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Abstract 

Computer-based educational games can provide engaging designed experiences for 

learning (Squire, 2006; Gee, 2003), affording rich performance data situated in a meaningful 

learning context (Mislevy, 2011; Clark et al., 2012). This kind of big data in education (cf. U.S. 

DoE, 2012) has fostered emergent fields like educational data mining (Baker & Yacef, 2009) and 

learning analytics (Siemens & Long, 2011). In the design of these game environments, there is 

increasing evidence that players rarely interact in exactly the way designers envision, 

highlighting the need for early, iterative user-testing (Schell, 2008; Salen & Zimmerman, 2004). 

Adding the element of content-specific learning goals, or concrete growth over time in a domain-

specific skill, attending and adjusting to organic play patterns becomes even more vital (cf. 

Shute, 2011; Institute of Play, 2013). Thus, educational game design needs to leverage learning-

specific assessment mechanisms and sophisticated techniques to understand nuanced learner 

patterns in play—informing development from the earliest design stages. Recent work in 

learning analytics and educational data mining (Baker & Siemens, 2014) identify a host of 

methods for analysis of log file data from these systems, thus enabling insights into event-stream 
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playful learning and data-driven design. This chapter presents an overview of learning analytics 

and educational data mining (LA/EDM) for the analysis of nuanced game data for learning 

insights and potential data-driven design. Specifically, it aligns event-stream assessment and 

applied LA/EDM with three development stages—Alpha (inception), Beta (mid-development), 

and late Beta/final release—and reviews recent applications of these methods in game-based 

empirical research.  

Introduction: Learning Analytics and Educational Game Applications 

Learning Analytics (LA) and Educational Data Mining (EDM) represent a host of 

education-specific methods for exploring and mining big data (U.S. DoE, 2012), which can be 

used to enhance learning design and learning outcomes. In recent literature, EDM and LA have 

been discussed together as a converging set of methods for interpreting large streams of data 

from educational contexts (Baker & Siemens, 2014); while there are differences between the 

research questions these two communities ask, for the purposes of this chapter they can be 

treated as interchangeable. (For brevity in subsequent sections of this chapter, therefore, we will 

refer to the collective set of methods as Learning Analytics or LA.) 

EDM and LA have drawn from methods originally developed in a range of communities, 

from data mining and analytics in general, and from psychometrics and educational measurement 

(Baker & Siemens, 2014), as well as increasingly producing methods unique to these research 

communities. The methods used in these communities can be divided into five major categories: 

prediction, structure discovery, relationship mining, discovery with models, and visualization. 

Prediction modeling infers an outcome or measure of interest (i.e. a predicted variable) when 

given input data (i.e. predictor variables) via a range of potential algorithms. In contrast, 

structure discovery “attempts to find structure in the data without an a priori idea of what should 
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be found,” using methods like clustering, factor analysis, and network analysis (p. 258). 

Relationship mining is used to discover relationships between variables in a large data set, 

leveraging approaches like correlation mining, association rules, and sequential pattern mining. 

Discovery with models involves layering methods, often utilizing the results of one data mining 

analysis within another data mining analysis to optimize insights. Finally, visualization is 

designed to express data visually to elucidate patterns (e.g. color-coded heat maps and graphics 

of trajectories over time with learning curves). Explored more deeply in the next section, these 

five categories provide important insight into game-based learning, and map to specific 

development phases for optimal data-driven insights throughout the design process. 

In the context of serious games, a substantial base of recent empirical research has 

utilized many of these learning analytics methods—particularly visualization, structure 

discovery, relationship mining, and prediction. As learning designers increasingly attend to 

event-stream data to inform iterative design (e.g. Kerr, 2015), these methods can be mapped to 

various stages of game development to support data-driven design for learning and engagement. 

In early-development Alpha stages, when game design may be in nascent stages, implementing 

basic data collection and using visualization can help surface basic player interactions for 

improved core mechanics, UI/UX and learning design. Structure discovery and relationship 

mining can uncover deeper player patterns as mechanics are solidified in Beta phases; for 

example, results can help isolate points of attrition or bottlenecks in the game, identifying larger 

patterns of player navigation or strategy across game levels. Finally, late Beta/final release 

analyses utilizing prediction can identify key predictors of target behaviors (e.g. game success, 

strategy, or engagement) to support final polish, as well as provide insight that enables player-

adaptive personalized paths through the learning space.  
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These learning analytics methods are discussed in greater depth below, setting a 

foundation for a review of current research in game-based learning analytics with implications 

for data-driven design. The following pages discuss overall methods of LA/EDM, potential 

alignment with learning game development stages, and review applications of these analysis 

methods in recent game-based learning research. 

Overview of Learning Analytics / Educational Data Mining 

Baker and Siemens (2014) divide learning analytics into a set of five main categories, 

building off of an earlier review by Baker and Yacef (2009).  

