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Abstract: In this paper we explored whether engaging in two inquiry skills associated 
with data collection, designing controlled experiments and testing stated hypotheses, 
within microworlds for one physical science domain (density) impacted the 
acquisition of inquiry skills in another domain (phase change). To do so, we 
leveraged educational data mining techniques to both assess and estimate students’ 
inquiry skills across domains. Analyses revealed that honing these skills in density 
activities provided benefits in terms of transfer and skill acquisition. More 
specifically, students who practiced in density activities first were more likely to 
show mastery of the designing controlled experiments skill than those who had no 
prior practice. These same students were also more likely to test their stated 
hypotheses during their first data collection in phase change. Thus, practice in one 
domain can positively impact acquisition and transfer of skill in a second domain, 
suggesting that inquiry skills also have a degree of domain generality. 
 

Introduction 
Science educators agree that cultivating inquiry skills is critical for students to become 
scientifically literate (National Research Council, 1996, 2000, 2011; Kuhn, 2005a). However, 
typical standardized science tests do not adequately reflect or assess complex inquiry process 
skills (Quellmalz, Timms & Schneider, 2009). Performance assessments of inquiry, instead, 
have been argued to be better-suited for this purpose (cf. Black, 1999; Pellegrino, 2001). 
Devising scalable and reliable performance assessments, though, is difficult for two reasons. 
First, it is difficult to separate inquiry skills from content understanding (Mislevy, Steinberg 
& Almond, 2002; Mislevy, et al., 2003). Second, inquiry processes are mutli-faceted, and 
there is no one single “right or wrong” way to engage in science inquiry (Shute, Glaser & 
Raghavan, 1989; Glaser, Schauble, Raghavan, & Zeitz, 1992). Given inquiry’s importance, 
proper techniques for measuring inquiry are needed.  

It is also important to better understand inquiry learning so that we can foster transfer 
of such skills to novel tasks (Kirschner, Sweller & Clark, 2006; Hmelo-Silver, Duncan & 
Chinn, 2007). Regarding transfer, it has been suggested that inquiry skills are tightly tied to 
the domain in which they are learned (van Joolingen, de Jong & Dimitrakopoulout, 2007), 
but some evidence exists that long-term, repeated practice of inquiry (Kuhn, Schauble & 
Garcia-Mila, 1992; Dean Jr. & Kuhn, 2006; Kuhn & Pease, 2008), and scaffolding or 
teaching these skills explicitly (Klahr & Nigam, 2004) can lead to successful acquisition and 
transfer to novel tasks. 

In the present paper, we address two goals. First, we describe our approach for 
developing reliable, scalable performance measures of inquiry. Second we leverage those 
assessment techniques to examine how inquiry skills transfer between two physical science 
domains. We focus on on two inquiry skills, designing controlled experiments and testing 
stated hypotheses. Designing controlled experiments entails selecting experiments to yield 



data that supports determining the effects of manipulable variables on outcomes. Testing 
stated hypotheses refers to generating data with the intention to support or refute a specific 
hypothesis. These skills are measured as students conduct inquiry within microworlds for two 
domains, phase change and density, developed within the Science Assistments system 
(Gobert et al., 2007; Gobert et al., 2009). 

In our approach, we leverage techniques from Educational Data Mining (cf. Baker & 
Yacef, 2009; Romero & Ventura, 2010) to assess and track inquiry skills across several 
activities within each domain. To assess these skills, we use validated detectors (models) of 
students’ inquiry behaviors that were constructed based on student log files (Sao Pedro et al., 
2010, in press). We then produce estimates of student proficiency for each skill by 
aggregating all assessments into a Bayseian Knowledge Tracing model (Corbett & Anderson, 
1995). This approach is rigorous because an EDM affords the ability to estimate how well the 
models assess and track skill. Furthermore, these can be done in real time. Thus, we argue, 
the approach is scalable, and could provide a possible model for inquiry assessment. 

These techniques were also leveraged to measure whether the two skills of interest, 
designing controlled experiments and testing stated hypotheses, transfer across two physical 
science domains. These two domains are Density and Phase Change. More specifically, we 
analyzed whether students who practiced in density activities first had a greater likelihood of 
demonstrating the skills or reaching mastery than students with no prior practice. With our 
assessment and skill tracking models, we can assess this transfer in a finer-grained way than 
other prior studies of inquiry (e.g. Kuhn & Pease, 2008). 

The remainder of this paper is organized as follows. First, we describe the two skills 
of interest in more detail, and present related work on assessing data collection skills. We 
then present a high-level view of our approach for assessing and estimating proficiency at 
these data collection skills using our educational data mining techniques. Next, we present 
our results on the transfer of these skills between domains which leveraged our assessment 
and estimation techniques. Finally, we present a discussion and conclusions of our paper. 

