experienced students (Mdn=71%) was statistically significant 

(W=518, p<0.001) for a non-parametric Mann-Whitney U test. 

The final test was administered at the end of the semester 

and evaluated student knowledge in the common introductory 

programming concepts such as types, variables, conditional 

statement, recursion, arrays, and loops. Within the novice 

group, we further categorized students based on their 

performance on the final test to create the high (N=43) and low 

(N=67) performing groups, in order to understand the 

difference between students who learned more or less. Novices 

with final test scores greater than the test median (Mdn=55%) 

were assigned to the high-performing group (hp-novices), and 

the rest of students were assigned to the low-performing group 

(lp-novices). To evaluate the potential impact of the prior 

knowledge, we compared results of the pre-test for both 

groups. For the pre-test, no statistically significant difference 

was found between the lp-novices (Mdn=22%) and hp-novices 

(Mdn=21%) groups, (W=1596.5, p=0.340), for a non-

parametric Mann-Whitney U test.  

The online platform for automated assessment of 

programming assignments was used as a learning resource 

within the course. Students uploaded their C# code for a total 

of 146 tasks covering the following introductory programming 

topics: (1) types and variables (33) – tasks in this section 

require the usage of basic operators on variables of different 

types (multiplication, text concatenation), (2) conditional 

statement (25), (3) recursion (28), and (4) arrays and loops 

(60) – tasks in this section require the development of simple 

algorithms, such as ordering elements in an array according to 

a specific condition. Usage of the platform was not mandatory, 

and the number of submissions was not limited. Novice 

students generated 44,448 code submissions on the platform 

(23,038 in low performing and 21,410 in the high performing 

group) during the course of the study. There was no 

statistically significant difference in the number of submissions 

between the lp-novices (Mdn=79) and the hp-novices 

(Mdn=80) groups (W=1450, p=0.956), for a non-parametric 

Mann-Whitney U test. 

2.2  Categorization of Events 

To model and study student behavior, we focus on 6 events 

that can be directly extracted from the log data of their 

interactions with the platform. Initially, upon viewing a task, a 

student has two choices: either submit code to test its 

correctness or quit and proceed to the next task without 

solving the current one. When they submit a solution, the code 

is compiled and then run against a set of unit cases. As a result 

of the submission, three outcomes are possible: the solution 

might contain a compiler error (meaning the code fails to 

execute), the code might execute but produce an incorrect 

result (meaning that at least one unit test failed), or it might 

successfully deliver the correct outcome. In instances of a 

compiler error, the system provides an error message. If the 

code executes but is incorrect, students have several options: 

they can request feedback, submit another solution without 

seeking feedback, or choose to move on to the next task without 

solving the current one. Once students correctly solve a task, 

they can either submit more solutions for the same task or, 

more commonly, progress to the next task. The 6 events used 

in this study encapsulate these decision points and actions. 

Detailed definitions of these events are presented in Table 1. 

 

Event Definition 

Compiler Error 
(CE) 

Student submitted code 
containing a compiler error. 

Unit Tests Failed  
(UTF) 

Student submitted compiling 
code but failing to pass at least 
one unit test. 

Feedback Requested  
(FR) 

Student requested feedback after 
submitting code that failed to 
pass all unit tests. 

No Feedback Requested 
(NFR) 

Student did not request feedback 
after submitting code that failed 
to pass all unit tests. 

Correct Submission  
(CS) 

Student submitted compiling 
code that passed all unit tests. 

Quit Task 
(QT) 

Student moved to a new task 
without solving the current one. 

Table 1: Categories of events. 

2.3  Ordered Network Analysis 

In our study, Ordered Network Analysis (ONA) accumulates 

connections across events (stored in separate lines) in student 

log data, using a moving window to connect each line of 

chronological data to the preceding lines within the window. 

The length of the moving window is determined through 

examination of the dataset to estimate how far back each line 

should refer. In our case, we chose a narrow window size of 2, 

to visualize only the relationship between two consecutively 

observed events for a student. Connection accumulations are 

only calculated across lines associated with the same student 

and task in the tool, i.e. from a student’s start to successful 

completion (or quitting) of a task. 

