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We present an automated detector that can predict a student’s later performance on a paper test of 
preparation for future learning, a post-test involving learning new material to solve problems involving 
skills that are related but different than the skills studied in the tutoring system. This automated 
detector operates on features of student learning and behavior within a Cognitive Tutor for College 
Genetics. We show that this detector predicts preparation for future learning better than Bayesian 
Knowledge Tracing, a widely-used measure of student learning in Cognitive Tutors. We also find that 
this detector only needs limited amounts of student data (the first 20% of a student’s data from a tutor 
lesson) in order to achieve a substantial proportion of its asymptotic predictive power.  
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1. INTRODUCTION 
Over the previous two decades, knowledge engineering and educational data mining 
(EDM) methods (cf. Baker & Yacef, 2009; Romero et al., 2010) have led to increasingly 
precise models of students’ knowledge as they use intelligent tutoring systems and other 
types of interactive learning environments. Modeling student knowledge has been a key 
theme in research in intelligent tutoring systems from its earliest days. Models of student 
knowledge have become successful at inferring the probability that a student knows a 
specific skill at a specific time, from the student’s pattern of correct responses and non-
correct responses (e.g. errors and hint requests) up until that time (cf. Corbett & 
Anderson, 1995; Martin & VanLehn, 1995; Pavlik et al., 2009). In recent years, the 
debate about how to best model student knowledge has continued, with attempts to 
explicitly compare the success of different models at predicting students’ future 
correctness within the tutoring software (cf. Pavlik et al., 2009; Gong et al., 2010; Baker, 
Pardos, et al., in press). 

However, the ultimate goal of tutoring systems is not to improve future performance 
within the system itself but to improve unassisted performance outside the system. 
Ideally, interactive learning environments should promote “robust” learning (Koedinger 
et al., under review) that is retained (better remembered) over time (Pavlik & Anderson, 
2008), transfers to new situations (Singley & Anderson, 1989), and prepares students for 
future learning (termed “PFL”) (Bransford & Schwartz, 1999). The difference between 
transfer and PFL is whether a student has the ability to use their existing knowledge in  
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new situations or new fashions (transfer), or whether a student acquires new knowledge 
more quickly or effectively, using their existing knowledge (PFL).  

Historically, student modeling research has paid limited attention to modeling the 
robustness of student learning. To the extent that there has been attention to modeling the 
robustness of learning, it has focused on retention and transfer. For example, Pavlik and 
Anderson (2008) predict how long knowledge will be retained after learning within an 
ILE teaching foreign language vocabulary. Martin and VanLehn (1995) and Desmarais et 
al. (2006) predict whether student knowledge of one skill will transfer to another skill. 
Baker, Gowda, and Corbett (in press) predict student performance on a paper post-test of 
transfer.  However, it can be argued that the most important form of robust learning is the 
ability to apply learned skills and concepts to support future learning outside of the 
context where those skills and concepts were learned (Bransford & Schwartz, 1999). 
Though studies have demonstrated that learning from some types of interactive learning 
environments can prepare students for future learning (Tan & Biswas, 2006; Chin et al., 
2010) student models have not yet explicitly modeled PFL. 

Within this paper, we present a model designed to predict student performance on a 
paper post-test of PFL, a post-test where the student reads instructional text to learn new 
problem-solving skills related but different to those in the tutor, and then applies those 
skills in problem-solving. Such a model could be used both to understand the conditions 
of robust learning, and to drive interventions designed to increase the robustness of 
learning for students who are learning the skills in the tutor, but in a shallow fashion. 

This model is generated using a combination of feature engineering and linear 
regression, and is cross-validated at the student level (e.g. trained on one group of 
students and tested on other students). We compare this model to Bayesian Knowledge 
Tracing – a student model shown to predict post-test performance – and to a model 
trained to detect transfer, in order to see how well each model can predict preparation for 
future learning. As a student model predicting PFL will be most useful if it can be used to 
drive interventions fairly early during tutor usage, we also analyze how much student 
data is needed for the model to be accurate.  