 
 
Background 

Data Collection Skills of Interest 
Skills related to designing and conducting experiments (cf. National Research Council, 1996) 
are important to inquiry learning for two reasons. First, they have been argued to support the 
development of other scientific inquiry skills such as correctly interpreting data, and 
warranting claims (Klahr & Dunbar, 1988; Kuhn, Schauble & Garcia-Mila, 1992; Schauble, 
Glaser, Duschl, Schulze & John, 1995; Kuhn, 2005a; de Jong et al., 2005). For example, if 
controlled experiments are not designed, then valid conclusions cannot be drawn about the 
effects of variables on outcomes. Second, students typically have difficulty with these skills 
(de Jong & van Joolingen, 1998; Kuhn, 2005a,b) and as a result, engage in unfruitful 
exploration. For example, students may not collect data that support or falsify their 
articulated hypotheses (van Joolingen & de Jong, 1991, 1993; Kuhn, Schauble, Garcia-Mila, 
1992; Schauble, Klopfer, Raghavan, 1991). They may only run a single trial when trying to 
confirm a hypothesis, thereby not generating enough data to make inferences (Kuhn, 
Schauble, Garcia-Mila, 1992). They may also run the same trial repeatedly (Kuhn, Schauble 
& Garcia-Mila, 1992; Buckley, Gobert & Horwitz, 2006). Finally, they may change too many 
variables between experimental trials, preventing proper inferences from being made (Glaser 
et al., 1992; Reimann, 1991; Tsirgi, 1980; Shute & Glaser, 1990; Kuhn, 2005a; Schunn & 
Anderson, 1998, 1999; Harrison & Schunn, 2004; McElhaney & Linn, 2008, 2010).  



In this paper, we focus on the acquisition and transfer of two such data collection 
skills, designing controlled experiments and testing stated hypotheses. Skill at designing 
controlled experiments is demonstrated when a student designs experiments that yield data to 
support determining the effects of manipulable (independent) variables on outcomes 
(dependent variables). This skill is related to understanding and successful use of the Control 
of Variables Strategy (CVS; cf., Chen & Klahr, 1999). CVS entails the procedural and 
conceptual understanding of how, when, and why a controlled experiment should be 
conducted so that one can make valid inferences about the effects of one independent 
variable on a dependent variable (Chen & Klahr, 1999; Kuhn, 2005b). We differentiate 
designing controlled experiments from CVS as follows. CVS is a skill which emphasizes 
creating a single, contrastive and controlled experiment (a single pair of trials) to determine 
the effects of a variable (e.g. Chen & Klahr, 1999; Klahr & Nigam, 2004). Designing 
controlled experiments, on the other hand, applies to the collection of an entire dataset during 
open-ended inquiry and could involve multiple trials and variables. 

A second, related skill we track is whether students understand how to test their stated 
hypotheses. Testing stated hypotheses refers to generating data with the intention to support 
or refute a previously stated hypothesis about the relationship between an independent 
variable and a dependent variable. We track this in addition to designing controlled 
experiments for two reasons. First, this skill can be demonstrated separately as students 
collect data. Students may attempt to test their hypotheses with confounded designs, or may 
design controlled experiments for a hypothesis not explicitly stated. Second, skill at testing 
hypotheses may be indicative of students’ successful planning and monitoring of their inquiry 
(de Jong, 2006). 
 
Prior Work on the Transfer of Data Collection Skills Across Domains 
It is an open question whether or not inquiry skills are tied to the domain in which they are 
learned (van Joolingen, de Jong, & Dimitrakopoulout, 2007). However, several researchers 
have provided evidence that this is not the case. For example, Glaser, Schauble, Raghavan & 
Zeitz (1991) inferred that college students’ inquiry skills had a degree of domain generality 
from improvements in content gains across three different simulation domains. Harrison and 
Schunn (2004) found that two groups of experts, those with domain expertise and those 
without, showed comparatively skilled inquiry behavior. Though both studies provide 
evidence of the domain generality of inquiry skills in a broad sense, they did not track how 
development and transfer of specific skills occurred across domains.  

Others have researched the development of inquiry skills in grade school and middle 
school students at a more fine-grained level (Kuhn et al., 1992; Kuhn & Pease, 2008). In 
these studies, a recurring finding was that repeated practice over time is necessary for 
transfer. More specifically, Kuhn et al. (1992) and Kuhn and Pease (2008) showed that with 
repeated, long-term practice, inquiry skills can co-develop across domains. Though 
comprehensive in identifying how inquiry skills develop and transfer over time, both studies 
had some limitations. First, smaller sample sizes of at most 30 students were used. Second, 
the skills of data analysis and interpretation skills were conflated with experimental design 
skills, thereby, not providing data about how each develop separately. Finally, scaling using 
this approach is difficult because all performance data consisted of hand-scored open 
responses and/or reports. 

