
Ordered Network Analysis in CS Education: Unveiling Patterns of
Success and Struggle in Automated Programming Assessment

Andres Felipe Zambrano†
 Graduate School of Education

 University of Pennsylvania
 Philadelphia, PA, United States

afzambrano97@gmail.com

Amanda Barany
 Graduate School of Education

 University of Pennsylvania
 Philadelphia, PA, United States

 amanda.barany@gmail.com

Maciej Pankiewicz
 Institute of Information Technology
 Warsaw University of Life Sciences

 Warsaw, Poland
 maciekpankiewicz@gmail.com

Ryan S. Baker
 Graduate School of Education

 University of Pennsylvania
 Philadelphia, PA, United States
 ryanshaunbaker@gmail.com

ABSTRACT

Computer science (CS) education at the university level is often

challenging, particularly for students with no prior

programming experience. To help scaffold students’ CS

learning, instructors often utilize systems for automated

assessment of programming assignments, where students can

individually learn online using automatically generated

feedback. However, despite the growing usage of these

systems, learning outcomes are often mixed and not all

students benefit equally from using these applications. In this

study, we utilize Ordered Network Analysis (ONA) to examine

data from a system for automated assessment of programming

assignments and compare platform activity between novice

students (N=110) achieving high (N=43) and low (N=67)

scores on the final test of an introductory CS course. We

identify and visualize differences in the activity patterns

between the groups. High performing novice students tend to

request feedback more often, while low performing students

more often leave the assignment unsolved after experiencing

an unsuccessful attempt. These findings show that Ordered

Network Analysis can serve as a useful tool for understanding

student behaviors, facilitating the design of targeted

interventions that might support learners at key moments in

their programming engagement towards task success.

CCS CONCEPTS

• Applied computing → Education → Interactive learning

environments.

KEYWORDS

Computer science education, Programming, Automated

assessment, Ordered network analysis, Digital learning

platforms.

ACM Reference format:

Andres Felipe Zambrano, Maciej Pankiewicz, Amanda Barany, and

Ryan S. Baker. 2024. Ordered Network Analysis in CS Education:

Unveiling Patterns of Success and Struggle in Automated Programming

Assessment. In Proceedings of the 29th annual ACM conference on

Innovation and Technology in Computer Science Education (ITiCSE’24),

July 8-10, 2024, Milan, Italy. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3649217.3653613

1 Introduction

In recent years, increasing recognition of the relevance of

Computer Science (CS) skills has resulted in global initiatives to

expand and refine CS Education [9, 23]. In pursuit of this goal,

CS Education research and practice has long included the use of

automated assessment tools for both the improvement of

grading efficiency and the design of timely and personalized

feedback that can support programming success when

repeated attempts are necessary [5, 10, 11]. While summative

evaluations of automated programming assessments have

broadly demonstrated their utility and efficacy for learning

(e.g., [3, 10]) such benefits are often inconsistent in practice

based on the specific actions taken or strategies enacted by

novice learners. For example, behavioral self-regulation skills

[4, 8, 19] and metacognitive awareness of the steps needed to

complete a problem [13, 14] have been identified as key

†Corresponding Author
Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0600-4/24/07
DOI: https://doi.org/10.1145/3649217.3653613

ITiCSE 24, July 8-10, 2024, Milan, Italy Zambrano et al.

mediators of ultimate success. Students who can successfully

apply such skills often demonstrate markedly different

performance from those who cannot. Ultimately, the ways in

which such processes are enacted remains relatively

underexplored in CS education, suggesting the need for

research on the differences in activity patterns associated with

novices who struggle or ultimately succeed in a programming

task.

To address this need, this work leverages Ordered Network

Analysis (ONA) [21] to examine data from a system for

automated assessment of programming assignments and

compare platform activity between novice students in an

introductory CS course who achieved high and low scores on

the final test. Specifically, our research question is: What are

the differences in the patterns of programming actions made

by high and low achieving students using an automated

assessment programming assignment platform?