 

2. DATA SET 
The data set used in the analyses presented here came from the Genetics Cognitive Tutor 
(Corbett et al., 2010). This tutor consists of 19 modules that support problem solving 
across a wide range of topics in genetics. Various subsets of the 19 modules have been 
piloted at 15 universities in North America. This study focuses on a tutor module that 
employs a gene mapping technique called three-factor cross, in which students infer the 
order of three genes on a chromosome based on offspring phenotypes, as described in 
(Baker, Corbett, et al 2010).  In this laboratory study, 71 undergraduates enrolled in 
genetics or in introductory biology courses at Carnegie Mellon University used the three-
factor cross module. The students engaged in Cognitive Tutor-supported activities for one 
hour in each of two sessions. All students completed standard three-factor cross problems 
in both sessions. During the first session, some students were assigned to complete other 
cognitive-tutor activities designed to support deeper understanding; however, no 
differences were found between conditions for any robust learning measure, so in this 
analysis we collapse across the conditions and focus solely on student behavior and 
learning within the standard problem-solving activities. The 71 students completed a total 
of 22,885 problem solving attempts across 10,966 problem steps in the tutor.  

Post-tests, given by paper-and-pencil, consisted of four activities (cf. Baker, Corbett, 
et al., 2010). Three tests were given immediately after tutor usage: a straightforward 
problem-solving post-test, a transfer test, and a test of preparation for future learning. The 
fourth test was a delayed retention test. Within this paper we focus on predicting 



performance on the test of preparation for future learning, requiring the student to learn 
new skills after using the tutor. The PFL test consisted of 2½ pages of instruction on the 
reasoning needed for an analogous, but more complex, four-factor cross gene mapping 
task, followed by a single four-factor cross problem for students to solve. 

Students demonstrated successful learning in this tutor, with an average pre-test 
performance of 0.31 (SD=0.18), an average post-test performance of 0.81 (SD=0.18), and 
an average PFL performance of 0.89 (SD=0.15). The correlation between the problem-
solving post-test and the PFL test was 0.41, suggesting that, although problem-solving 
skill and preparation for future learning were related, PFL may be predicted by more than 
just simply skill at problem-solving within this domain.  

 

3. ANALYSIS OF MODEL USING CROSS VALIDATION 
In this paper, we introduce a model that predicts each student’s performance on a test of 
preparation for future learning (PFL), using a hybrid of data mining and knowledge 
engineering methods. Within this approach, a small set of features is selected based on 
past literature. Each feature is defined as the proportion of times a specific student 
behavior occurs in the log files. Within feature selection, the goodness criterion is the 
cross-validated correlation between an individual feature and each student’s performance 
on the PFL test.  Cross-validated correlation is computed between the predictions from 
each of the test folds and the actual PFL test scores; positive cross-validated correlation 
indicates the relationship is consistent between the training and test folds (but has no 
implication about the relationship’s direction). By contrast, negative cross-validated 
correlation indicates that the models obtained from the training folds fail to predict the 
actual scores in the test folds. . Finally a model is trained on these features to predict each 
student’s performance on the PFL test, using cross-validation.  

We then compare this model to a baseline prediction of PFL, Bayesian Knowledge 
Tracing (BKT) (Corbett & Anderson, 1995) fit using brute force. Bayesian Knowledge-
Tracing fit in this fashion has been previously shown to predict student post-test problem-
solving performance reasonably well within the Genetics Tutor (Baker et al., 2010). As 
BKT accurately predicts problem-solving post-tests, and the PFL test was reasonably 
correlated to the problem-solving post-test in this study, BKT should correlate reasonably 
well to PFL. But the goal of a robust learning test such as PFL is to measure depth of 
understanding that may not be reflected solely in basic problem-solving skill, which is 
tracked by BKT.  Hence, it may be possible to develop a detector based on other 
performance features that predicts PFL better than BKT, under cross-validation.  
 