In our approach, we aim to develop scalable assessments of inquiry which can be 
used, in part, to study how skills develop over time and transfer across domains. Our 
approach aims to assess students log files which provide rich performance metrics of 
students’ inquiry skills. In order to do so, we require a rigorous way of assessing such skills; 
we discuss others’ approaches for doing so below. 



 

Prior Work on Assessing Data Collection Skills   
Several researchers have assessed data collection skills and tracked their development to 
address a variety of research questions. Buckley, Gobert et al. (2006, 2010) defined a broader 
notion of inquiry skill with regard to data collection, “systematic” exploration, and measured 
it looking at students’ log files within microworlds. They then studied the relationship 
between systematic inquiry and content knowledge gains, that systematic inquiry was 
beneficial at post-test, even if the students’ inquiry lead them to the incorrect answer. Others 
looked specifically at the impact of designing controlled experiments on various outcomes. 
For example, Shute and Glaser (1990) analyzed whether certain exploration behaviors, one 
being the number of variables changed between experiments, impacted content gains. Schunn 
and Anderson (1999) compared the number of extraneous variables that were changed 
between successive trials between novices and experts in a domain during inquiry. Harrison 
and Schunn (2004) also explored differences between novices and experts’ inquiry tendency 
to design controlled experiments, but did so by computing several ratios of the number of 
controlled trials compared to the total number of trials. Similarly, McElhaney and Linn 
(2008, 2010) computed a “CVS score” for open-ended inquiry by computing the number of 
successive pairwise CVS trials. They then compared the degree to which students designed 
controlled trials depending on the task goal. Finally, Kuhn and Pease (2008) tracked students’ 
developing inquiry skills, in part, by computing the degree to which students make 
inferences, assessed on a 5-level scale. A common thread in all these approaches is that data 
collection, in particular the degree to which experiments were controlled, was measured 
using rules defined by the researchers. In other words, these rules were knowledge-
engineered. 
 Such approaches, however, may fail to properly measure skill in environments where 
students may exhibit a variety of data collection strategies. For example, consider employing 
McElhaney and Linn’s (2008, 2010) approach to measure skill at designing controlled 
experiments by computing successive pairwise CVS trials. This approach may fail to catch 
“corner cases” in which students exhibit additional behaviors. For example, a student may 
run repeated trials to observe the microworld, change one variable, run a few more repeated 
trials, change one variable, etc. As another example, a student may initially run pairwise 
experiments and then search for interaction effects. In both cases, students appear to 
understand how to design controlled experiments, but were engaging in other kinds of valid 
exploration behaviors. The successive pairwise controlled experiments rule, though, would 
yield a low estimate of skill. The averaged-based approaches of Harrison and Schunn (2004) 
also would yield lower estimates. As illustrated, since students may collect any data they like 
and exhibit a variety of strategies, engineering rules and identifying all potential “corner 
cases” can be quite difficult. 

Rather than engineer rules, we, instead, developed validated, machine-learned 
detectors (models) to assess these skills using an Educational Data Mining (EDM) approach 
(cf. Baker & Yacef, 2009; Romero & Ventura, 2010). In this approach, student log files are 
used as a basis for discovering the “rules” describing what it means to design controlled 
experiments and test stated hypotheses. This differs from knowledge engineering in that rules 
are not prescribed a-priori. Instead, given student data, human-classified labels, and a feature 
set derived from student data, we use machine learning techniques to build models of various 
inquiry behaviors. Generally speaking, there are several advantages to a machine learning 
approach over knowledge engineering. First, the resulting models can capture relationships 
that humans cannot easily codify rationally, while leveraging the human ability to recognize 
demonstration of skill. Thus, this approach may be less subject to the “expert blind spot” 



about what students will do. The models can also capture corner cases, and the fuzziness at 
the edges of these cases, more appropriately than knowledge engineering approaches. Finally, 
the accuracy and generalizability to new student populations or other domains of models are 
easier to verify than for knowledge engineering, since machine learning is amenable to cross-
validation. Cross-validation is a standard method for predicting how well models will 
generalize to new data (cf. Efron & Gong, 1983). Thus, this approach facilitates concrete 
determination of model goodness. 

In the following sections, we describe our approach for analyzing the degree of data 
collection skill transfer between two physical science domains. We also describe the EDM-
based models which enabled us to conduct this research. In particular, we describe at a high 
level our EDM approach to automatically assess these skills, and aggregate assessments to 
yield estimates of student knowledge (Sao Pedro et al., 2010, in press). 

 
 
Method 

Participants 
Participants were 148 eighth grade students (12-14 years old) from a public school in 
suburban Central Massachusetts. They had no previous experience using microworlds within 
Science Assistments. 