The first of these five categories is prediction. In prediction modeling, the researcher’s 

goal is to create a model which can make inferences about a single variable, the predicted 

variable, from some combination of other variables, the predictor variables. The predicted 

variable may be a variable that can be easily collected for a small sample of data, but cannot be 

collected at larger scale. Alternatively, it may be some future outcome that is desirable to predict 

before it comes to pass, for example to drive early intervention. Either way, a model is created 

based on this sample of data, validated to give confidence that it will function correctly on new 

data, and is then applied to new data. Three types of prediction are common in LA/EDM: 

classification, where a binary variable or multi-category variable is predicted; regression, where 

a number is predicted; and latent knowledge estimation, where student knowledge is assessed 

(typically as a probability between 0 and 1, typically based on correctness data that is itself 

binary). 

The second of the categories in Baker and Siemens (2014) is structure discovery, 

algorithms that attempt to discover structure in data with no specific variable as a focus. Within 

LA/EDM for game-based learning, the categories of cluster analysis, network analysis, and 
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domain structure discovery are particularly prominent. In cluster analysis, the researcher 

attempts to use automated processes to discover which data points group naturally together, 

dividing the data set into groups of data points referred to as clusters. Cluster analysis is of 

particular value when the categories of interest among a data set are not known, a priori. In 

domain structure discovery, the structure of content is discovered automatically. For example, in 

a set of items, problems, or tasks, it may be possible to determine which problems involve some 

of the same content (perhaps skills, concepts, or strategies), such that performing well on one 

problem implies performing well on the other problem. It is possible, in such a framework, to 

search for partial overlap of content—situations where problems A and B share skill Alpha, but 

problem B also shares skill Beta with problem C. It is also possible to find prerequisite 

relationships, where successful performance on problem A implies successful performance on 

problem B, but not vice-versa. In network analysis, more complex networks of relationships 

between data points are investigated. For example, the paths a player might take through a 

specific puzzle might be turned into a graph and then subjected to network analysis to predict the 

best positive move a player might take next. A fourth type of structure discovery, common in 

other areas of LA/EDM but less common in game-based learning, is factor analysis, where the 

relationship between variables is analyzed in order to determine which variables can be 

combined into a smaller number of latent factors. (Factor analysis is sometimes used to analyze 

test data for domain structure discovery, but is not frequently used in more complex game-based 

contexts where students are learning as well as demonstrating their skill). 

The third of the categories in Baker and Siemens (2014, p. 260) is relationship mining. 

Referred to in that review as the “most common category of EDM research,” relationship mining 

is generally common in LA/EDM research on game-based learning as well. There are four broad 
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categories of relationship mining, each of which has been conducted in the context of 

educational games. In the first, association rule mining, the software automatically finds if-then 

relationships where if a specific variable/value pair (or set of pairs) is seen, another specific 

variable/value pair usually accompanies it. In the second, sequential pattern mining, association 

rules are found, with the additional criteria that the “then” part of the rule must occur after the 

“if” part of the rule. In correlation mining, a large number of variables are checked for 

correlation relationships between them, with post-hoc statistical controls used to reduce the 

probability of finding spurious findings. Finally, in causal data mining (a method whose 

conclusiveness remains under debate), patterns of covariance are used to determine if one event 

in a sequence of events is statistically likely to be the “cause” of a second, later event. 

The fourth of the categories in Baker and Siemens (2014) is discovery with models. 

Within discovery with models, a variable or set of variables are created through LA/EDM—

using prediction modeling or clustering, for instance—and then used in a second analysis. For 

example, building a model of student disengagement for a game or simulation, and then studying 

how that variable correlates to eventual student success in the game, would be an example of 

discovery with models. 

The fifth of the categories in Baker and Siemens (2014, p. 260) is visualization, referred 

to in that paper as “distillation of data for human judgment”. Visualizations of data can elucidate 

patterns in a way that is easily visually processed, at best representing a high-dimension data in a 

simple, digestible presentation (Tufte, 2001). In the context of learning analytics, these can take 

the form of descriptive statistical charts, simple learning curves, heat maps, and radial 

visualizations. These have been used in LA/EDM for games, often in conjunction with other 

method categories discussed above; several examples are given in the section to follow, which 
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discusses specific application of these methods to serious games for learning insights and data-

driven design. Methods categories commonly used in recent research are highlighted below, 

including visualization, structure discovery, relationship mining, and prediction. 

Learning Analytics for Serious Games: Recent Application of Methods 

Learning analytics methods—especially visualization, structure discovery, relationship 

mining, and prediction—can support deep insight into playful learning patterns, as well as 

enhance design iteration for optimal learning and engagement when applied during various 

stages of game development. These investigations can be mapped to phases of design and game 

production in sync with pre-existing game refinement cycles to fuel data-driven, iterative design 

for engaged learning. In early stages of development (i.e. the Alpha phase), data framework 

definition and visualization analytics can be valuable in supporting formative design; structure 

discovery and relationship mining can uncover deeper player patterns as mechanics are solidified 

in Beta phases; and predictive modeling can support final game production in providing 

prediction of learning and behavior detection for in-game adaptivity in support of learning 

pathways. It's worth noting that, like best practices of Agile game development3, this alignment 

is flexible, with potential for application of analysis methods extended into multiple stages of 

development to support design as needed. In doing so, these event-stream analyses can 

complement ongoing qualitative research (e.g. observations, think-alouds, and interviews) in 

informing iterative improvement. The following section reviews recent research using these 

types of learning analytics methods in serious games to investigate student play patterns, with 

discussion of the insights provided into game-based learning and potential implications for data-

driven design. 