3.1 FEATURE ENGINEERING 
The first step of our process was to engineer a set of features based on a combination of 
theory and prior work detecting related behaviors. Since we were predicting post-test 
performance, we focused on proportions of behavior across the period of use of the 
tutoring system (e.g. what proportion of time a student engaged in behavior N). Many of 
the features below depend on a continuous variable, such as pause duration (2, 3, 4) or 
probability of knowing a skill (1,6). For each such feature, we used a cut-off value to 
indicate the presence or absence of a behavior, in order to identify the incidence of 
specific behaviors hypothesized to be associated with robust learning. That is, we 
empirically determined (see section 3.2) a cut-off value that indicates the student 
behavior occurred (e.g. a long pause or low probability), rather than averaging the actual 
values (pause durations or probabilities). We tested the following features: 
 

1. Help avoidance (Aleven et al, 2006), not requesting help on poorly known skills, 
and its converse, feature 1', requesting help on relatively poorly known skills 



2. Long pauses after receiving bug messages (error messages given when the 
student’s behavior indicates a known misconception) which may indicate self-
explanation (cf. Chi et al., 1989) of the bug message, and its converse, 2', short 
pauses after receiving bug messages (indicating a failure to self-explain) 

3. Long pauses after reading on-demand hint messages (potentially indicating 
deeper knowledge or self-explanation), and a related feature, 3', short pauses 
after reading the on-demand hint message  

4. Long pauses after reading an on-demand hint message and getting the current 
action right (cf. Shih, Koedinger, & Scheines, 2008), and a related feature, 4', 
short pauses after reading an on-demand hint message and getting the current 
action right. Features 4 and 4' can be seen as sub-sets of features 3 and 3'. 

5. Off-task behavior (Baker, 2007), and a related feature, 5', long pauses that are 
not off-task (may indicate self-explanation, or asking teacher for help – cf. 
Schofield, 1995) 

6. Long pauses on skills assessed as known (may indicate continuing to self-
explain even after proceduralization), and a related feature, 6', short pauses on 
skills assessed as known 

7. Gaming the system (Baker et al., 2008), and a related feature, 7', fast actions that 
do not involve gaming 

8. Contextual slip/carelessness (known to predict post-test problem-solving 
performance – Baker et al, 2010) 

9. The presence of spikes during learning using the moment-by-moment learning 
model, which estimates the probability that the student learned a relevant skill at 
each step in problem solving (spikes in this model have been found to predict 
final knowledge in the tutor – cf. Baker, Goldstein, Heffernan, in press).  

 
Five of these features showed positive cross-validated correlations between the individual 
feature and the students’ performance on the PFL test: 1 (failing to request help on 
poorly-known skills), 3 (long pauses after reading hint messages), 6' (short pauses on 
skills assessed as known), 7' (fast actions that do not involve gaming), and 9 (spikiness in 
the moment-by-moment learning model). The exact definition of these features was: 
 
1: Proportion of actions where the student has a probability under N of knowing the skill, 
according to Bayesian Knowledge Tracing (Corbett & Anderson, 1995), does not ask for 
help, and makes an error on their first attempt. Initial cut-off value of N = 60% 
probability. 
3: Proportion of actions where the student asks for hint, and then makes their next action 
in over N seconds. Initial value of N = 5 seconds.  
6': Proportion of actions where the student has a probability over 0.95 of knowing the 
skill, according to Bayesian Knowledge Tracing (Corbett & Anderson, 1995), and applies 
the skill in under N seconds. Initial value of N = 5 seconds. 
7': Proportion of actions where the student enters an answer or requests a hint in under N 
seconds, but the action is not labeled as gaming, using a gaming detector previously 
trained on data from a high school algebra course (cf. Baker & de Carvalho, 2008 – 
where a single detector was trained on all lessons to maximize detector generalizability – 
cf. Baker et al., 2008). This detector has previously been shown to achieve a correlation 
over 0.3 to the post-test within another dataset from the same lesson in the Genetics 
Tutor. Initial value of N = 5 second. 
9: Highest value of moment-by-moment learning model estimate (cf. Baker, Goldstein, & 
Heffernan, in press) for each skill, divided by the average moment-by-moment learning 
estimate for that skill, averaged across skills, for the student. This model infers student 



learning at each problem step, and is initially trained using data from future student 
correctness within the tutor, but the model itself uses only data from the past.  
 
As can be seen, four of these features depend on a threshold parameter, N; adjusting this 
parameter can result in very different behavior. In all three cases, we started with an 
initial plausible value of N, as given above. The following section discusses how these 
features were optimized later in the modeling process.  
 

