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ABSTRACT

Many competing models have been proposed in the past decade
for predicting student knowledge within educational software.
Recent research attempted to combine these models in an effort to
improve performance but have yielded inconsistent results. While
work in the 2010 KDD Cup data set showed the benefits of
ensemble methods, work in the Genetics Tutor failed to show
similar benefits. We hypothesize that the key factor has been data
set size. We explore the potential for improving student
performance prediction with ensemble methods in a data set
drawn from a different tutoring system, the ASSISTments
Platform, which contains 15 times the number of responses of the
Genetics Tutor data set. We evaluated the predictive performance
of eight student models and eight methods of ensembling
predictions. Within this data set, ensemble approaches were more
effective than any single method with the best ensemble approach
producing predictions of student performance 10% better than the
best individual student knowledge model.

1. INTRODUCTION

In recent years, adaptive educational software has emerged out of
the lab, and out of research classrooms, and into widespread
usage, particularly in the United States [18]. This software
typically adapts to individual differences in student knowledge,
engagement, and motivation, attempting to select the curricular
materials and methods of presentation best suited for the specific
learner. This adaptation is in turn dependent on accurate
assessment of the student — what the student knows, and other
aspects and attributes of the student, an area termed student
modeling [36].

Student modeling poses several challenges. The first is that
student knowledge is inherently latent — in other words, the goal is
to assess a quantity that is not directly measured. Instead,
knowledge must be assessed from performance, which has a noisy
relationship to knowledge: students often guess and get correct
answers without knowledge, and students also often make simple
errors (“slips”) on material they know. However, performance can
be used to validate models of knowledge — a successful
knowledge model should be more successful at predicting future
correctness than an unsuccessful knowledge model.
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Over the last decades, there has been continual competition
between different approaches towards student modeling, with
particularly intense competition in terms of modeling student
knowledge. One challenge is that within educational software, the
system is attempting to teach the student, and therefore
assessment cannot assume that student knowledge is static during
the use of the system. As such, the decades of work on assessment
within testing, using methods such as item-response theory [15]
and computerized adaptive testing [35], are not immediately
applicable and must be modified. Research on how to most
effectively assess dynamic student knowledge in educational
software began in the 1970s [13], with approaches based on Bayes
Nets and Bayesian algorithms emerging in the 1990s [9; 21]. In
recent years, models based on item-response theory, such as
Performance Factors Analysis (PFA) [29], have also emerged and
gained popularity.

Multiple variants within each of these paradigms have also been
created — for instance, within the Bayesian Knowledge Tracing
(BKT) framework proposed by Corbett and Anderson [9], models
can be fit using curve-fitting [9], expectation maximization (EM)
[8; 25], Dirichlet priors on EM [32], or grid search/brute force [2;
26]. BKT has also been extended with contextualization of guess
and slip [1; 2] and student priors [25; 26].

This proliferation of models has led researchers to ask which
model is best. Student models have been compared in several
fashions, both within and across paradigms, including both
theoretical comparisons [1; 6; 34] and empirical comparisons at
predicting future student performance [1; 2; 14; 29], as a proxy for
the models’ ability to infer a student’s knowledge. However, the
results of these comparisons have been quite inconsistent, with
models performing better in one evaluation and worse in another
evaluation [1; 2; 14; 29].

An alternate approach to determining which model is best might
be to combine models and leverage the different strengths of
different frameworks, using ensemble methods [4; 10; 31]. Such
an approach was seen in the 2010 KDD Cup competition, where
teams competed to predict future data on students using Cognitive
Tutors for Algebra [18], training on earlier data from the same
students. Two successful entries in this competition used
ensemble methods, including the winning entry [37], which
ensembled across multiple classification algorithms, and the



second-best student entry [27], which ensembled across multiple
paradigms for student assessment. However, the structure of the
training and test sets used in this competition was not
representative of common conditions in student modeling, where
it is necessary to train models on one cohort of students and apply
the models on a new cohort of students (such as the next cohort of
students to use the learning system).