                                                            
3 https://en.wikipedia.org/wiki/Agile_software_development 
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Early Development: Learning Data Collection & Visualization 

In early phases of game development, in which core mechanics and basic design may still 

be in nascent stages, data framework design and visualization of basic user interactions can help 

game designers understand how players initially are approaching the game and support formative 

thinking about learning, game, and assessment mechanics. This can be particularly beneficial in 

conjunction with qualitative user testing (e.g. observations, think-alouds, and interviews) to 

support a well-rounded understanding of initial playful learning experiences, informing effective 

iterative design. This section discusses the benefits of a strong learning data foundation in early 

game design, as well as applications of learning analytics visualization in serious games. 

Learning game data frameworks. Event-stream data collection in serious games is an 

important undertaking, and foundational to analyses that provide actionable insight. Any process 

of making meaning out of data, whether involving thorough feature engineering or more bottom-

up processes, is dependent on the integrity, quality, and scope of the original data. Recent efforts 

in structuring learning game data delineate the need for comprehensive, clearly organized, and 

design-aligned data collection (cf. Chung, 2015; Danielak, 2014; Serrano-Laguna et al., 2017; 

Hao et al., 2016). ADAGE (Assessment Data Aggregator for Game Environments) provides one 

approach tailored to serious games, an event-stream data framework designed specifically to 

support embedded assessment and educational data mining (Halverson & Owen, 2014). ADAGE 

collects comprehensive game events and player interactions enriched with contextual data, while 

providing salient performance data aligned with key learning mechanics. This kind of 

comprehensive data allows for multiple methods of analysis in game-based learning 

investigations. Clear, design-aligned data output provides clear reference to the game’s design of 

learning mechanics; when data is interpretable in this fashion, outcomes of analysis can be more 
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easily translated to direct feedback into design. A consistently labeled series of event-stream 

interactions supports aggregation of data for analysis and feature engineering—a critical element 

of robust modeling in many approaches to learning analytics (e.g. Guyon & Elisseeff, 2003; Sao 

Pedro et al., 2012). This applies for analytics in a single game, and is also vital for scalable 

analysis and adaptivity across a system of multiple games that interplay to jointly support student 

learning.  

Finally, early implementation of a strong data collection framework can support good 

learning design practices in clearly aligning data-producing game mechanics with targeted 

learning objectives. A well-designed game will have game events that can be interpreted directly 

in terms of the types of competencies and learning that the designer wants to measure (e.g. Shute 

& Kim, 2014). Consideration of this alignment during early design stages can support good 

learning design and more robust event-stream data for analysis.  

Data visualization. These comprehensive, design-aligned data structures in early design 

enable analysis for data-driven design in the alpha game development phases. In particular, 

visualizations and descriptive statistics can support early game development in surfacing basic 

player interaction with the game (e.g. identification of bugs, bottlenecks, and core mechanic 

interaction) for improved UI/UX and learning design. Visualization methods can consistently 

support subsequent stages of game development as well.  

Learning analytics for serious games, as a growing field, has set a foundation in data 

visualization for game analysis, including capturing movement within the game space (UI and 

game map), interaction with core learning mechanics at different stages of the game, and even 

aiding capture of biometrics and metacognitive student behavior. Towards this end, Wallner and 

Kriglstein (2015) detail a taxonomy of visualization types for comparative analysis of serious 
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game data based on juxtaposition (e.g. comparing two player groups side by side), superposition 

(stacking visualization of each group), explicit encoding (visually encoding differences between 

data sets); particularly using star plots, network diagrams / graph analysis, heat maps and color 

overlays.  

Indeed, such visualizations have supported analysis of player movement within the 

gamespace in related research. For example, Kim and colleagues (2008) developed a game 

analysis method which combined player survey pop-ups and heat mapping, which allowed 

identification of game areas of frustration and high failure. This tool was used to fix areas in a 

real-time strategy game with abnormally high rates of player death; the authors found that the 

modifications increased both player performance and player engagement. Similarly, 

Games+Learning+Society (GLS)4 research has used visualization to improve the early design of 

serious games, creating heat maps of main game level usage in order to intuit areas of high traffic 

for optimal placement of critical player resources and to iterate on map design (e.g. Ramirez, 

2016). Data visualization of player navigation through game levels can also be utilized for early 

game development, especially network diagrams or “state space diagrams” that show paths 

through a network of game states. In a study of interaction with a level selection menu, network 

diagram visualizations isolated game maps with low traffic, and subsequently informed 

improvements of UI design in the early development stages to support higher usage (e.g. Beall et 

al., 2013). Similarly, network diagrams were used as part of a suite of visualizations to 

understand play in a fractions game (Butler & Banerjee, 2014) utilizing a node-edge 

visualization along with heat maps of game tool use to compare progress between players in the 

same level. In the physics puzzle game Quantum Spectre5, descriptive statistics of player 