3.2 FEATURE OPTIMIZATION 
We used brute-force grid search to find an optimal cut-off level for four of the above 
mentioned features (in grid search, values are tried for every step at the same interval – 
for instance 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, etc.). Variables involving 
probabilities were searched at a grid size of 0.05; variables involving time were searched 
at a grid size of 0.5 seconds with the exception of feature 6', which was searched at a grid 
size of 5 seconds. After the generation of the features at different grids, we built one-
parameter linear regression models predicting PFL from each feature using leave-out-
one-cross-validation, in RapidMiner 4.6 (Mierswa et al., 2006). Cross-validated 
correlation was used as the goodness measure. Single-feature regression models fit on the 
whole data set and their associated cross-validated correlations are shown in Table I. 

Many of the features, subsequent to optimization, changed meaning. For instance, 
feature 1, initially conceptualized as Help Avoidance, achieved optimal performance 
when help avoidance occurred on skills for which the probability the student knew the 
skill was <=1 – that is to say, on all help. So feature 1 can be re-conceptualized as the 
help/error ratio, and specifically as MoreErrorsLessHelp. Similarly, feature 6' was 
initially conceptualized as short pauses on mastered skills, but the optimal performance 
was achieved when the cut-off for shortness was set to 55 seconds. Hence, feature 6' can 
be re-conceptualized as pauses which are not long, on mastered skills.  

The feature most strongly associated with PFL was making errors rather than 
requesting help, which was negatively associated with PFL (cross-validated r=0.356). 
This feature may have multiple interpretations; for instance, it may be that these students 
learned less by avoiding help (cf. Aleven et al., 2006), perhaps learning less at a 
conceptual level as the tutor hints are fairly conceptual in nature. This may in turn have 
made these students less prepared for future learning in the same domain. Alternatively, it 
may be that these students are less successful at  learning from text (or less motivated to 
learn from text), causing them both to avoid hints in the tutor, and to perform less well as 
reading the text needed to succeed on the future learning test. Distinguishing these two 
hypotheses is challenging, but may be a productive avenue for future research. 

A second feature individually associated with PFL is spending less than a minute on 
skills assessed as known, which achieved a cross-validated r of 0.340. This feature 
suggests that relatively quick performance on known skills is indicative of robust 
learning. Similarly, non-gaming actions taking less than 4 seconds were positively 
correlated with PFL (cross-validated r=0.166). 

Additionally, the spikiness of the moment-by-moment learning model, is positively 
associated with PFL, achieving a cross-validated r of 0.286. This finding suggests that if 
a student’s learning more frequently occurs in relatively sudden “aha” moments, as 
compared to occurring more gradually, deeper learning is occurring.  

Finally, spending more than 5.5 seconds to answer after receiving a hint was 
negatively correlated with PFL (cross-validated r=0.230). This result is unexpected, as 
pauses after reading hints have previously been shown to be positively correlated with 
post-test performance (e.g. Shih, Koedinger, & Scheines, 2008). One possible 
explanation is that pausing after reading help is generally beneficial, but that the students 

 



Table I. Linear regression model predicting the PFL test using single optimized features.  
Feature PFL= Cross-

validated r 
1. MoreErrorsLessHelp -0.980 * MoreErrorsLessHelp + 1.01 0.356 
3. Long pauses After Hint with Time > 5.5 -2.445 * LongPausesAfterHint + 0.912 0.230 

6'. Non-Long Mastered Skill with Time < 55 + 0.768 * Non-LongMasteredSkill + 0.296 0.340 

7'. Fast Not Gaming with Time < 4 +0.340 * FastNotGaming + 0.739 0.166 

9. Spikiness +0.0083 * spikiness + 0.7773 0.286 

 
who do so with high frequency are the students who are struggling. Hence, it may be an 
interesting question for future research to examine whether there is a non-linear 
relationship between lengthy pauses after reading hints and PFL (and learning in 
general). 
 

3.3 DETECTOR DEVELOPMENT 
Given the set of optimal features, we developed linear regression models in RapidMiner 
4.6 (Mierswa et al., 2006) using Forward Selection (Ramsey & Schafer, 1997), conducted 
by hand. In Forward Selection, the best single-parameter model is chosen, and then the 
parameter that most improves correlation (cross-validated in this case) is repeatedly 
added until no more parameters can be added which improve the correlation.  