Materials 
We studied the acquisition and transfer of the two “designing and conducting experiments” 
skills using inquiry activities developed for the Science Assistments System 
(www.scienceassistments.org). This system is a web-based inquiry learning environment for 
Physics, Life Science, and Earth Science that automatically assesses (and in the future 
scaffolds) scientific inquiry skills in real-time within interactive microworld simulations. 
These simulations, designed for use at the middle school level, span several science domains 
including physical, life, and earth science (Gobert et al., 2007, 2009). Each microworld 
targets domain-specific concepts defined in the Massachusetts Curricular Frameworks 
content standards for Middle School Science (Massachusetts Department of Education, 
2006). Within each microworld, inquiry skills identified in the National Science Education 
Standards for middle school (National Research Council, 1996, 2011) are assessed. These 
skills include: hypothesizing, designing and conducting experiments, interpreting data, 
warranting claims, and communicating findings. 

In the present work, we examined transfer of skills between two physical science 
topics, phase change and density. We describe in more detail below the microworlds and 
associated activities in which behaviors were detected and skills were measured. 
 
Phase Change Activities 
Four activities built around one microworld (Figures 1 and 2) focused on the phase change of 
ice. They aimed to foster understanding about the invariant properties of a substance’s 
melting and boiling point through experimentation. Each activity provided students with an 
explicit goal to determine if one of four variables (container size, heat level, substance 
amount, and container covered) affected properties of a substance’s phase change (melting 
point, boiling point, time to melt, and time to boil). Students addressed the goal by 
hypothesizing, collecting and analyzing data, and communicating findings about how a 
variable affected the outcomes. Each of these tasks was structured into different phases that 
supported students’ overall experimentation: “observe”, “hypothesize” (Figure 1), 
“experiment” (Figure 2), and “analyze data”. Within each phase, inquiry support tools were 
provided. For example, a hypothesizing widget supported writing of a well-structured, 



testable hypothesis, and a “data table” tool (Figure 2) kept track of students’ experimental 
designs and the results of running trials. Though the overall inquiry process was organized 
this way, students still had a moderate degree of control within the activities. Students had 
some freedom to navigate between inquiry phases and had flexibility within each phase to 
conduct many actions. Furthermore, students could choose to ignore the explicit goals and 
test whatever hypotheses they wished. Finally, though inquiry was structured into phases, 
explicit scaffolding on students’ experimentation processes was not provided. For more 
information about these activities, see Sao Pedro et al. (in press). 
 
Density Activities 
Three activities utilized the Density Microworld (Figure 3). This microworld enabled 
students to inquire about the relationships between mass, volume, and density and is based on 
Archimedes’ principle of buoyancy. Similar to Phase Change, a typical task in this domain 
provided students with an explicit goal to determine if a particular independent variable 
(orientation of object, type of liquid, volume of object and mass of object) affects density. 
However, unlike Phase Change, the activities were more open-ended in that the activities had 
fewer inquiry support tools. For example, support tools for hypothesizing and analyzing data 
are not provided. Students instead write hypotheses and analyses in open response boxes. 
Second, the manner in which students moved between phases of inquiry is slightly different. 
Unlike Phase Change, students engage in hypothesizing only once. Finally, students could 
not elect to “observe” before forming a hypothesis. These differences existed because the 
inquiry support tools and navigation components had not been implemented for Density at 
the time we collected our data.  
 
Procedure 
First, students took a paper-style pretest to assess initial data collection skills. Next, they 
received an introduction on relevant vocabulary needed for the activities. Then, the Science 
Assistments System randomly assigned students to a domain activity order, phase change 
first or density first. After completing both activity sets, another paper-style inquiry test was 
administered. Since the pre and post-tests are not a focus of this paper, we do not discuss 
their contents. This procedure took two class periods, about 1.5 hours in total.  

We explored whether practicing data collection skills in density activities, more open-
ended tasks, improved skill acquisition in the phase change activities, slightly more 
structured tasks. We note that though the experimental design enabled testing if phase change 
practice impacted density activity performance, these analyses were not conducted here 
because the density log data has not yet been distilled. Next, we describe how we developed 
automated mechanisms for measuring acquisition of the two inquiry skills within the phase 
change activities. These mechanisms will be leveraged to analyze the degree of transfer 
between the two domains. 
  



 

Figure 1. Hypothesizing tool for the Phase Change microworld. 
 



 
 

Figure 2. Experiment Phase of the Phase Change microworld. 
 

 
 



 
 

Figure 3. Density microworld on Archimedes' Principle 
 
 

 
Leveraging Educational Data Mining Techniques to Measure and Track Data 
Collection Skills 
Measuring and tracking the skills within the phase change activities involved two steps. First, 
we used an automated method for assessing whether students designed controlled 
experiments or tested their stated hypotheses in a microworld activity. Second, we used 
another automated approach to aggregate single assessments over all activities, and produce 
final estimates of latent skill. These methods are briefly described below; a full description of 
both approaches appears in Sao Pedro, et al. (in press). 