To this end, Baker and colleagues [3] attempted to improve
prediction by applying ensemble methods on a different tutor,
Cognitive Tutor for Genetics, testing the models on data from
entirely new students. Their results indicated that ensemble
methods were as good at predicting future knowledge as the best
individual model, but no better. However, this study had three
potentially key limitations. First, this study used only simple
methods for combining predictions, restricting ensemble
techniques to linear and logistic regression methods. Second,
these studies were conducted with a small data set, raising the
possibility that the results were weak because ensemble methods
may need larger data sets to succeed in this domain. Third, the
classic student modeling methods which were ensembled
produced similar predictions, suggesting that ensemble selection
may have failed to perform better due to having relatively little
difference between predictors to leverage.

In the study published here, we attempt to extend the work in
Baker et al. [3], in order to discover what conditions are necessary
for ensemble selection to perform better than the best individual
student knowledge models. To that end, we replicate the same
analyses using a student data set approximately one order of
magnitude larger than the set used in [3], though still two orders
of magnitude smaller than the set used in the KDD Cup [27; 37].
We also use a substantially broader set of ensemble selection
algorithms. As in that work, we test models using data from new
students, a step required for actual model use. Through this
process, we can better understand the potential of ensemble
selection to improve the precision of student models of knowledge
and skills.

2. STUDENT MODELS USED

In this section, we present a set of student models that can be used
to predict student knowledge as they learn from within
educational software [18, 33]. Greater detail on the specific tutor
environment is given in section 4, but in order to understand the
student models that follow, a few aspects of the software must be
discussed, and a few assumptions must be made. Students
typically use tutoring software individually (though many
exceptions exist); the data set we study has data from a large
number of students each using the software. Students complete a
set of problems/problem steps/items in the educational domain
(each of these terms refers to a different granularity of educational
materials, but these differences do not matter for the approaches
discussed here).

Each model is used to predict the probability that a student can
answer the next item involving the current skill correctly (where
correctness on a specific item is treated as a binary variable —
correct or incorrect). These models all assume a mapping where
each item involves a single skill, a simplifying assumption
frequently used in modeling student knowledge in educational
software (although this assumption can lead to ineffective
adaptation in rare cases [19]). Cross-validation was conducted at
the student level, so that models were trained on one group of
students and tested on another group of students, a scenario

comparable to real-world training and usage of student knowledge
models.

The performance of each student modeling approach can be
assessed as follows. When the model is tested on a group of
students (during cross-validation), the model is applied to every
student’s actions during problem-solving. The student’s actions
are run through the model in the same order as they occurred
during learning. For each of these algorithms, the skill which the
action involved is taken into account. As a new action is
encountered, the algorithm is used to predict student latent
knowledge, and the probability the student will give a correct
answer. The actual correctness of that action is used to (indirectly)
determine the goodness of the model at assessing student
knowledge. Models are compared using A' (also called AUC, the
Area under the Receiver-Operating Curve) [16] — greater detail on
the computation of A' and model comparison is given in section 5.

2.1 Bayesian Knowledge-Tracing

Corbett & Anderson’s [9] Bayesian Knowledge Tracing model is
one of the most popular methods for estimating students’
knowledge. It underlies the Cognitive Mastery Learning algorithm
in Cognitive Tutors for Algebra, Geometry, Genetics, and other
domains [18], used by millions of students each year.