Within RapidMiner, feature selection was turned off, and each potential model was 
tested in a separate run – while this creates some risk of over-fitting (even given the use 
of cross-validation), it enables us to determine how well a specific set of features predicts 
PFL. Keeping feature selection on would result in some features being filtered out for 
some sub-sets of the data, making it harder to infer how well a specific set of features 
predicts PFL. As before, Leave-One-Out Cross-Validation (LOOCV) was used to reduce 
the risk of over-fitting, and the goodness metric used was the Pearson correlation between 
the predictions and each student’s performance on the PFL test. In addition, as an 
additional control on over-fitting, we did a first pass where we eliminated all features 
that, taken individually, had cross-validated correlation below zero. We give differences 
in cross-validated correlation rather than statistical significance tests, as a measure of 
generalizability; differences in non-cross-validated correlations of non-nested models 
have low statistical power – (Cohen, 1988) – and comparing cross-validated correlations 
is a redundant test – (cf. Efron & Gong, 1983). 

The best model, using the optimal feature cut-offs, and fit to all data (not cross-
validated; cross-validation produces one model per each of the 71 training sets) was as 
follows:  

 
PFL = -0.7837 * MoreErrorsLessHelp(1) -1.3042 * LongPausesAfterHints(3) + 0.9936 
 

3.4 DETECTOR GOODNESS 
The overall correlation of this model to the PFL test was 0.360, only very slightly 

better than feature 1 alone (0.356). By comparison, fitting a baseline model consisting of 
Bayesian Knowledge Tracing post-test predictions (using brute force – cf. Baker et al., 
2010) to the PFL test results, under LOOCV, achieved a correlation of 0.285 to the PFL 
test. This is a reasonable baseline, as Bayesian Knowledge-Tracing has previously been 
shown to predict the post-test well in this tutor (Baker et al., 2010) as well as in general 
(e.g. Corbett & Anderson, 1995; Corbett & Bhatnagar, 1997), and performance on the 
PFL test was correlated reasonably well to performance on the post-test in this data set 
(non-cross-validated r=0.41). Hence, the optimal feature model appears to perform 



substantially better at predicting PFL than this reasonable baseline, although there is still 
likely to be substantial room for improvement.  

Interestingly, if the post-test and the PFL detector are used together in linear 
regression to predict the PFL test, the cross-validated correlation is 0.391. However, if 
the Bayesian Knowledge Tracing estimates and the PFL detector are used together in this 
way to predict the PFL test, the cross-validated correlation drops to 0.309. This result 
suggests that, despite the PFL detector’s reasonable effectiveness at detecting PFL, the 
paper post-test still captures a small amount of variance in students’ preparation for 
future learning which is not yet detectable from student behavior in the tutor software. 
Furthermore, this additional predictive power is separate from the assessment of student 
knowledge made by Bayesian Knowledge Tracing (since combining BKT with the PFL 
detector does not lead to better prediction).  

As another test of the PFL detector’s unique predictive power, we can compare it to 
another model of robust learning. In past work, we have developed a model that predicts 
transfer (i.e., the application of problem-solving knowledge to novel but related problems 
without additional instruction), using the same overall method that was used to develop 
the PFL detector (Baker et al., in press). That model is: 

 
Transfer = –1.20 * HelpAvoidance(1) – 14.764 * FastAfterBugs(2') + 0.234 * 
FastNotGaming(7') + 0.832 
 

Though there is considerable correlation (0.520) between the transfer test and the 
PFL test, the transfer detector did not do as well as the PFL detector at predicting PFL. 
With no re-fitting, the transfer detector achieved a cross-validated correlation of 0.273 to 
the PFL-test, comparable to BKT’s performance at predicting PFL, and lower than the 
PFL detector’s cross-validated performance of 0.360.  This result suggests that PFL, to at 
least a moderate extent, is associated with different student behavior in the tutor than 
transfer is. These results, though somewhat small in absolute terms, are fairly large in 
relative terms (0.360 is 32% higher than 0.273), suggesting that it is unlikely this 
difference is solely due to noise in the two test measures. 

 

 
 

Fig.1 Predicting PFL with first N percent of the data. 