Assessing Data Collection Skills with Machine-Learned Behavior Detectors 
Automatic assessment was performed using machine-learned behavior detectors (models) of 
behaviors associated with each skill. At a high level, this approach leverages machine-
learning to “discover” what it means to design controlled experiments and test stated 
hypotheses in our learning environment. Thus, unlike knowledge engineering in which rules 
to describe behaviors are authored by a human (cf., Koedinger & MacLaren, 2002), our 
machine-learning approach attempts to derive rules based, in part, on student data. More 
specifically, we employed “text replay tagging” of log files (Sao Pedro, et al., 2010; 
Montalvo et al., 2010; Sao Pedro et al., in press), an extension to the text replay approach 
developed in Baker, Corbett and Wagner (2006) to build and validate behavior detectors. 
Text replay tagging, a form of protocol analysis (Ericsson & Simon, 1980, 1984), leveraged 
human judgment to identify whether students’ log files demonstrated inquiry skill.   



 
 
Figure 4. Overview of the text replay tagging process that enabled the construction of 
validated, machine-learned behavior detectors. These detectors are used to assess whether 
students design controlled experiments or test their stated hypotheses during their 
experimentation. 
 

As shown in Figure 5, there are several steps involved our text replay tagging 
approach. The process begins by having students engage in inquiry within the Phase Change 
activities and collecting their log files. From there, the log files are segmented into 
meaningful sets of student actions called clips. Human coders then tag a subset of these clips 
with the behaviors of interest, designing controlled experiments and testing stated 
hypotheses. These tags are combined with a set of features (attributes) which summarize the 
clips. The clips, represented as a combination of behavior tags and features, provide the 
backbone for discovering behavior models and testing how well the model performs. The 
clips (features and tags) are given to a machine-learning algorithm to “discover” models 
relating the features to demonstration of each behavior. Finally, the models are validated by 
measuring how well they predict behavior in clips not used to build the models. The output of 
this process is two validated behavior detectors which can be leveraged to assess whether or 
not a student demonstrates behavior during a clip, a segment of their experimentation in an 
activity. 

Two key processes in the text replay tagging approach are having human coders label 
behavior within clips and building and validating the detectors. We describe each in more 
detail below to provide a more concrete sense of how text replay tagging was conducted. 
  



 

 

Figure 5. An example clip labeled by a human coder. This clip was tagged as involving 
designing controlled experiments and testing stated hypotheses, in addition to other 
behaviors. 
 
Tagging Behavior in Clips for Phase Change Activities 
A key part of this process is to have human coders apply behavior tags to clips. These 
behavior tags act as the “gold standard” from which detectors are built and validated. To help 
human coders identify behavior, a clip is cleaned and summarized into a text replay. A text 
replay, shown in Figure 6, summarizes clip actions and highlights important aspects of 
students’ inquiry processes. Choosing which actions should be included in the replay is of 
particular importance since a human coder needs sufficient information to identify whether a 
student is demonstrating the behaviors. In the phase change microworld, such behavior is 
exhibited in the hypothesizing and (primarily) the experimenting phases of inquiry. Thus, to 
properly identify inquiry behavior, a clip contains all student actions relevant to 
hypothesizing and experimenting. This enabled coders to obtain a more comprehensive view 
of students’ inquiry processes, necessary for labeling processes (such as these) that unfold 
over time. 

Given a text replay representing a clip, that clip could be tagged with either the 
“designing controlled experiments” or “testing stated hypotheses” behaviors. It could also be 
tagged with both behaviors, or neither behavior. When a tag is not applied, it means the 
student did not demonstrate its corresponding behavior in the clip. To give a better sense of 
how behavior is labeled by a human coder, consider the text replay shown in Figure 6, which 
was tagged, in part, as demonstrating the “designing controlled experiments” and “testing 
stated hypotheses” behaviors. To tag these behaviors, the human coder focuses primarily on 



the trials run by the student. In the experimentation cycle, he specified one hypothesis 
relating the level of heat applied to the ice to the time it takes to melt. He then ran a total of 
three trials as indicated by the “microworld run” statements at time 94s, 117s, and 140s. For 
each trial, he changed only the “level of heat” variable in a successive manner, comparing a 
‘low’ level to ‘medium’, and then ‘medium’ to ‘high’. He spent 78 seconds doing so. Due to 
the consistency in manipulating only one variable at a time between trials, this clip was 
tagged as demonstrating the “designing controlled experiments” behavior. In his experiments, 
he focused specifically on the independent variable stated in his hypothesis, the level of heat. 
Because of this, the clip was also tagged as “testing stated hypotheses.” 