                                                            
4 A learning game development and research group at UW‐Madison; http://www.gameslearningsociety.org/ 
5 https://terctalks.wordpress.com/tag/quantum‐spectre‐game/ 
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interactions (including game error types and number of moves in a level) were employed, along 

with a state space diagram, to better understand player dropout and improve design (Hicks et al., 

2016). SimCityEDU6 was also studied using state space diagrams to show archetypal student 

paths through the simulation space (Institute of Play, 2013). Additional visualization of progress 

in non-linear learning games builds on this idea to visualize different possible states of play. 

Aghababyan, Symanzic, and Martin (2013) move beyond basic nodes and edges to customize a 

tree visualization incorporating timeline, progress along visually fixed markers specific to each 

game level, and the student win state. These visualizations, which tend to focus on user 

interaction one game level at a time, have utility in early stages of development, and in 

subsequent stages, to inform iterative design about where and how players struggle, and how 

they can be scaffolded in reaching successful performance. 

In related analysis, other methods of visualization have been utilized to show student 

progress (often related to performance) across multiple stages within a game. Using a radial 

sunburst style visualization, for example, Cooper and team (Cooper et al., 2010) showed 

different player strategies across multiple levels of the science game Foldit7, designed to enable 

player production of accurate protein structure models. Dimensions of the radial visualization 

included time elapse, summative puzzle performance, and tool usage during different slices of 

play—information valuable to iterative design targeted towards supporting multiple play 

pathways to success. GLS researchers have used similar descriptive statistics (paired with 

discourse analysis) to investigate multi-modal data streams for game-based learning during 

multi-day play workshops for a middle-school biology game (Anderson et al., 2016). Results 

suggested that students initially looked up more key words in the in-game almanac and tapered 

                                                            
6 https://www.glasslabgames.org/games/SC 
7 https://fold.it/ 
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off this behavior towards the end of play, transitioning from seeing these words in a glossary to 

adopting these biology terms in social discourse over time. Other visualizations summarizing 

progress across learning game levels have been used as student-facing communication to 

encourage future success. As part of an intervention to support growth mindset in players of a 

fractions game8, a summary screen of progress for students (given at key points in play), paired 

with reward points (O’Rourke et al., 2016), resulted in greater student retention and persistence. 

Other player-facing progress visualizations across game levels includes work in commercial 

games like Civilization (a game used for learning in classroom contexts in recent research—e.g. 

Squire, 2011). Civilization V9, for example, has persistent player progress visualizations in the 

form of network diagrams (for technology researched) and simple totals of vital game resources 

(e.g. gold, science points, and cultural strength). Visualizations across game levels, including 

those which are user-facing, have strong potential to inform game progression design and 

support desirable player behavior. 

Some game data visualizations sweep further, aiming to provide data visualizations 

across games. In analyzing differences between populations across two games used by different 

populations, a state space visualization and descriptive stats were used to elucidate game level 

interaction for juxtaposition of groups (O’Rourke et al., 2013), ultimately showing that younger 

users were interacting with the game in a less focused way (thus limiting success) in comparison 

with older players. Generalizable game visualization tools have also been created—including 

Playtracer, which was built to visually analyze play traces, creating a generalized heatmap that 

applies to any game with discrete state spaces (Andersen et al., 2010). Although not applicable to 

all genres, and difficult to scale with highly complex games with many possible actions, it can 

                                                            
8 http://centerforgamescience.org/blog/portfolio/refraction/ 
9 http://www.civilization5.com/ 
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show progression in a similar visualization across games for an accessible comparison of play. 

This potentially supports the development of player profiles and allows insight around common 

states of interaction. With a similar goal in affording clear comparison of play, Scarlatos and 

Scarlatos (2010) built a cross-game tool that visualizes play progress as a glyph, the shape of 

which (standardized across games) can be interpreted to determine desirable progression or 

failure. Such generalizable tools have limits, since they essentially equate win states across 

games, even though they may not actually be comparable in terms of difficulty or rigor; they also 

may not apply across genres or platforms. However, for assessing student play style across 

games, especially in large systems that contain multiple games designed to work together, these 

analytics can have value for informing iterative design and player profile formation. In early 

stages they may also support understanding where attrition points occur in gameplay for iterative 

design improvement. 