1.1 Epistemic Network Analysis

Epistemic Network Analysis (ENA) is a methodological

framework used for identifying and quantifying connections

within coded qualitative data, visually representing the

strength of associations between the codes as they appear

across a discourse using network models [18]. A growing

number of researchers have employed ENA in recent years to

visualize and compare the relationships between variables in

complex phenomena such as self-regulation (e.g., [15, 25]),

affect (e.g., [6]) and collaboration practices (e.g., [27]). The

structure of epistemic networks also supports visual and

statistical comparisons of network patterns across defined

groups (e.g., high versus low achieving students, see [18]).

Two recent innovations to the application of ENA in the

research community have helped to improve the relevance of

applying this approach in the context of programming

education where systems for automated assessment of

programming assignments are used. First, there is now

increasing understanding of how to apply ENA to interaction

data, where events in log files may serve as the codes

themselves [17]. Examples of this approach in practice have

included epistemic networks that compared patterns of player

actions in a puzzle-based video game [7], and the use of a series

of in-game actions from log data to identify significant

differences in how players responded to game events when

they replay a scientific educational game [16]. The second

advancement is the expansion of ENA techniques to also

calculate the direction of code relationships in chronological

data (Ordered Network Analysis, described in detail in Methods

section; [21]). ONA has demonstrated utility for data and

contexts in which it is important to understand the order of

events as they unfold over time, such as instances of

collaborative problem solving [21], or player actions in games

[26]. Taken together, these innovations position this approach

as well-suited for comparing activity patterns over time for

high and low achieving learners using data from an automated

programming assessment tool.

1.2 ENA for Analyzing Computer Education

Research in the field of CS education has begun to apply ENA

to examine complex phenomena, with a particular emphasis on

collaborative learning practices. In K-12 learning settings, Su

and colleagues [20] and Vandenberg and colleagues [22] used

epistemic networks to relate elements within conversations

within pairs of students using pair programming [20] and

course learning topics [22]. Research in CS education at the

university level has also leveraged ENA to compare

computational thinking approaches enacted by low and high

performing novice groups in a university-level CS course based

on collaborative problem-solving discussion data [24]. Pinto

and colleagues’ [12] extended the application of ENA to

understand student programming actions more directly. These

authors built network models to investigate the evolution of

debugging behaviors in code submission assignments,

ultimately showcasing the unique approaches enacted by more

and less experienced programmers. Our work is an effort to

extend this innovation by using Ordered Network Analysis to

understand what patterns of events emerge when high and low

performing novice students engage in programming tasks.

2 Methods

2.1 Data collection

The data used in this study was collected in fall semester

2022/2023 as a part of the “Introduction to programming”

course: a mandatory first-semester course for computer

science students at a large university in Poland. It consists of

answers submitted in a questionnaire at the beginning of the

semester, the results of the pre-test conducted directly after

submitting a questionnaire, activity within an online platform

for automated assessment of programming assignments

collected during the semester, and the results of the final test

submitted as a graded assignment at the end of the semester.

Consent was obtained from students (N=198) prior to joining

this study.

This work examines the patterns of behaviors made by

learners we conceptualize as novice students who indicated

having little to no programming experience prior to joining the

course. The novice categorization was based on student

responses to a survey item deployed during the first classes:

“On the scale 1-5, where 1 is zero experience, and 5 is a lot of

experience, please rate your basic programming knowledge

(types, variables, conditional statement, recursion, loops,

arrays).” We consider novices to be students that responded

with a 1 or 2 (N=110) in the questionnaire and excluded more

experienced students that responded with a 3-5 (N=88). We

validated students’ self-reports of expertise by asking students

to take a pre-test assessing their general programming

Ordered Network Analysis in CS Education ITiCSE 24, July 8-10, 2024, Milan, Italy

knowledge. This test was administered immediately after

students submitted the questionnaire. The difference between

the novice group (Mdn=16%) and the group of more

experienced students (Mdn=71%) was statistically significant

(W=518, p<0.001) for a non-parametric Mann-Whitney U test.