 

 



4. ANALYSIS OF MODEL FOR USE IN RUNNING TUTOR 
 
One potential criticism of models developed using proportions of behavior across 

entire episodes of tutor use is that the models, in their initial form, may not be usable in a 
running tutor. Bayesian Knowledge Tracing makes a prediction after each problem-
solving step, which can be used to drive Cognitive Mastery Learning (Corbett & 
Anderson, 1992). If an entire tutor lesson worth of data is required for accurate inference, 
the detector may have low usefulness for intervention.  

However, it is possible to make a version of the model that can be used in a running 
tutor. Similar to the way that Bayesian Knowledge Tracing makes a prediction after each 
problem-solving step, it is possible to take the data up to a specific problem step and 
attempt to make an overall inference about the probability of PFL, using only the data 
collected up until that point. In other words, the features used in the model can be 
computed at any time, using the data collected so far. In this section, we investigate how 
much data is needed for the model to make accurate predictions within this data set, 
comparing our model’s predictive power to Bayesian Knowledge-Tracing, when both are 
given limited data. 

Our first step in this process is to construct subsets of data containing the first N 
percent of each student’s interactions within the tutor. We use every increment of 5% -- 
e.g. a subset with the first 5% of each student’s data (not taking skills into account – e.g. 
data from some skills may not be present in the first 5%), a subset with the first 10% of 
each student’s data, a subset with the first 15% of each student’s data, up to 100%. This 
gives us 20 data sets. We then compute the optimal features discussed in section 3 for 
each subset of data. Next, we apply the PFL prediction model generated using the full 
data set (e.g. we do not refit the models for the new data sets). We also apply Bayesian 
Knowledge Tracing on the limited data sets without re-fitting the BKT parameter 
estimates. After obtaining the predictions we compute the correlation between each of the 
predictions and each student’s performance on the PFL test. Cross-validation is not used, 
as the model is not being re-fit in either case. 

Figure 1 shows the graph with x-axis as percent of data and y-axis as the correlation 
to the PFL test. The graph depicts the predictive performance of the PFL prediction 
model and BKT based on having the first N percent of the data.  From the graph we can 
see that the PFL prediction model performs substantially better than BKT for small 
amounts of data. For instance, with only the first 20% of the data, the PFL prediction 
model achieves a solid correlation of 0.368 to the PFL test, while the BKT model 
achieves a weaker correlation of 0.278. These findings suggest that it may be possible to 
use the PFL prediction model to drive interventions, from very early in tutor usage.  

5. DISCUSSION AND CONCLUSIONS 

 
Within this paper, we have presented a model which can predict with reasonable 

accuracy how well a student will perform on a post-test measuring how well the student 
is prepared for future learning (PFL), within a Cognitive Tutor for College Genetics. We 
find that this model achieves decent cross-validated prediction of this PFL post-test, and 
achieves better cross-validation prediction than Bayesian Knowledge Tracing, a measure 
of skill learning within the tutor software, or a detector trained to detect transfer. 
Furthermore, we find that the PFL detector achieves a large proportion of its predictive 
power by the time the student has completed 20% of the tutor software, suggesting that 
the PFL detector can be used to drive intervention early enough to influence overall 
learning. Overall, we view this detector as a potential step towards educational software 
that can predict and respond automatically to differences in the robustness of student 
learning, an important complement to ongoing research on designing educational 



software that promotes preparation for future learning (Tan & Biswas, 2006; Chin et al., 
2010).  

This model is based on the proportion of time the student engages in long pauses 
after requesting help (cf. Shih et al., 2008), and the ratio of help requests to errors, with 
more help use associated with better preparation for future learning, but lengthy pauses 
after help requests associated with poorer preparation for future learning. Both of these 
features indicate that the use of help is particularly essential for preparing students for 
future learning. Past studies have found mixed relationships between help and domain 
learning (cf. Aleven et al., 2003, 2006; Beck et al., 2008); this analayis, however, 
suggests that help use may under certain conditions lead to robust forms of learning that 
are not captured by typical metrics of in-tutor performance (e.g. Beck et al., 2008) and 
problem-solving post-tests (e.g. Aleven et al., 2006). We recommend that future research 
on help-seeking and learning consider measures of preparation for future learning of new 
skills and concepts to a greater degree.  
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