The canonical Bayesian Knowledge Tracing (BKT) model,
depicted in Figure 1, assumes a two-state model of knowledge: for
each skill’knowledge component the student is either in the
learned state or the unlearned state. A student who knows a skill
can either slip and give an incorrect response Wwith
probability P(S) or give a correct response with probability
1 — P(S). Similarly, a student who does not know a skill can
either guess and give a correct response with probability P(G) or
give an incorrect response with probability 1 — P(G). The
probability of a correct answer in a given situation is a function of
the prior probability that the student knows the skill, P(L,,_4), and
the probability of the student demonstrating that knowledge with
their response, P(G) and P(S). This is expressed in Equation 1
(note that the subscript n denotes the knowledge state at time n,
and the subscript n-1 denotes the knowledge state at the time
immediately after the previous answer):
P(Correcty,) = P(Lp—1)(1 = P(S)) + (1= P(L,-1)) * (P(&))
O]
The model has another parameter, P(Ly), which is the prior
probability that a student had learned the skill before answering
any questions. On the very first question, this parameter takes the
place of P(L,_,). After each opportunity to answer a question
relating to the skill, a posterior probability of the student’s
knowledge state, P(Ln_1|correctness), is calculated, taking
into account evidence from the current action’s correctness. If the
student answers correctly, the posterior probability of knowledge
is found by using Equation 2:
P(Lyp-1)*(1-P(S))
P(Lp-1)*(1=P($))+ (1-P(Ln-1)*(P(6))

@)
If the student answers incorrectly, the posterior probability of
knowledge is calculated with Equation 3:

P(Ly_q|Correct,) =

P(Ln—l)*P(S)
P(Lp-1)*P(S)+ (1-P(Ln—1))*(1-P(G))

3

P(L,_4|Incorrect,) =



Finally, at each opportunity to apply that skill, regardless of
correctness, the student may make the transition from the
unlearned to the learned state with learning probability P(T). The
probability of a student going from the learned state to the
unlearned state (i.e. forgetting a skill) is fixed at zero. Hence, the
probability that the student knows the skill at time n, after taking
the possibility that he learned into account, is calculated with
Equation 4 and will serve as the new prior probability of
knowledge at the next opportunity.

P(Ly) = P(Ly_qlAction,) + ((1 — P(Lp—4|Action,)) = P(T))
(4)

Model Parameters

P(Ly) = Initial Knowledge
P(T) = Probability of learning
P(G) = Probability of guess
P(S) = Probability of slip Py P(T) P(T)
Nodes representation
K = knowledge node
Q = question node
Node states

K = two state (0 or 1)
Q =two state (0 or 1)

Knowledge Tracing

Figure 1: Bayesian Knowledge Tracing.

The four parameters of BKT, P(Ly), P(T),P(G), and P(S), are
learned from existing data, originally using curve-fitting [9], but
more recently using expectation maximization (BKT-EM) [8] or
brute force/grid search (BKT-BF) [2; 25]. Within this paper we
use BKT-EM and BKT-BF as two different models in this study.
Within BKT-BF, for each of the 4 parameters all potential values
at a grain-size of 0.01 are tried across all the students with an
upper bound placed on P(G) and P(S) (e.g.: 0.01 0.01 0.01 0.01,
0.01 0.01 0.01 0.02, 0.01 0.01 0.01 0.03...... 0.99 0.99 0.3 0.1).
The sum of squared residuals (SSR) is minimized in selecting the
best set. For BKT-BF, the values for Guess and Slip are bounded
in order to avoid the “model degeneracy” problems that arise
when performance parameter estimates rise above 0.5 [1]. For
BKT-EM the parameters were unbounded and initial parameters
were set to a P(G) of 0.14, P(S) of 0.09, P(Ly) of 0.50, and
P(T) of 0.14, a set of parameters previously found to be the
average parameter values across all skills in modeling work
conducted within a different tutoring system.

In addition, we include three other variants on BKT. The first
variant uses a reduced data set in order to fit the model, under the
hypothesis that not all historical data is relevant to predicting a
student’s current knowledge. BKT parameters are typically fit to
all available students’ performance data for a skill. It has been
argued that if fitting is conducted using only the most recent
student performance data, more accurate future performance
prediction can be achieved than when fitting the model with all of
the data [24; 27]. In this study, we included a BKT model trained
only on a maximum of the 15 most recent student responses to the
current skill, BKT-Less Data.