The final test was administered at the end of the semester

and evaluated student knowledge in the common introductory

programming concepts such as types, variables, conditional

statement, recursion, arrays, and loops. Within the novice

group, we further categorized students based on their

performance on the final test to create the high (N=43) and low

(N=67) performing groups, in order to understand the

difference between students who learned more or less. Novices

with final test scores greater than the test median (Mdn=55%)

were assigned to the high-performing group (hp-novices), and

the rest of students were assigned to the low-performing group

(lp-novices). To evaluate the potential impact of the prior

knowledge, we compared results of the pre-test for both

groups. For the pre-test, no statistically significant difference

was found between the lp-novices (Mdn=22%) and hp-novices

(Mdn=21%) groups, (W=1596.5, p=0.340), for a non-

parametric Mann-Whitney U test.

The online platform for automated assessment of

programming assignments was used as a learning resource

within the course. Students uploaded their C# code for a total

of 146 tasks covering the following introductory programming

topics: (1) types and variables (33) – tasks in this section

require the usage of basic operators on variables of different

types (multiplication, text concatenation), (2) conditional

statement (25), (3) recursion (28), and (4) arrays and loops

(60) – tasks in this section require the development of simple

algorithms, such as ordering elements in an array according to

a specific condition. Usage of the platform was not mandatory,

and the number of submissions was not limited. Novice

students generated 44,448 code submissions on the platform

(23,038 in low performing and 21,410 in the high performing

group) during the course of the study. There was no

statistically significant difference in the number of submissions

between the lp-novices (Mdn=79) and the hp-novices

(Mdn=80) groups (W=1450, p=0.956), for a non-parametric

Mann-Whitney U test.

2.2 Categorization of Events

To model and study student behavior, we focus on 6 events

that can be directly extracted from the log data of their

interactions with the platform. Initially, upon viewing a task, a

student has two choices: either submit code to test its

correctness or quit and proceed to the next task without

solving the current one. When they submit a solution, the code

is compiled and then run against a set of unit cases. As a result

of the submission, three outcomes are possible: the solution

might contain a compiler error (meaning the code fails to

execute), the code might execute but produce an incorrect

result (meaning that at least one unit test failed), or it might

successfully deliver the correct outcome. In instances of a

compiler error, the system provides an error message. If the

code executes but is incorrect, students have several options:

they can request feedback, submit another solution without

seeking feedback, or choose to move on to the next task without

solving the current one. Once students correctly solve a task,

they can either submit more solutions for the same task or,

more commonly, progress to the next task. The 6 events used

in this study encapsulate these decision points and actions.

Detailed definitions of these events are presented in Table 1.

Event Definition

Compiler Error
(CE)

Student submitted code
containing a compiler error.

Unit Tests Failed
(UTF)

Student submitted compiling
code but failing to pass at least
one unit test.

Feedback Requested
(FR)

Student requested feedback after
submitting code that failed to
pass all unit tests.

No Feedback Requested
(NFR)

Student did not request feedback
after submitting code that failed
to pass all unit tests.

Correct Submission
(CS)

Student submitted compiling
code that passed all unit tests.

Quit Task
(QT)

Student moved to a new task
without solving the current one.

Table 1: Categories of events.

2.3 Ordered Network Analysis

In our study, Ordered Network Analysis (ONA) accumulates

connections across events (stored in separate lines) in student

log data, using a moving window to connect each line of

chronological data to the preceding lines within the window.

The length of the moving window is determined through

examination of the dataset to estimate how far back each line

should refer. In our case, we chose a narrow window size of 2,

to visualize only the relationship between two consecutively

observed events for a student. Connection accumulations are

only calculated across lines associated with the same student

and task in the tool, i.e. from a student’s start to successful

completion (or quitting) of a task.