Building on basic game interactions, visualization and descriptive statistics can also be 

used to illuminate player patterns orthogonal to the click-by-click logfiles, such as biometric 

trends. Eyetracking is a capability that commercial games are increasingly developing—

particularly in games with a camera built into the platform device interface (e.g. the PC game 

Rise of the Tomb Raider10). Leveraging this potentially powerful data source, Kiili, Ketamo, and 

Kickmeier-Rust (2014) evaluated serious game eye-tracking data using statistical analysis and 

heat maps, which revealed that low performers directed too much attention to areas of little 

relevance compared to high performers. Other forms of biometrics, applicable at the intersection 

of neuroscience and game-based learning behavior (e.g. Beall et al., 2013), have looked to 

visualizations of brain activity for insights about learning. One such study (Baker et al., 2015) 

                                                            
10 https://store.na.square‐enix.com/product/294275/rise‐of‐the‐tomb‐raider‐pc‐download 
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took cortical measurements of brain activity during play of a fractions game, with heat map 

results revealing similar brain activity to that which results from traditional mathematical 

activities in the same domain. Used in conjunction with user testing and event-stream data 

analysis, these biometric visualizations can support early testing of cognitive engagement and 

iterative design choices to optimize user attention.  

Inferences about player behavior and affect can also be made in conjunction with play, 

which can begin to be explored through visualization and descriptive statistics—for example, 

through distilling event-stream data into snapshots of play in the form of text replays (Baker, 

Corbett, & Wagner, 2006), which are designed to support human evaluation of player behaviors 

(e.g. Owen, 2014). Descriptive statistics have also been useful for representing coded instances 

of strategic behavior in games (cf. Berland & Lee, 2011; Steinkuehler & Duncan, 2008), 

elucidating favorable and unfavorable student patterns useful for consideration in early design 

and beyond. These kinds of descriptive visualizations can also set a foundation for building 

behavior models in relationship with play data for more complex analyses in later stages.  

Beta Development: Structure Discovery and Relationship Mining 

In more advanced phases of game development (i.e. Beta design stages) the LA methods 

categories of structure discovery and relationship mining can be used to understand player 

decisions on a deeper level—with capability to identify sequence and attrition points, as well as 

interaction patterns related to engagement, success, and strategy. These analytics offer 

opportunity to refine game design to support successful student trajectories based on organic 

play patterns (rather than relying on "ideal" pathways defined a priori), and can continue to offer 

insight throughout the final stages of design. 
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 Recent research has utilized structure discovery methods such as cluster analysis with 

large amounts of event-stream game data to surface strategies and interactions related to game 

success. Kerr and Chung (2012) explored clustering techniques in the elementary math game 

Save Patch in order to capture the kinds of strategies used by students. Building on this work, in 

which fuzzy clustering was most useful, the game design was revised to minimize the ability to 

pass a level using incorrect mathematical strategies. Empirical testing of the new game version 

revealed the changes resulted in more correct strategies in fractions problem-solving used to pass 

levels of the game, with more positive student reception of the updated version (Kerr, 2015). In 

an analysis of another game in the same domain of fractions, hierarchical clustering was used to 

group player strategy; this analysis demonstrated that exploration of splitting (i.e. partitioning a 

whole into equal-sized parts) mechanics in-game significantly improved students' fraction 

understanding, and that splitting strategy improved from early to late gameplay (Martin et al., 

2015). Other game-based analysis work has applied methods like latent class analysis (LCA) to 

derive emergent student groups for play profiles; in a recent study of the learning game Physics 

Playground, LCA results derived emergent player trajectories indicative of student play styles, 

including achievers, explorers, and disengaged players (Slater et al., 2017). Other research into 

the psychology of play has also mined the structural relationships within play profile attributes in 

an online game, using factor analysis to distill ten motivations for play grouped into 

achievement, social, and immersion components (Yee, 2007). In related structure discovery with 

game data in the GlassLab game Mars Generation One11 (designed to build argumentation skill 

in middle school players), factor analysis was used to distill survey-based game measures of 

                                                            
11 https://www.glasslabgames.org/games/AA‐1 
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engagement and self-efficacy, which was then aligned with event-stream data in predicting self-

reported learning (Owen et al., 2015).  

Relationship mining for game analysis has been used to discover associations between 

play variables. Recent research has explored association patterns between player profile 

attributes and in-game data, finding evidence that player types and psychological attributes 

provides key insight into play behaviors (e.g. Canossa et al., 2015; Yee et al., 2011). Also 

exploring associations between game data and out-of-game behavior, Andres and team (2014) 

found that affect (specifically the state of being confused) is negatively related to high in-game 

achievement and efficiency in physics problem-solving. 

 Sequence mining has also been a particularly popular method, as play data can offer a 

rich and varied trajectory of sequential player decisions, particularly for non-linear games. 

Exploration of n-grams (i.e., sequences of play behavior, in the context of serious games), for 

example, have supported adaptive level progression tailored to the player's history of in-game 

behavior (e.g. Butler et al., 2015). In a serious math game for elementary school students, n-gram 

analysis was utilized for mining the most frequent sequential play patterns (Aghababyan et al., 

2016) as an extension of understanding strategic play trajectories in a serious game (Martin et al., 

2015). N-gram analysis has also been paired with other methods for increased insight into play. 