The second variant, the BKT-CGS (Contextual Guess and Slip)
model, is an extension of BKT [1]. In this approach, Guess and
Slip probabilities are no longer estimated for each skill; instead,
they are computed each time a student attempts to answer a new
problem step, based on machine-learned models of guess and slip
response properties in context (for instance, longer responses and
help requests are less likely to be slips). The same approach as in

[1] is used to create the model, where 1) a four-parameter BKT
model is obtained (in this case BKT-BF), 2) the four-parameter
model is used to generate labels of the probability of slipping and
guessing for each action within the data set, 3) machine learning is
used to fit models predicting these labels, 4) the machine-learned
models of guess and slip are substituted into Bayesian Knowledge
Tracing in lieu of skill-by-skill labels for guess and slip, and
finally 5) parameters for P(T) and P(L) are fit.

An alternate approach to using the Contextual Slip estimates
generated by the machine-learned model is to use them in the
aggregate rather than applying them at each action, once the
machine-learned models have been created [2]. For instance, if a
student’s values of Contextual Slip are averaged across all skills
and actions, it can lead to better prediction of post-test
performance. Combining a student’s average Contextual Slip with
standard BKT in linear regression improves prediction of post-test
performance compared to BKT alone [2]. Hence, we include
average Contextual Slip so far as an additional potential model.

The third BKT variant, the BKT-PPS (Prior Per Student) model
[25], breaks from the standard BKT assumption that each student
has the same incoming knowledge, P(Ly). This individualization
is accomplished by modifying the prior parameter for each student
with the addition of a single node and arc to the standard BKT
model. The model can be simplified to only model two different
knowledge priors, a high and a low prior. No pre-test needs to be
administered to determine which prior the student belongs to;
instead their first response is used. If a student answers their first
question of the skill incorrectly they are assumed to be in the low
prior group. If they answer correctly, they assumed to be in the
high prior group. The prior of each group can be learned or it can
be set ad-hoc. The intuition behind the ad-hoc high prior,
conditioned upon first response, is that it should be roughly 1
minus the probability of guess. Similarly, the low prior should be
equivalent to the probability of slip. Using PPS with a low prior
value of 0.10 and a high value of 0.85 has been shown to lead to
improved accuracy at predicting student performance [27].

2.2 Performance Factors Analysis

Performance Factors Analysis (PFA) [28; 29] is a logistic
regression model, an elaboration of the Rasch model from Item
Response Theory. PFA predicts student correctness based on the
student’s number of prior failures F on that skill (weighted —
typically negatively — by a parameter p fit for each skill using
training data) and the student’s number of prior successes S on
that skill (weighted — typically positively — by a parameter y fit for
each skill using training data). An overall difficulty parameter 3 is
also fit for each skill [29] or each item [28] — in this paper we use
the variant of PFA that fits  for each skill using training data.
The PFA equations use a two-step process to predict student
correctness from the student’s past history of successes S and
failures F on each skill. First, a strength of student knowledge m
is computed for the student i and the skill j:

m(i, ), S, F) = B; + X(¥;Sij +p;Fij) (5)

Then, this strength of student knowledge is converted to a
probability of correctness, using a logistic function:

PIm = T
Unlike Bayesian Knowledge Tracing, no running estimate of
latent student knowledge is computed within PFA. Instead, the



number of successes and failures are tracked, and these are used to
predict future correctness.

2.3 CFAR

CFAR, which stands for “Correct First Attempt Rate”, is an
extremely simple algorithm for predicting student knowledge and
future performance, utilized by the winners of the educational data
KDD Cup in 2010 [37]. The prediction of student performance on
a given skill is the student’s average correctness on that skill, up
until the current point.

3. ENSEMBLE METHODS

As discussed earlier, we use ensemble selection to integrate across
the different student modeling methods discussed above, in order
to see if a combination of student modeling methods can predict
student knowledge more effectively than individual student
modeling methods. We evaluated five ensemble methods for
combining predictions, using multiple variants of four of the five
methods. Two of the ensemble methods assign a weight for each
model: straightforward averaging uses a uniform weight for each
model, whereas regression methods fit a different weight for each
model. The other three methods used can learn non-linear
weightings, which allow for a different composition of models
based on the values of the predictions of each model. Ensemble
methods are subject to the same overfitting potential as any other
model; thus, we used the same cross-validation process for
ensemble evaluation as we did for evaluating the goodness of
individual models.