ONA accounts for the order in which the connections occur

by constructing an asymmetric adjacency matrix for the data

associated with each unit of analysis. For this research, the unit

of analysis is the series of events associated with a single task

attempted by an individual student. Units are then categorized

based on student assignment into the high and low performing

groups.

In ONA, connections have directions and therefore the

number of connections from code A to code B may be different

than the number of connections from B to A. The ONA

ITiCSE 24, July 8-10, 2024, Milan, Italy Zambrano et al.

algorithm transforms the matrix for each unit (events for a

task-student pair) into a single high dimensional asymmetric

adjacency vector, which is then normalized and centered. The

algorithm performs a dimensionality reduction using singular

value decomposition (SVD) and a means rotation (MR) when

comparing two groups (e.g., high performers and low

performers). The ONA projects the units’ means of each

individual unit-network into a 2-dimensional space so that the

network graph visualizations can meaningfully reflect the

mathematical properties of each unit. Each unit’s mean (for

each task-student pair) is then represented as a point in the low

dimensional space (the coordinate plane). The network nodes

in ONA are positioned in the space using an optimization

algorithm that minimizes the distance between the centroids of

the networks obtained with those nodes and the actual unit

means obtained after the dimensional reduction [2]. As a result,

the ONA metric space can be interpreted based on the locations

of the nodes. Units on the right side of the space have more

frequent connections between the codes (nodes) on the right

side of the space, and units with points on the left have more

frequent connections between the codes on the left side of the

space (see [18] for further details about ENA interpretation, [2]

for mathematical details about ENA, and [21] for specific

details about ONA).

For each of the hp-novice and lp-novice groups, a network

graph (not displayed in this article) shows the strength and

directionality of the connections made between events. In this

article, we focus on (and display) the difference between these

2 individual networks of each group. In our visualizations, only

those transitions where the line weight exceeds 0.005 are

shown, to improve clarity. For the implementation of the ONA,

we employed the R package developed by Tan et al. [21].

Once the network models were generated, we applied a

mixed-effects rank regression model to determine if the

students in each group showed statistically significant

differences in their behavior at the task submission level.

Variables were transformed to ranks due to substantial non-

normality in most of the variables. This approach involves

comparing the unit mean ranks along the MR axis (x-axis of the

two-dimensional reduction) for all task-student pairs in both

groups. We chose a mixed-effects approach due to the non-

independence in task submissions of the same student. This

procedure was replicated across three distinct scenarios.

Firstly, we applied the ordered network analysis considering

all student data to identify key patterns throughout the

semester. Secondly, we focused exclusively on data related to

the conditional statement (if … else) tasks, a fundamental topic

presented in an early stage of the semester. Lastly, we

examined data involving loops, which correspond to a more

challenging content introduced in the second half of the

semester. This approach allowed us to track the evolution of

patterns over the semester across various topics.

3 Results

Figure 1 shows directed event patterns comparing the two

novice groups across all the tasks during the semester. This

model (denominated difference model) is generated as the

subtraction of the individual models of each of the two groups.

Line weights (lw) of these directed connections between nodes

of the individual and difference model are presented in Table 2.

Figure 1: Difference Model comparing programming
novices in low (red) and high (blue) performing groups
(events during solving all tasks). The order of events goes
from the thin to the thick part of the edge. Node size
represents the relative response strength of each event.
See [21] for more details.

Transition High (Blue) Low (Red) Difference

UTF→ FR 0.395 0.357 0.038

FR → CS 0.145 0.120 0.026

CE → CS 0.187 0.169 0.018

FR → UTF 0.145 0.129 0.016

CE → QT 0.031 0.043 -0.012

UTF→ NFR 0.076 0.082 -0.006

Table 2: Weights of transitions with absolute difference >
0.005 considering all events during the semester.