Owen (2014) pairs bi-gram and tri-gram counts of in-game activity with correlation mining, 

showing that specific productive failure trajectories are significantly associated with learning 

gains in a middle-school biology game. N-gram analysis has also been used in combination with 

logistic regression in the study of a role playing game (RPG), to show trajectories of play that 

differentiate high expertise players from those with lower expertise (Chen et al., 2015). Moving 

into probabilistic modeling, Markov models have been used to show the probability of a player 
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transitioning from one state to another in gameplay (e.g. the likelihood of moving from one game 

level to the next, or to oscillate between states of success and failure). In the context of a middle-

school science game, for instance, a first-order Markov model was employed to determine the 

stages of play in which students are most likely to quit (Owen, Shapiro, & Halverson, 2013). 

Hidden Markov modeling (HMM) has been used to explore latent states of student understanding 

during play across multiple game platforms—including computer games (e.g. Clark et al., 2012) 

and digitally interactive tabletop games (e.g. Tissenbaum, Berland, & Kumar, 2016). 

Tissenbaum and colleagues (2016) mined the sequence of player circuit-forming as unproductive 

or productive with an HMM, identifying productive learning trajectories of students who had 

started in unproductive states and moved to success (2016), within the context of a game-based 

museum exhibit. Overall, structure discovery and relationship mining can thus support 

understanding of play trajectories connected with positive game performance and learning 

outcomes; while these are valuable insights for understanding student behavior on their own, 

they can also inform iterative design to support such trajectories with adaptive leveling or 

enhanced scaffolding at key points in the game.  

Late Beta and Final Release: Predictive Learning Analytics 

In final stages of game development, including late Beta and final release, learning 

analytics can be used to predict in-game actions and performance most characteristic of learning. 

Predictive modeling can reveal a great deal about student growth during play, and mine key 

predictors of behavior from the game data event stream—especially in combination with ongoing 

insights from previous-stage analytics, including visualization, structure discovery, and 

relationship mining. These investigations have the potential to support field-enriching inferences 
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about learning and behavior, as well as fuel data-driven design through real-time detection of 

students' pathways to inform adaptive, personalized game progression.  

Various methods of prediction have been used in analyzing serious game data, from 

canonical statistical models (e.g. linear regression and HLM; cf. Marascuilo & Serlin, 1988) to 

data mining algorithms for classification and regression (Baker, 2010). Utilizing different 

prediction models to investigate strategy use in a real-time strategy (RTS) game, Weber and 

Mateas (2009) evaluated various algorithms (including linear regression, additive logistic 

regression, J48 classification, and M5' regression); overall, it was found that M5' overall had the 

smallest relative error in predicting timed player construction of key game resources. Prediction 

has also been leveraged in the form of HLM for evaluation of collaboration and competition in 

games, with recent research showing that competition increased in-game math learning 

compared to individual play, and both collaboration and competition elicited greater situational 

interest and enjoyment (Plass et al., 2013). In another math game, researchers used predictive 

modeling with logistic regression to show that different kinds of fraction errors are predictive of 

learning outcomes (Kerr & Chung, 2013)—implying that in-game scaffolding design should not 

treat all errors equally. In further predictive modeling, survival analysis was used to investigate 

the game Quantum Spectre, specifically pinpointing conditions of play that influenced player 

dropout with an accelerated failure time model (Hicks et al., 2016). Prediction has also been used 

to support adaptive game play, as seen in the use of reinforcement learning to predict optimal 

player scaffolding through narrative in the learning game Crystal Island (Rowe & Lester, 2015). 

Similarly, adaptive learning design has been explored using decision trees in game-like e-

learning environments, using prediction to prescribe customized learning paths through the 

system (e.g. Lin et al., 2013).  
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Recent research in the application of LA/EDM to learning games utilizes predictive data 

mining to build event-stream detectors of behavior, a method first applied in the context of 

intelligent tutoring systems (e.g. Baker, Corbett, & Koedinger, 2004). With the increasing 

availability of log file data in digital learning games, event-stream detectors have been leveraged 

to more deeply understand and predict player behavior. In the context of a physics game, for 

example, detectors of affective states and off-task behaviors were built based on video logs as 

well as event-stream data to build a predictor of behavior and affect throughout play (Kai et al., 

2015). Results showed distinct event-stream behaviors indicative of each state (e.g. boredom's 

predictors included number of items "lost" or moved off screen during play, and amount of time 

elapsed between actions). The video-based detectors were more accurate than the interaction-

based detectors, but could not be used in many situations (due to occlusion of the face, for 

example, a joint detector using both types of data was more effective than either type alone 

(Bosch et al., 2015)). Also focusing on players' approaches to games, other research has created 

game-based detectors on behaviors related to goals and strategy. DiCerbo and Kidwai (2013) 

built a detector of whether players were serious about completing a game’s quests, with 

implications for enabling design support of players to complete game objectives. Productive 

failure and boundary-testing have also been modeled in recent studies, with a detector of 

thoughtful exploration built for a middle school biology game (Owen, Anton, & Baker, 2016). 