3.1 Straightforward Averaging

In straightforward averaging, also known as uniform voting or
bagging [11], each of the individual models’ predictions of
correctness (ranging from 0 to 1) is averaged for each student
response.

3.2 Regression

We use linear, logistic and stepwise regression methods to
ensemble the individual student model predictions. This method
of linearly combining models is similar to that in [7]. Linear and
logistic regression models were trained without feature selection
(e.g. ensembles included all the student models). Another variant
of regression we use is stepwise regression (based on a linear
regression framework). In stepwise regression, predictions made
by the best individual model (in terms of RMSE — root mean
squared error) is chosen, and then the next best individual model
that most improves the ensemble is added, until there no longer
exists a model that significantly improves the fit.

3.3 AdaBoost

AdaBoost is an adaptive boosting algorithm [12]. This algorithm
iterates over our ensemble data set of model predictions, focusing
on improving prediction for incorrectly classified data. In this
analysis we use two base learners: J48 [30] and Decision Stumps
[20]. Parameters for these weak learners were left at the defaults
found in v4.6 of RapidMiner [23]. Adaboost was run on the same
ensemble data set that was used with regression and the other
ensemble methods. The number of iterations for AdaBoost was set
to 10.

3.4 Neural Network

Neural networks [17] are able to find complex non-linear
relationships. A single feed forward hidden layer topology was
chosen and the size of that hidden layer was varied with the
following set of values {10, 25, 50, 100, and 125}. A learning rate

of 0.3, momentum of 0.2 and epocs of 500 was used. We
employed 5-fold cross-validation to evaluate the model, as with
the other approaches but also used a sub cross-fold validation to
select the size of the hidden layer. During the training phase of
each fold, we split the training data into 2 sub-folds and then
trained the neural nets with different sizes on one sub-fold and
used the test sub-fold to select the best hidden layer size. After
selecting the best size, we train the neural net on whole training
set and apply the model on the test fold. We follow the same
procedure during all the 5 folds.

3.5 Random Forest

Also referred to as bagged random decision trees, Random Forests
[5] is an ensemble algorithm that trains many decision trees, each
tree using a random resampling of the data (with replacement) and
random sampling of the features of the data. In our case the
features of the data comprise of predictions from the eight
knowledge models. When making a prediction, each tree predicts
the probability of a correct response and the average of the votes
is taken as the final prediction of the Random Forest. We used
200 trees in the training of our Random Forests with a default
feature sampling of 1/3rd and minimum data points per tree leaf
of 5.

4. ASSISTMENT DATA SET

Our data set comes from student use of the ASSISTments
Platform [33] during the 2005-2006 school year, an online
learning environment used by approximately 20,000 students a
year in the Northeastern United States. The ASSISTments
Platform assesses as it assists, providing actionable data on
student knowledge to teachers, while helping the students learn
math. As a substitute for traditional homework, it has been found
to lead to significantly improved learning outcomes [22]. The
students in our data set were from 7" and 8" grade Geometry and
Algebra classes with ages 12-14. Classes came from different
schools and the teachers of the classes would take students to the
computer lab to answer questions on ASSISTments about once
every two weeks throughout the school year. There were 178,434
total student actions in this dataset produced by 5,422 students
where each action is a student’s first response to a question in the
tutor. Students received a random selection of math problems
from varying skills based on previously released state test items.