ONA accounts for the order in which the connections occur 

by constructing an asymmetric adjacency matrix for the data 

associated with each unit of analysis. For this research, the unit 

of analysis is the series of events associated with a single task 

attempted by an individual student. Units are then categorized 

based on student assignment into the high and low performing 

groups.  

In ONA, connections have directions and therefore the 

number of connections from code A to code B may be different 

than the number of connections from B to A. The ONA 
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algorithm transforms the matrix for each unit (events for a 

task-student pair) into a single high dimensional asymmetric 

adjacency vector, which is then normalized and centered. The 

algorithm performs a dimensionality reduction using singular 

value decomposition (SVD) and a means rotation (MR) when 

comparing two groups (e.g., high performers and low 

performers). The ONA projects the units’ means of each 

individual unit-network into a 2-dimensional space so that the 

network graph visualizations can meaningfully reflect the 

mathematical properties of each unit. Each unit’s mean (for 

each task-student pair) is then represented as a point in the low 

dimensional space (the coordinate plane). The network nodes 

in ONA are positioned in the space using an optimization 

algorithm that minimizes the distance between the centroids of 

the networks obtained with those nodes and the actual unit 

means obtained after the dimensional reduction [2]. As a result, 

the ONA metric space can be interpreted based on the locations 

of the nodes. Units on the right side of the space have more 

frequent connections between the codes (nodes) on the right 

side of the space, and units with points on the left have more 

frequent connections between the codes on the left side of the 

space (see [18] for further details about ENA interpretation, [2] 

for mathematical details about ENA, and [21] for specific 

details about ONA). 

For each of the hp-novice and lp-novice groups, a network 

graph (not displayed in this article) shows the strength and 

directionality of the connections made between events. In this 

article, we focus on (and display) the difference between these 

2 individual networks of each group. In our visualizations, only 

those transitions where the line weight exceeds 0.005 are 

shown, to improve clarity. For the implementation of the ONA, 

we employed the R package developed by Tan et al. [21].  

Once the network models were generated, we applied a 

mixed-effects rank regression model to determine if the 

students in each group showed statistically significant 

differences in their behavior at the task submission level. 

Variables were transformed to ranks due to substantial non-

normality in most of the variables. This approach involves 

comparing the unit mean ranks along the MR axis (x-axis of the 

two-dimensional reduction) for all task-student pairs in both 

groups. We chose a mixed-effects approach due to the non-

independence in task submissions of the same student. This 

procedure was replicated across three distinct scenarios. 

Firstly, we applied the ordered network analysis considering 

all student data to identify key patterns throughout the 

semester. Secondly, we focused exclusively on data related to 

the conditional statement (if … else) tasks, a fundamental topic 

presented in an early stage of the semester. Lastly, we 

examined data involving loops, which correspond to a more 

challenging content introduced in the second half of the 

semester. This approach allowed us to track the evolution of 

patterns over the semester across various topics. 

3  Results 

Figure 1 shows directed event patterns comparing the two 

novice groups across all the tasks during the semester. This 

model (denominated difference model) is generated as the 

subtraction of the individual models of each of the two groups. 

Line weights (lw) of these directed connections between nodes 

of the individual and difference model are presented in Table 2. 

 

 

Figure 1: Difference Model comparing programming 
novices in low (red) and high (blue) performing groups 
(events during solving all tasks). The order of events goes 
from the thin to the thick part of the edge. Node size 
represents the relative response strength of each event. 
See [21] for more details. 

Transition High (Blue) Low (Red) Difference 

UTF→ FR 0.395 0.357 0.038 

FR → CS 0.145 0.120 0.026 

CE → CS 0.187 0.169 0.018 

FR → UTF 0.145 0.129 0.016 

CE → QT 0.031 0.043 -0.012 

UTF→ NFR 0.076 0.082 -0.006 

Table 2: Weights of transitions with absolute difference > 
0.005 considering all events during the semester.  