The results gave insight into emergent player pathways in which failure was a healthy part of a 

trajectory to ultimate game success. The implication that many pathways can lead to learning has 

guided related work, as seen in a detector designed to capture emergent strategy for level 

completion within the physics game Impulse (Asbell-Clarke, Rowe, & Sylvan, 2013). 
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Game-based detectors have also been used to predict learning performance based on in-

game player choice. A prime example is measurement of science inquiry skill in a game-based 

virtual environment, in which classifiers were used to detect students' learning of the STEM 

content during play (Baker & Clarke-Midura, 2013). Achievement in a physics game was also 

the subject of a recent prediction analysis in a physics game, with detectors built to predict in-

game level completion at the highest level (gold) and a moderate level (silver). The findings 

suggested that gold achievers tended to be more efficient with time and resources than their 

silver-winning counterparts (Malkiewich et al., 2016). In related work, Rowe and her colleagues 

(2017) leveraged detectors towards creating valid, computer-based assessment of implicit 

science learning, using validated in-game measures as outcome variables in event-stream 

prediction of learning performance in physics games. Broadly, this detector-based approach has 

opened learning insight beyond simply looking at a pre- or post-test and treating the game as a 

black box; it enables understanding the emergent, event-stream interactions that support learning 

outcomes and target behaviors—and in turn creates the opportunity for design refinements that 

can support student growth moment-by-moment in play. It also creates strong potential for 

process-based assessment of learning, particularly in the context of complex skills and problem 

solving.  

Overall, in support of iterative serious game design, learning analytics can leverage 

multimodal data streams for insights about learning and player patterns at various stages of 

development. The analyses reviewed here reflect recent trends in empirical game-based learning 

research—including usage of learning data frameworks and visualization, structure discovery 

and relationship mining, as well as prediction methods—with applicability to progressive stages 

of design (i.e., Alpha, Beta, and final release). 
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Discussion and Conclusion 

Learning analytics and educational data mining are a set of methods that can be used to 

fuel the advancement of educational games research through leveraging the rich data streams 

enabled by digital educational games, helping to finely-tune data-driven design for personalized, 

engaging game-based learning experiences. Challenges and opportunities for future work in 

game-based learning analytics at scale are constantly expanding, in parallel with advances in 

technology and increases in the sophistication of game delivery systems (e.g. 3D, Augmented 

Reality, and Virtual Reality), leading to compelling playful learning experiences. 

Implications 

 Application of LA to the complex, data-rich medium of serious games is a challenging 

endeavor with great potential for harnessing interest-driven learning (cf. Squire, 2006; 

Steinkuehler, 2004). As the body of empirical work in this area grows, there is opportunity to 

advance theory in the context of this complex, engaging learning medium. As we explore in this 

chapter, empirical work modeling event-stream player patterns at scale has utilized core LA 

methods of visualization, structure discovery, relationship mining, and prediction. This growing 

base of research provides great opportunity for game-based application of a broader array of 

educational data mining algorithms recently explored in different contexts, including 

probabilistic modeling (e.g. Bayesian Knowledge Tracing; Corbett & Anderson, 1995) and 

advanced predictive algorithms (e.g. deep learning; Botelho et al., 2017). Experimental design 

and game experiences geared towards building research in learning sciences also has 

considerable potential—from expanding knowledge of areas like embodied cognition 

(Abrahamson, 2009; Gee, 2008) to apprenticeship models (e.g. National Research Council, 2000; 
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Steinkuehler & Oh, 2012) to learning epistemology (e.g. Hofer & Pintrich, 1997; Martinez-Garza 

& Clark, 2017) . 

Games also offer opportunity for expanding approaches to assessment and measurement 

in virtual learning environments (cf. Mislevy et al., 2014). Good games—intrinsically motivating 

learning environments which provide just-in-time information through a series of well-ordered 

problems (Gee, 2003)—inherently provide occasion for players to discover the underlying rule 

system of games through boundary testing (e.g. Owen et al., 2016). This kind of exploration is an 

implicit norm in the medium of games, in which equally engaged players may interact differently 

with the system—often in ways designers themselves don't anticipate (cf. Squire, 2011; Salen & 

Zimmerman, 2004; Juul, 2013). Therefore, analysis methods well-matched to the game context, 

and intent on capturing the most information about learner pathways, can be best equipped to 

mine emergent player patterns. These kinds of methods native to EDM can be used in 

conjunction with more traditional assessments to expand approaches to rigorous competency 

measurement in complex, game-like environments (e.g. Rowe et al., 2017;  Baker & Clarke-

Midura, 2013).  