In general, students’ experimentation varied greatly within the phase change 
activities. Some students took very few actions and engaged in few experimentation cycles 
within an activity. Others had more complex experimentation patterns. To ensure there was 
consistency in identifying behaviors, we establish inter-rater reliability by having two human 
coders tag 50 clips. Prior to this testing, the two coders discussed the coding scheme and 
coded several clips together. Inter-rater reliability for each behavior was high. The Cohen’s  
for designing controlled experiments was 0.69, and 1.00 for testing stated hypotheses (Sao 
Pedro et al., 2010, in press). This level of agreement is on par with prior text replay-based 
behavior detectors (Baker & de Carvalho, 2008; Baker, Mitrovic & Mathews, 2010; Lee et 
al., 2011). 
 
Building and Validating Behavior Detectors 
Following the text replay tagging methodology, behavior detectors for “designing controlled 
experiments” and “testing stated hypotheses” were constructed and validated within the phase 
change microworld. We present here only high-level details and a summary of the results 
from Sao Pedro et al. (in press). Detectors were constructed using all 148 students’ 
interactions within four phase change activities. Then, after segmenting student actions into 
clips, clips were tagged by two human coders who had achieved good inter-rater reliability. 
One clip per student, per activity was randomly selected to be tagged. This ensured there was 
a representative sample of all students and all activities. In all, the human coders tagged 570 
clips. In addition, a set of 73 features (Sao Pedro et al., in press) was distilled to summarize 
clips. Example features computed per clip include: number of trials run, number of 
hypotheses stated, count of pairwise controlled trials, time spent running experiments, and 
number of simulation pauses. The corpus of clips, represented as a combination of summary 
features and behavior tags, was used to train and validate detectors of each behavior.  

We built and validated the detectors by following a six-fold student-level cross-
validation approach. In this approach, students are randomly selected to be in one of 6 
groups. Five of the six group’s data are used to train (build) a detector. The remaining group 
is used to test how well the detector can predict behavior. This process is repeated, using each 
group as a test group once. This approach enabled us to estimate how well the detectors will 
work for new groups of students in the phase change environment. Within each training and 
testing loop, a detector was built as follows. First, all correlated features above 0.6 were 
removed. Then, J48 decision trees with automated pruning to control for over-fitting were 
used to derive models (Quinlan, 1993). These decision trees relate feature values to behavior 
predictions. Note that separate decision trees were constructed for each behavior. 

As part of the cross-validation process, we can estimate how well the behavior 
detectors work by observing how well the detectors’ predictions match the human coder’s 
labels for all clips. We quantified the degree of agreement between the two by computing two 
metrics, A’ (Hanley & McNeil, 1982) and Cohen’s Kappa (). A' is the probability that if the 
detector is comparing two clips, one involving the category of interest (designing controlled 
experiments, for instance) and one not involving that category, it will correctly identify which 



clip is which. A model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 
performs perfectly. Cohen’s Kappa assesses whether the detector is better than chance at 
identifying the correct action sequences as involving the category of interest. A  of 0 
indicates that the detector performs at chance, and a  of 1 indicates that the detector 
performs perfectly. 

In Sao Pedro et al. (2010, in press), we reported that the detectors worked very well 
overall. The detector for designing controlled experiments could distinguish a clip which 
demonstrated the behavior from a clip which did not 85% of the time (A’ = .85). The 
detector’s indicated that its predictions agreed with coders’ tags better than chance. 
The testing stated hypotheses detector also worked well. It could distinguish clips 85% of the 
time (A’ = .85) and also agreed with coders’ tags better than chance, . This level of 
performance is comparable to other behavior detectors’ which have been refined over several 
years (e.g., Baker & de Carvalho, 2008; Baker, Mitrovic & Mathews, 2010). Thus, the 
detectors can be used to automatically assess students’ data collection. In the next section, we 
describe how we leveraged the detectors to classify all student clips, and aggregated them to 
estimate each student’s proficiency at each skill.  

Estimating Proficiency at Data Collection Skills Across Practice Attempts 
To amalgamate students’ performances across activities and produce proficiency skill 
estimates, we used Bayesian Knowledge-Tracing (BKT, Corbett & Anderson, 1995). This is 
a classic approach that has been successfully used to model learning within Intelligent 
Tutoring Systems for mathematics problem solving (e.g. Koedinger & Corbett, 2006; Feng, 
Heffernan & Koedinger, 2009), genetics problem solving (Corbett, Kaufmann, MacLaren, 
Wagner, & Jones, 2010), computer programming (Corbett & Anderson, 1995; Kasurinen & 
Nikula, 2009), and reading (Beck & Chang, 2007). A BKT model (shown in Figure 7) is a 
two-state Hidden Markov Model that estimates the probability a student possesses latent skill 
(Ln) after n observable practice opportunities. This model assumes that knowledge of a skill is 
binary; either the student knows the skill or does not. Given student performance data, it 
estimates the likelihood that a student knows the skill. To concretize this for our domain, the 
observable student performance is whether or not a student demonstrates one of the data 
collection behaviors. This is determined using the behavior detectors. Latent skill (Ln) is the 
estimate of whether or not a student knows how to design controlled experiments or test 
stated hypotheses after her nth time collecting data. 