Along the X axis (SVD1 with MR), a mixed-effects linear 

model showed marginally significant differences between the 

hp-novice (N=43) and the lp-novice groups (N=67, 𝜷=411.47, 

p=0.060). The main difference between the two groups was 

their behavior in seeking feedback after unit tests fail. While 

both groups commonly requested feedback following such 

errors, high-performing novices (lw=0.395) did so more 

frequently than their low-performing counterparts (lw=0.357). 
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Notably, high performers generally had a higher rate of correct 

submissions after both types of error, particularly if they 

actively searched for feedback (feedback after unit test failures 

is presented upon the student’s request after a student clicks a 

selected unit test). Interestingly, high performers also more 

often experienced unit test failures after seeking feedback 

compared to low performers (line weights of 0.145 and 0.129, 

respectively). This suggests that while seeking feedback might 

initially lead to additional errors, it may eventually contribute 

to a higher success rate for these students. In contrast, low 

performers did not show a significant increase in any specific 

transition compared to high performers. However, there was a 

tendency among them to avoid seeking feedback and to 

abandon tasks without submitting a correct answer, instead 

moving on to new tasks. 

To analyze how learning patterns differed across various 

content areas, we focused on a conditional statement 

(introduced early in the semester) and loops tasks (a more 

complex topic in the second half of the semester). Figure 2 and 

Table 3 specifically examine conditional statement tasks. On 

the X axis (SVD1 with MR), a mixed-effects linear model 

showed a statistically significant difference between the unit 

mean for the hp-novices group (N=43) and the unit mean for 

the lp-novices group (N=67) (𝜷=97.05, p=0.008). These 

patterns mirror those seen in Figure 1 for the entire semester. 

 

Figure 2: Difference Model comparing programming 
novices in low (red) and high (blue) performing groups 
(events for conditional statement tasks). 

The high-performing group consistently more often 

submitted correct answers after facing both error types 

(requesting feedback for unit test failures). In contrast, low 

performers showed a slight tendency to experience compiler 

errors more often after requesting feedback (difference of line 

weights 𝛥 lw=-0.008) and quitting the task after requesting 

feedback (𝛥 lw=-0.006) or having a compiler error (𝛥 lw=-

0.007). These trends suggest that low performers might more 

often face compiler errors and quit tasks at higher rates, 

whereas high performers are more likely to complete tasks 

successfully, especially when they request feedback. 

Transition High (Blue) Low (Red) Difference 

FR → CS 0.163 0.127 0.037 

CE → CS 0.276 0.248 0.028 

UTF→ FR 0.331 0.310 0.021 

FR → CE 0.030 0.039 -0.008 

CE → QT 0.032 0.040 -0.007 

FR → QT 0.031 0.037 -0.006 

Table 3: Weights of transitions with absolute difference > 
0.005 for events during solving the conditional statement 
tasks. 

Figure 3 and Table 4 specifically focus on the differences 

observed between the two groups for loops tasks. Here, along 

the X axis (SVD1 with MR), a mixed-effects linear model 

showed a significant difference between the hp-novices group 

(N=43) and the lp-novices group (N=67) (𝜷=205.04, p=0.010). 

These results show patterns consistent with the previous 

models but with greater differences between high and low 

performers for this content. Once again, high performers were 

observed to request feedback more often and submit correct 

answers more often. Similarly, low performers tend to quit the 

task and/or avoid requesting feedback more often, which is a 

potential cause of their lower performance in the final test of 

the semester. This area presented the greatest differences 

between the individual networks of the two groups. As the last 

subject before the final test, the group differences appear to 

have become increasingly pronounced over the semester. 

These differences likely correlate more with the differences 

seen in the final test than with the content taught earlier in the 

semester. 