Along the X axis (SVD1 with MR), a mixed-effects linear

model showed marginally significant differences between the

hp-novice (N=43) and the lp-novice groups (N=67, 𝜷=411.47,

p=0.060). The main difference between the two groups was

their behavior in seeking feedback after unit tests fail. While

both groups commonly requested feedback following such

errors, high-performing novices (lw=0.395) did so more

frequently than their low-performing counterparts (lw=0.357).

Ordered Network Analysis in CS Education ITiCSE 24, July 8-10, 2024, Milan, Italy

Notably, high performers generally had a higher rate of correct

submissions after both types of error, particularly if they

actively searched for feedback (feedback after unit test failures

is presented upon the student’s request after a student clicks a

selected unit test). Interestingly, high performers also more

often experienced unit test failures after seeking feedback

compared to low performers (line weights of 0.145 and 0.129,

respectively). This suggests that while seeking feedback might

initially lead to additional errors, it may eventually contribute

to a higher success rate for these students. In contrast, low

performers did not show a significant increase in any specific

transition compared to high performers. However, there was a

tendency among them to avoid seeking feedback and to

abandon tasks without submitting a correct answer, instead

moving on to new tasks.

To analyze how learning patterns differed across various

content areas, we focused on a conditional statement

(introduced early in the semester) and loops tasks (a more

complex topic in the second half of the semester). Figure 2 and

Table 3 specifically examine conditional statement tasks. On

the X axis (SVD1 with MR), a mixed-effects linear model

showed a statistically significant difference between the unit

mean for the hp-novices group (N=43) and the unit mean for

the lp-novices group (N=67) (𝜷=97.05, p=0.008). These

patterns mirror those seen in Figure 1 for the entire semester.

Figure 2: Difference Model comparing programming
novices in low (red) and high (blue) performing groups
(events for conditional statement tasks).

The high-performing group consistently more often

submitted correct answers after facing both error types

(requesting feedback for unit test failures). In contrast, low

performers showed a slight tendency to experience compiler

errors more often after requesting feedback (difference of line

weights 𝛥 lw=-0.008) and quitting the task after requesting

feedback (𝛥 lw=-0.006) or having a compiler error (𝛥 lw=-

0.007). These trends suggest that low performers might more

often face compiler errors and quit tasks at higher rates,

whereas high performers are more likely to complete tasks

successfully, especially when they request feedback.

Transition High (Blue) Low (Red) Difference

FR → CS 0.163 0.127 0.037

CE → CS 0.276 0.248 0.028

UTF→ FR 0.331 0.310 0.021

FR → CE 0.030 0.039 -0.008

CE → QT 0.032 0.040 -0.007

FR → QT 0.031 0.037 -0.006

Table 3: Weights of transitions with absolute difference >
0.005 for events during solving the conditional statement
tasks.

Figure 3 and Table 4 specifically focus on the differences

observed between the two groups for loops tasks. Here, along

the X axis (SVD1 with MR), a mixed-effects linear model

showed a significant difference between the hp-novices group

(N=43) and the lp-novices group (N=67) (𝜷=205.04, p=0.010).

These results show patterns consistent with the previous

models but with greater differences between high and low

performers for this content. Once again, high performers were

observed to request feedback more often and submit correct

answers more often. Similarly, low performers tend to quit the

task and/or avoid requesting feedback more often, which is a

potential cause of their lower performance in the final test of

the semester. This area presented the greatest differences

between the individual networks of the two groups. As the last

subject before the final test, the group differences appear to

have become increasingly pronounced over the semester.

These differences likely correlate more with the differences

seen in the final test than with the content taught earlier in the

semester.

Figure 3: Difference model comparing programming
novices in low (red) and high (blue) performing groups
(events for loops tasks).

ITiCSE 24, July 8-10, 2024, Milan, Italy Zambrano et al.