A picture of the ASSISTments interface is shown below (Figure
2). A student makes an attempt to answer a Pythagorean Theorem
question but answers incorrectly. The tutor simplifies the question
by providing scaffolding which breaks down the problem into
sub-steps. The students answer these sub-steps and can request a
final hint at the end which will provide the answer. Other pieces
of content on ASSISTments provide only hint based help, which
gives the student tips on solving the problem, rather than asking
sub questions. Both forms of tutorial help (hints and scaffolding)
are only provided if the student answers incorrectly or requests
help. The immediate feedback of telling a student if they have
answered correctly or not, as well as providing hints and
scaffolding, has been shown to lead to student learning [22].

All the models used in this paper take into account which skill a
specific item is associated with. The ASSISTments Platform uses
a skill model [33] of 106 skills that provides this mapping
between skills and items. Some problems were tagged with more
than one skill. Since the knowledge models that were used assume
each item is associated with a single skill, these problems were
replicated in the dataset for each skill they were associated with.



For example, if a problem is associated with three skills, each
student response to that problem is included in the data set three
times, once for each skill.
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Figure 2: An Example of an ASSISTments item.

S. EVALUATION OF MODELS

The eight student models used data from the tutoring system to
make predictions of student performance using a 5 fold cross-
validation. The predictions produced by these models served as
the data used by the ensemble methods to explore if combining
student model predictions could lead to improved accuracy. A 5
fold cross-validation was also used in the ensemble method
evaluation.

5.1 In-tutor Performance of Models, at
Student Level

We evaluate both student models and ensemble models using 5-
fold cross-validation, at the student level. We balance the students
in each of the folds to have equal number of actions and to have
equal percent correct. By cross-validating at the student level
rather than the action level, we can have greater confidence that
the resultant models will generalize to new groups of students. We
compute the A' (also called AUC, the Area under the Receiver-
Operating Curve) [16] between the predictions obtained from the
models and the correctness of each student first attempt on a
problem step. We use A' as the goodness metric since it is a
suitable metric to be used when the predicted variable is binary
and the predictions are numerical (predictions of the probability of
correctness at each item). To facilitate statistical comparison of A'
without violating statistical independence, A' values were
calculated for each student separately and then averaged across
students (see [2] for more detail on this statistical method).

Table 1: A' values averaged across students for each of the

models.
Model Average A'
En-NeuralNet 0.7719
En-RandomForest 0.7662
En-AdaBoost-J48 0.7495
En-Logit 0.7162
En-LinReg 0.7129
En-StepWiseReg 0.7124
PFA 0.6994
En-AdaBoost-DecisionStumps 0.6840
BKT-EM 0.6817
BKT-LessData 0.6816
BKT-BF 0.6649
En-Average 0.6616
BKT-PPS 0.6548
CGS 0.6464
Cslip 0.5103
CFAR 0.5092

The average A' values are summarized in Table 1. The best
ensemble model was Neural Net (A'=0.7719) and the best
individual student model was PFA (A' =0.6994). Neural Net
achieved statistically significantly higher performance than PFA,
7Z=27.21, p<0.001, indicating that the best ensembling method
performed substantially better than the best individual model.
Unlike the previous results seen with a smaller data set [3] the
ensemble models generally appeared to outperform the individual
student models, except for AdaBoost with Decision stumps
(A'=0.6840) which performed comparably to PFA and the BKT
variants, and Averaging (A'=0.6616) which was significantly
outperformed by PFA and most of the BKT variants (the smallest
difference in terms of statistical significance was between
Averaging and BKT-BF, Z=2.18, p=0.03). The worst single
model was CFAR (A'=0.5092), and the second-worst single
model was Contextual Slip (A'=0.5103). All the other models
achieved statistically significantly higher performance than CFAR
and Contextual Slip at p<0.001.

5.2 In-tutor Performance of Models, at the
Action Level

In this evaluation, the prediction ability of different models is
compared based on how well each model predicts each first
attempt at each problem step in the data set, instead of averaging
within students and then across students. This is a more
straightforward approach, which was used in the 2010 KDD Cup,
although it has multiple limitations: it is less powerful for
identifying individual students’ learning, less usable in statistical
analyses (analyses conducted at this level violate statistical
independence assumptions [2]), and may bias in favor of
predicting students who contribute more data.