BKT models are characterized by four parameters, G, S, L0, and T, used in part to 
compute latent skill (Ln). The Guess parameter (G) is the probability the student will 
demonstrate the skill despite not knowing it. Conversely, the Slip parameter (S) is the 
probability the student will not demonstrate the skill even though they know it. L0 is the 
initial probability of knowing the skill before any practice. Finally, T is the probability of 
learning the skill between practice attempts. Within the BKT framework, these four 
parameters are assumed to be the same for all students.  

In this approach, a BKT model for each skill is fit from student data in order to make 
predictions about current students, and future students. Thus, given student data, values for 
the four parameters are found that minimize the error in predicting whether or not they will 
demonstrate behavior during data collection. In Sao Pedro, et al. (in press), we used the 
behavior detectors to label all students’ inquiry within each activity. Then, we used a brute 
force search to find the best fitting parameters over the data. This method previously has been 
found to produce comparable or better model parameters than other methods (Baker, Pardos, 
Gowda, Nooraei, & Heffernan, 2011). Employing this process led to BKT models of each 
skill estimated students’ skills at each practice opportunity reasonably well (Sao Pedro et al., 
in press). This was determined by measuring how well the model could predict whether a  



 

 
 
Figure 6. Classic Bayesian Knowledge Tracing model (Corbett & Anderson, 1995) for a 
skill, e.g., knowing how to design controlled experiments. The model estimates the likelihood 
the student knows a skill (Ln) after n observable practice opportunities. It does so using four 
parameters: L0 is the initial knowledge, S is the likelihood of slipping, G is the likelihood of 
guessing and T is the learning rate of the skill. 
 
 
student would demonstrate the skill at time n, based in part on the estimate of knowing the 
skill up to that point (Ln-1). BKT models for each skill could predict better than chance, A’ = 
.74 for designing controlled experiments and A’ = .79 for testing stated hypotheses. 

At this point we have described a process for assessing two data collection skills 
during a single data collection activity, and aggregating those assessments over several 
activities to produce estimates of latent skill. We leverage the BKT models, in particular, to 
explore our original research question: does practicing in density activities first before phase 
change activities lead to better acquisition of skill? In other words, do inquiry skills related to 
data collection learned in density transfer to the domain of phase change? We address this 
question of transfer in the next section. 
 

Results 
Our main goal is to analyze whether practicing two data collection skills, designing 
controlled experiments and testing stated hypotheses, in one domain (density), will lead to 
improved performance on those skills in a different domain (phase change). We anticipate 
students who practiced in density first would possess more skill in phase change than those 
who did not. In other words, we hypothesize the skills will transfer to the second domain. 
Two design choices facilitate determining whether transfer occurred.  First, the domain 
practice order was counterbalanced; students were randomly assigned to phase change 
activities first, or density activities first. This allows us to compare the two groups, which 
differ solely in whether they use density prior to phase change Second, there were no 
significant between-group differences on a pretest (before both environments) requiring 
designing controlled experiments skills (t(147) = 1.23,  p = .222) and knowledge of 
hypotheses (t(147) = 0.80,  p = .428). This finding implies that initial prior knowledge 
between groups is likely not a source of any differences that may be found between the 
groups. 

How should transfer between the two domains be measured? We chose to detect the 
“additional skill” in phase change in two ways. First, students who had prior practice in 
density activities may be more likely to demonstrate skill on their first attempt at data 
collection. In other words, these students may have more initial skill when starting the 



activities, and thus show immediate transfer. A second way this transfer can be measured is 
to examine whether more students in one condition showed proficiency by the end of the 
activities. Thus, practice in density first may impact the degree to which inquiry skill is 
acquired in phase change. We address each of these below as possible indicators of skill 
acquisition and transfer across domains.  
 
Comparing Initial Performance in the Phase Change Activities 
If practicing in density activities impacted acquisition and transfer of these skills, we would 
expect students in that condition to demonstrate skill during their first data collection 
opportunity within the phase change activities. To test this, we used the behavior detectors to 
assess whether each student designed controlled experiments or tested stated hypotheses 
during their first data collection within the phase change activities. As shown in Table 1, 23 
out of 147 students (15.7%) designed controlled experiments during their first data collection. 
Almost twice as many students in the density-first condition (15 students) did so as compared 
to the phase-change first condition (8 students). Recall that at this point, this was the first 
time these students in the phase-change first condition engaged in our inquiry activities. This 
difference approached significance, 2(1)=3.66, p=.056. For testing stated hypotheses, 35 out 
of 147 students (23.8%) did so during their first data collection. Of those students, more than 
twice as many had practiced in density activities first (24 students), as compared to those who 
did not (11 students). This difference was significant, 2(1)=8.63, p=.003. In summary, data 
collection practice in the density environment appeared to be associated with greater 
acquisition and immediate transfer, particularly for testing stated hypotheses, to the phase 
change tasks. 
 