Transition High (Blue) Low (Red) Difference

UTF→ FR 0.508 0.458 0.050

UTF→ NFR 0.070 0.099 -0.030

FR → CS 0.170 0.141 0.029

FR → UTF 0.194 0.173 0.021

CE → QT 0.014 0.030 -0.016

CE → CS 0.121 0.106 0.015

NFR → QT 0.009 0.020 -0.012

NFR → UTF 0.033 0.044 -0.010

FR → QT 0.079 0.087 -0.008

FR → CE 0.053 0.046 0.007

NFR → CS 0.018 0.023 -0.006

Table 4: Weights of transitions with absolute difference >
0.005 for events during solving loops tasks.

4 Discussion & Conclusions

Overall, these findings highlight the utility of ordered

networks for illustrating behavioral differences between low

performing and high performing groups when engaging in

programming tasks. We identify three main advantages of

employing this technique. First, ordered networks offer insight

into the directionality of associations between events,

suggesting chronological event relationships that can help

explain user patterns of behavior. For example, a more strongly

associated pathway for high performers in several models

involves users having a unit test failure, followed by requesting

feedback on the nature of the error, followed by a correct

submission. Perhaps unsurprisingly, this suggests that

reviewing feedback when an error is made helps to support

later programming success.

Second, Ordered Network Analysis allows for examination

of the same user data at different levels of granularity. Figure 1

highlights summative trends that are similar and different in

high and low performing novices’ actions as they work toward

correct responses using the automated programming

assessment tool, while Figures 2 and 3 illustrate the more

granular patterns that emerge when learners engage in

conditional statement and loops tasks. While the Figure 1

summary model reveals a stronger association between

requesting feedback and higher performance in the final tests,

the more granular models reveal that requesting (or not

requesting) feedback explains a greater variance between the

two performing groups for loops tasks than for conditional

statement tasks.

Third, the use of difference models highlights the specific

network associations that contributed to statistically

significant differences between user groups, offering insights

into what patterns of behavior set low performing and high

performing users apart. Including performance indicators in

the models (e.g., errors, correct submission, tasks quitting)

shows not only which task-level outcomes were achieved more

frequently by group, but also which patterns of events

preceded their onset. For example, when learners made

compiler errors for loops tasks (Figure 3), high performers

were more likely to request feedback before ultimately

achieving a correct response, while low performers were more

likely to not request feedback on the error or quit the task.

The observed differences between high-performing novices

and their less successful peers highlight the critical role of self-

regulatory behaviors in computer science education. In line

with prior work [e.g., 8, 13, 14] our results particularly

emphasize the value of fostering a reflective attitude towards

past mistakes and the importance of perseverance and

persistence rather than abandoning the task when facing

consecutive errors. The differences in these self-regulated

skills already manifested at an early stage of the semester (for

the conditional statement tasks) and became stronger at the

end of the semester (for the loops tasks), suggesting that the

low-performing group of novices did not learn these skills

during the semester. Such findings can guide and support the

design of targeted interventions that might assist learners and

reinforce self-regulatory skills at key moments in their

programming engagement toward task success.

Some possible interventions to enhance learning using this

platform could include automatically showing students

feedback about their last submission, including the specific unit

tests it failed. Additionally, after several successive incorrect

attempts, platforms could offer customized hints or

motivational messages tailored depending on the nature of the

errors and the duration between each submission. When

implementing these interventions, designers should be mindful

of encouraging self-regulation and genuine engagement with

the material rather than motivating counterproductive

behaviors such as students submitting code repeatedly merely

to access hints, thereby attempting to complete tasks more

quickly without understanding the content (e.g. gaming the

system [1]).

In conclusion, Ordered Network Analysis can be a useful

method for understanding how trajectories of behavior differ

between groups of learners. By understanding those

trajectories, we can find strategies used by more successful

students and identify opportunities for interventions that shift

less successful students’ behaviors and support their learning.

ACKNOWLEDGMENTS
Andres Felipe Zambrano thanks the Ministerio de Ciencia,

Tecnología e Innovación and the Fulbright-Colombia

commission for supporting his doctoral studies through the

Fulbright-MinCiencias 2022 scholarship.