Note that we do not re-fit the models in this section; we simply re-
analyze the models with a different goodness metric. When we do
so, we obtain the results shown in Table 2.

Table 2: A’ computed at the action level for each of the

models.

Model F hole daset)
En-NeuralNet 0.7693
En-RandomForest 0.7651
En-AdaBoost-J48 0.7362
En-Logit 0.7183
En-StepWiseReg 0.7182
En-LinReg 0.7182
PFA 0.7053
BKT-LessData 0.7011
BKT-EM 0.7011
BKT-BF 0.6981
En-Average 0.6977
En-AdaBoost-DecisionStumps 0.6804
BKT-PPS 0.6716
Cslip 0.6148
CGS 0.6104
CFAR 0.6067

For this evaluation, the models follow the same pattern as the
previous section. The ensemble models again outperform the
individual models. The best ensemble model is again Neural Net
(A'=0.7693), which is substantially better than the best individual
model, which is again PFA (A'=0.7053). As in the previous
section, the ensemble models again generally perform better than
individual models.

6. DISCUSSION AND CONCLUSIONS

Within this paper, we have analyzed the effectiveness of a range
of approaches for ensembling multiple student knowledge models
within educational software data. We compared these ensembling
approaches to the best individual student models of student
knowledge in terms of their power to predict student behavior
within the tutor (cross-validated) and evaluated them at the
student and action level. We have found that with this data set,
ensemble methods were unambiguously successful at predicting
student performance with greater accuracy than single models,
leading to as much as an 10% improvement in prediction
accuracy. This improvement is much larger than differences
typically seen between individual models [1; 2; 3; 14; 29]. The
benefits of ensemble methods are seen even for relatively simple
ensemble methods such as regression. This is contrary to the
previous finding [3] with a smaller data set from a different tutor,
where ensemble methods were not better than the best individual
models.

Earlier, we hypothesized that there were three possible
explanations for the observed lack of improvement using
ensemble methods in previous work [3]: 1) the data set was too
small for ensemble selection to be effective in this domain; 2) the
ensemble selection methods used were too simple; 3) the
knowledge models were too similar to each other. The knowledge
models used in this paper remain similar to each other; since
improved performance was achieved in this case, this hypothesis
does not appear to be the correct explanation. In addition, the
same regression methods for ensemble selection were used in this
paper and that earlier work (along with additional methods).
Hence, this also does not appear to be the key factor leading to
success for ensemble methods (although neural networks did
perform significantly better than regression methods). Instead, it
appears that the size of the data set is the key difference leading to
greater success in the current study than in that previous research.

Besides the results of ensembling, a primary contribution of this
work is showing the relative predictive performance of the
dominant knowledge models in the field on an additional data set.
This paper gives further evidence that the relative performance of
different individual student models is unstable between data sets.
For example, BKT-PPS was the best model in [3], but was the
worst-performing model among the BKT models in the analysis
presented in this paper. PFA also performed worse than any BKT
models in [3], the opposite pattern from the pattern of results seen
here. It is not yet clear what features of a specific data set (and the
tutor it comes from) are associated with better or worse
performance for specific types of student models. This reinforces
the motivation behind ensembling models to attain greater
consistency across different tutors and student cohorts.

Overall this paper demonstrates that ensemble methods can be
effective at substantially improving student performance
prediction in a tutoring system, given sufficient amounts of data.
It is not yet known exactly how much data is needed in this
domain for ensemble methods to be effective — for future work, it
may be valuable to generate samples of different sizes from a data
set, and test the predictive performance of an ensemble trained on
various sample sizes. An additional open research question is
whether an ensemble trained on one year’s cohort of students will
generalize to the next year’s cohort; at the current time, student
models are often trained on one cohort’s data and then used for
the next year’s cohort, making this a test that maps well to current
practice. Through these steps, the field can utilize ensemble
methods to increase the accuracy of predictions of latent student
knowledge, and in turn improve the learning efficacy of
educational software.
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