Finally, forays into studying organic patterns of play also enable a critical application of 

learning analytics in serious games: data driven design for personalized learning. As detailed in 

this chapter, iterative design based on emergent play patterns can support game development 

through multiple stages. Robust data frameworks, visualizations and descriptive statistics can be 

helpful early on (e.g. Alpha stages) to capture basic player interactions while core mechanics, 

level design, and fundamental user experience are being shaped. Later, during Beta development, 

structure discovery and relationship mining can be leveraged to streamline the player experience 

across multiple levels of play through identifying play sequence and attrition points, as well as 
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interaction patterns related to engagement, success, and strategy. These methods can build on 

one another, supporting final application of predictive modeling within late Beta and final release 

stages—and to inform user-adaptive play in highly evolved game design. For example, 

personalized game experiences can utilize prediction to provide different core content for players 

(e.g. Rowe & Lester, 2015; Liu et al., 2013), or inform game overlays for just-in-time 

scaffolding based on behavior detection (as proposed by DiCerbo & Kidwai, 2013). Mining 

organic predictive patterns of play allows for personalized learning experiences for the player, 

which has significant implications for moment-to-moment engagement and system efficacy. 

Since serious games by definition have potential to teach while sustaining engagement, game-

based application of LA methods can detect for learning as well as engaged behavior and afford 

personalization on both of these dimensions. This analytics-fueled advancement in adaptive 

digital design has huge implications for serving a wide range of students—at massive scale—to 

support individualization and learning gains in both formal and informal learning environments. 

Conclusion and Future Work 

As noted above, future work in game-based learning analytics affords increased 

opportunity for enhancing both theory and learner experiences and outcomes. Digital data 

streams afford investigation of learning patterns—through data that captures student process, not 

just a final answer—at a scale not previously possible in educational research. Advancement of 

technology is only fueling this potential, enabling even larger bodies of data through the advent 

of innovative game genres like 3D, Augmented Reality, and Virtual Reality. As these kinds of 

technologies reach players globally, a challenge presents itself to harness this potential and 

increase the size and scope of targeted studies. This future work is one link in a chain of 

challenges related to learning analytics and optimized design: leverage game-based engagement 
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to create compelling and polished games for learning using emergent game genres, sustainably 

distribute these games to the desired population sample, utilize the technology to reach a larger 

number of students, and maintain development work long enough to meaningfully implement 

data-driven design. Successful navigation of these challenges may be possible as the realms of 

commercial and learning games converge in various forms: widely used subscription-model 

learning games (e.g. ABCmouse 12and ST Math13); the modding of commercial entertainment 

games for learning (e.g. SimCityEDU14, Words With Friends EDU15, Plants vs. Zombies EDU16); 

and powerful tangential learning leveraged from existing commercial games (e.g. Minecraft17, 

Civilization, and even Assassin’s Creed18 (e.g. Berger & Staley, 2014)). In these examples, 

highly polished games are sustainably created and distributed to a target audience, with potential 

for the study of data-rich environments that foster engaged learning. Still, the barriers to entry in 

any one of these models (particularly the third category) are substantial, and sustainable creation, 

research, and ongoing refinement of quality learning games remains a challenge. 

In particular, clearly structured, comprehensive learning data is key to fruitful analysis 

(e.g. Halverson & Owen, 2014). As discussed in this chapter, interpretable, design-aligned data 

is critical for analysis feature selection, understanding analysis results, and using feedback to 

subsequently inform design. Building in such a framework early on in development can also 

support best practices in learning design. However, such implementation takes planning, 

technological resources, and a viable event-stream data framework. Thus, building in this 

                                                            
12 https://www.abcmouse.com/ 
13 http://www.stmath.com/ 
14 https://www.glasslabgames.org/games/SC 
15 https://wordswithfriendsedu.com/ 
16 https://www.glasslabgames.org/games/PVZ 
17 https://minecraft.net/en‐us/ 
18 https://assassinscreed.ubisoft.com/game/en‐us/home/index.aspx 
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framework from early stages of design, or undertaking the non-trivial task of retrofitting after 

game completion, can be formidable; recent efforts in learning game data architecture have 

expanded the options and attempted to reduce implementation logistics (e.g. Serrano-Laguna et 

al., 2017; Danielak, 2014; Chung, 2015), but there remains opportunity for standardization and 

accessibility across the field.  

Lastly, future work lies in adopting best practices of commercial game development 

within the creation of learning games. In order to benefit from data-driven design, in other 

words, one has to engage in it. Even a relatively small investment of resources in an iterative, 

user-centric design approach, which is common in industry, can increase the quality of the 

learner experience: e.g. fail early and often, with both small-n qualitative playtests and larger 

event-stream analysis where possible. In the realm of serious games this can make for 

substantially better products, ones that students may voluntarily play outside of school or 

experimental conditions, potentially empowering interest-driven learning at unprecedented scale. 

Through an increase in demand, such work might also increase the viability and sustainability of 

serious game development models. 

Overall, learning analytics in application to the complex medium of learning games can 

support advancement of theory in the field, adaptive game-based learning, and powerful crafting 

of an engaged learning experience through iterative, data driven design. As we explore in this 

chapter, recent research has established a growing body of empirical game-based studies in 

learning analytics. These methods include visualization, structure discovery and relationship 

mining, as well as predictive modeling—which, respectively, can support alpha, beta, and final 

release stages of game development. In combination with a robust data collection framework, 
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leveraging learning analytics throughout the design process and beyond is key to supporting 

students in personalized, engaging play experiences optimized for learning at scale.  
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