REFERENCES
[1] Ryan S.J.d. Baker, Adriana M.J.B. De Carvalho, Jay Raspat, Vincent Aleven,

Albert T. Corbett, and Kenneth R. Koedinger. 2009. Educational software
features that encourage and discourage “gaming the system.” In
Proceedings of the 14th international conference on artificial intelligence
in education, 2009. 475–482.

[2] Dale Bowman, Zachari Swiecki, Zhiqiang Cai, Yeyu Wang, Brendan Eagan,
Jeff Linderoth, and David Williamson Shaffer. 2021. The mathematical

Ordered Network Analysis in CS Education ITiCSE 24, July 8-10, 2024, Milan, Italy

foundations of epistemic network analysis. In Advances in Quantitative
Ethnography: Second International Conference, ICQE 2020, Malibu, CA,
USA, February 1-3, 2021, Proceedings 2, 2021. Springer, 91–105.

[3] Li-Chen Cheng, Wei Li, and Judy CR Tseng. 2023. Effects of an automated
programming assessment system on the learning performances of
experienced and novice learners. Interact. Learn. Environ. 31, 8 (2023),
5347–5363.

[4] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014.
Identifying computer science self-regulated learning strategies. In
Proceedings of the 2014 conference on Innovation & technology in
computer science education, 2014. 291–296.

[5] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010.
Review of recent systems for automatic assessment of programming
assignments. In Proceedings of the 10th Koli calling international
conference on computing education research, 2010. 86–93.

[6] Shamya Karumbaiah and Ryan S Baker. 2021. Studying affect dynamics
using epistemic networks. In Advances in Quantitative Ethnography:
Second International Conference, ICQE 2020, Malibu, CA, USA, February 1-
3, 2021, Proceedings 2, 2021. Springer, 362–374.

[7] Xiner Liu, Basel Hussein, Amanda Barany, Ryan S Baker, and Bodong
Chen. 2023. Decoding Player Behavior: Analyzing Reasons for Player
Quitting Using Log Data from Puzzle Game Baba Is You. In International
Conference on Quantitative Ethnography, 2023. Springer, 34–48.

[8] Dastyni Loksa, Lauren Margulieux, Brett A Becker, Michelle Craig, Paul
Denny, Raymond Pettit, and James Prather. 2022. Metacognition and
self-regulation in programming education: Theories and exemplars of
use. ACM Trans. Comput. Educ. TOCE 22, 4 (2022), 1–31.

[9] Qizhong Ou, Weijie Liang, Zhenni He, Xiao Liu, Renxing Yang, and Xiaojun
Wu. 2023. Investigation and analysis of the current situation of
programming education in primary and secondary schools. Heliyon 9, 4
(2023).

[10] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated
assessment in computer science education: A state-of-the-art review.
ACM Trans. Comput. Educ. TOCE 22, 3 (2022), 1–40.

[11] Maciej Pankiewicz, Ryan Baker, and Jaclyn Ocumpaugh. 2023. Using
intelligent tutoring on the first steps of learning to program: affective and
learning outcomes. In International Conference on Artificial Intelligence
in Education, 2023. Springer, 593–598.

[12] Juan D Pinto, Qianhui Liu, Luc Paquette, Yingbin Zhang, and Aysa Xuemo
Fan. 2023. Investigating the Relationship Between Programming
Experience and Debugging Behaviors in an Introductory Computer
Science Course. In International Conference on Quantitative Ethnography,
2023. Springer, 125–139.

[13] James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni
Loksa, Alani Peters, Zachary Albrecht, and Krista Masci. 2019. First
things first: Providing metacognitive scaffolding for interpreting
problem prompts. In Proceedings of the 50th ACM technical symposium on
computer science education, 2019. 531–537.