 

 

Figure 3: Difference model comparing programming 
novices in low (red) and high (blue) performing groups 
(events for loops tasks). 
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Transition High (Blue) Low (Red) Difference 

UTF→ FR 0.508 0.458 0.050 

UTF→ NFR 0.070 0.099 -0.030 

FR → CS 0.170 0.141 0.029 

FR → UTF 0.194 0.173 0.021 

CE → QT 0.014 0.030 -0.016 

CE → CS 0.121 0.106 0.015 

NFR → QT 0.009 0.020 -0.012 

NFR → UTF 0.033 0.044 -0.010 

FR → QT 0.079 0.087 -0.008 

FR → CE 0.053 0.046 0.007 

NFR → CS 0.018 0.023 -0.006 

Table 4: Weights of transitions with absolute difference > 
0.005 for events during solving loops tasks.  

4  Discussion & Conclusions 

Overall, these findings highlight the utility of ordered 

networks for illustrating behavioral differences between low 

performing and high performing groups when engaging in 

programming tasks. We identify three main advantages of 

employing this technique. First, ordered networks offer insight 

into the directionality of associations between events, 

suggesting chronological event relationships that can help 

explain user patterns of behavior. For example, a more strongly 

associated pathway for high performers in several models 

involves users having a unit test failure, followed by requesting 

feedback on the nature of the error, followed by a correct 

submission. Perhaps unsurprisingly, this suggests that 

reviewing feedback when an error is made helps to support 

later programming success. 

Second, Ordered Network Analysis allows for examination 

of the same user data at different levels of granularity. Figure 1 

highlights summative trends that are similar and different in 

high and low performing novices’ actions as they work toward 

correct responses using the automated programming 

assessment tool, while Figures 2 and 3 illustrate the more 

granular patterns that emerge when learners engage in 

conditional statement and loops tasks. While the Figure 1 

summary model reveals a stronger association between 

requesting feedback and higher performance in the final tests, 

the more granular models reveal that requesting (or not 

requesting) feedback explains a greater variance between the 

two performing groups for loops tasks than for conditional 

statement tasks. 

Third, the use of difference models highlights the specific 

network associations that contributed to statistically 

significant differences between user groups, offering insights 

into what patterns of behavior set low performing and high 

performing users apart. Including performance indicators in 

the models (e.g., errors, correct submission, tasks quitting) 

shows not only which task-level outcomes were achieved more 

frequently by group, but also which patterns of events 

preceded their onset. For example, when learners made 

compiler errors for loops tasks (Figure 3), high performers 

were more likely to request feedback before ultimately 

achieving a correct response, while low performers were more 

likely to not request feedback on the error or quit the task.  

The observed differences between high-performing novices 

and their less successful peers highlight the critical role of self-

regulatory behaviors in computer science education. In line 

with prior work [e.g., 8, 13, 14] our results particularly 

emphasize the value of fostering a reflective attitude towards 

past mistakes and the importance of perseverance and 

persistence rather than abandoning the task when facing 

consecutive errors. The differences in these self-regulated 

skills already manifested at an early stage of the semester (for 

the conditional statement tasks) and became stronger at the 

end of the semester (for the loops tasks), suggesting that the 

low-performing group of novices did not learn these skills 

during the semester. Such findings can guide and support the 

design of targeted interventions that might assist learners and 

reinforce self-regulatory skills at key moments in their 

programming engagement toward task success. 

Some possible interventions to enhance learning using this 

platform could include automatically showing students 

feedback about their last submission, including the specific unit 

tests it failed. Additionally, after several successive incorrect 

attempts, platforms could offer customized hints or 

motivational messages tailored depending on the nature of the 

errors and the duration between each submission. When 

implementing these interventions, designers should be mindful 

of encouraging self-regulation and genuine engagement with 

the material rather than motivating counterproductive 

behaviors such as students submitting code repeatedly merely 

to access hints, thereby attempting to complete tasks more 

quickly without understanding the content (e.g. gaming the 

system [1]). 

In conclusion, Ordered Network Analysis can be a useful 

method for understanding how trajectories of behavior differ 

between groups of learners. By understanding those 

trajectories, we can find strategies used by more successful 

students and identify opportunities for interventions that shift 

less successful students’ behaviors and support their learning. 
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