[14] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John
Homer, and Maxine Cohen. 2018. Metacognitive difficulties faced by
novice programmers in automated assessment tools. In Proceedings of
the 2018 ACM Conference on International Computing Education
Research, 2018. 41–50.

[15] John Saint, Dragan Gašević, Wannisa Matcha, Nora’Ayu Ahmad Uzir, and
Abelardo Pardo. 2020. Combining analytic methods to unlock sequential
and temporal patterns of self-regulated learning. In Proceedings of the
tenth international conference on learning analytics & knowledge, 2020.
402–411.

[16] Jennifer Scianna, David Gagnon, and Bryan Knowles. 2021. Counting the
Game: Visualizing Changes in Play by Incorporating Game Events. In
Advances in Quantitative Ethnography, Andrew R. Ruis and Seung B. Lee
(eds.). Springer International Publishing, Cham, 218–231.
https://doi.org/10.1007/978-3-030-67788-6_15

[17] Jennifer Scianna, Xiner Liu, Stefan Slater, and Ryan S Baker. 2023. A Case
for (Inter) Action: The Role of Log Data in QE. In International Conference
on Quantitative Ethnography, 2023. Springer, 395–408.

[18] David Williamson Shaffer, Wesley Collier, and Andrew R Ruis. 2016. A
tutorial on epistemic network analysis: Analyzing the structure of
connections in cognitive, social, and interaction data. J. Learn. Anal. 3, 3
(2016), 9–45.

[19] Leonardo Silva, António Mendes, Anabela Gomes, and Gabriel Fortes.
2023. Fostering regulatory processes using computational scaffolding.
Int. J. Comput.-Support. Collab. Learn. 18, 1 (2023), 67–100.

[20] Yu-Sheng Su, Shuwen Wang, and Xiaohong Liu. 2023. Using Epistemic
Network Analysis to Explore Primary School Students’ Computational
Thinking in Pair Programming Learning. J. Educ. Comput. Res. (2023),
07356331231210560.

[21] Yuanru Tan, Andrew R Ruis, Cody Marquart, Zhiqiang Cai, Mariah A
Knowles, and David Williamson Shaffer. 2022. Ordered network analysis.
In International Conference on Quantitative Ethnography, 2022. Springer,
101–116.

[22] Jessica Vandenberg, Collin Lynch, Kristy Elizabeth Boyer, and Eric Wiebe.
2023. “I remember how to do it”: exploring upper elementary students’
collaborative regulation while pair programming using epistemic
network analysis. Comput. Sci. Educ. 33, 3 (2023), 429–457.

[23] E Vegas, M Hansen, and B Fowler. Building skills for life: how to expand
and improve computer science education around the world (2021).

[24] Bian Wu, Yiling Hu, Andrew R Ruis, and Minhong Wang. 2019. Analysing
computational thinking in collaborative programming: A quantitative
ethnography approach. J. Comput. Assist. Learn. 35, 3 (2019), 421–434.

[25] Mengqian Wu, Jiayi Zhang, and Amanda Barany. 2022. Understanding
Detectors for SMART Model Cognitive Operation in Mathematical
Problem-Solving Process: An Epistemic Network Analysis. In
International Conference on Quantitative Ethnography, 2022. Springer,
314–327.

[26] Andres Felipe Zambrano, Amanda Barany, Jaclyn Ocumpaugh, Nidhi
Nasiar, Stephen Hutt, Alex Goslen, Jonathan Rowe, James Lester, Eric
Wiebe, and Bradford Mott. 2023. Cracking the code of learning gains:
Using Ordered Network Analysis to Understand the Influence of Prior
Knowledge. In International Conference on Quantitative Ethnography,
2023. Springer, 18–33.

[27] Si Zhang, Qianqian Gao, Mengyu Sun, Zhihui Cai, Honghui Li, Yanling
Tang, and Qingtang Liu. 2022. Understanding student teachers’
collaborative problem solving: Insights from an epistemic network
analysis (ENA). Comput. Educ. 183, (2022), 104485.