Comparing Mastery Levels upon Completing the Phase Change Activities 
It is also relevant to analyze whether initial practice in density improves students’ acqusition 
of the two skills over multiple practice attempts in phase change. If the initial, additional 
practice in density provided such a benefit, we would expect students in the density-first 
condition to have higher final estimates of latent skill (Lfinal). This estimate of skill at the end 
of the phase change activities is given by the BKT model.  

Descriptive analyses revealed the Lfinal sample distributions for each skill were 
bimodal, with the two modes centered near 0 and 1, meaning that students either “knew” the 
skills or did not when they had completed the phase change activities. We therefore 
compared which condition contained a greater proportion of students who had mastered or 
approached mastery of each skill by the end of the phase change activities, indicated by their 
Lfinal being above 0.8. As shown in Table 2, 30 out of 147 students (20.4%) in total 
demonstrated mastery at designing controlled experiments. However, twice as many students 
in the density-first condition (20 students) mastered this skill than the phase-change first 
condition (10 students). This difference was significant, 2(1)=5.89, p=.015. Thus, practicing 
inquiry in the density microworld improved acquisition of the designing controlled 
experiments skill in phase change. For testing stated hypotheses, 50 out of 147 students 
(34%) demonstrated mastery. Again, more students who practiced density first (28 students) 
achieved mastery than students who did not (22 students), but this difference was not quite 
significant, 2(1)=2.50, p=.114. In summary, initial practice in density appears to improve 
acquisition of the desiging controlled experiments skill in the phase change environment, but 
not for the testing stated hypotheses skill. We discuss possible reasons for this in the 
following section. 
 
  



Table 1. Crosstabulations of domain order practice condition, and display of behavior in first 
phase change data collection activity 

 
 

 
Table 2. Crosstabulations of domain order practice condition, and mastery of each data 
collection inquiry skill. 

 
 

Discussion and Conclusions 
In this paper, we presented an approach for developing models to assess and track students’ 
inquiry via Educational Data Mining (EDM) techniques (cf. Baker & Yacef, 2009; Romero & 
Ventura, 2010). Two inquiry skills related to designing and conducting experiments (National 
Research Council, 1996, 2011), namely, designing controlled experiments and testing stated 
hypotheses were assessed and tracked as students conducted inquiry with computerized 
microworlds. We leveraged our models to explore whether practicing inquiry with a 
microworld in one physical science domain (density) impacted skill acquisition in another 
domain (phase change). To do so, we counterbalanced the order in which students practiced 
inquiry within the two domains, and analyzed students’ performance in the phase change 
activities. Thus, some students had prior practice in density whereas others had no prior 
practice. We evaluated transfer performance in two ways. First, we compared the groups on 
whether they demonstrated the skill in their first data collection task. This metric provided a 
benchmark for determining whether students immediately recognize to use these skills when 
collecting data in the second domain. Second, we compared groups on whether they achieved 
mastery by the end of the phase change activities. This enabled us to estimate whether prior 
practice in density improved students’ ability to acquire these skills over time.  

We found that more students who were in the density plus phase change group were 
able to demonstrate the skill designing controlled experiments in their first data collection 
task when compared to the phase-change only group. This difference approached statistical 
significance. However, significantly more students in the density plus phase change group 
achieved mastery on this skill than did students in the phase-change only group. This 
provides evidence that the skill of designing controlled experiments may have a domain-
general component to it. In addition, we interpret the group differences on our significant 
findings to have two possible meanings. First, designing controlled experiments may be a 
more difficult skill to learn than the testing hypotheses skill (as evidenced by fewer students 
mastering this skill across both conditions than the testing hypotheses skill). Thus, the 
learning trajectory for this skill may be longer and require more practice than the phase-
change first condition received. Second, it may be that prior practice in density better 
prepared students for the skill when they reached the phase change activities. In other words, 

No Yes No Yes
Density -> Phase Change 54 15 45 24
Phase Change -> Density 70 8 67 11

**p < .01


2(1) = 3.66 
2(1) =  8.63**

Designed Controlled Experiments? Tested Stated Hypotheses?

Not Mastered Mastered Not Mastered Mastered
Density -> Phase Change 49 20 41 28
Phase Change -> Density 68 10 56 22

*p < .05

Designing Controlled Experiments Testing Stated Hypotheses


2(1) =  2.50

2(1) = 5.89*



the prior experience may have prepared them for future learning (Bransford & Schwartz, 
1999). To test the latter, we will analyze students’ performance in the density activities and 
separate out those who mastered the skill in density from those who did not. This hypothesis 
would be supported if more density-first students who were not “masters” at the end of 
density activities became “masters” by the end of the phase change activities than students 
with no prior practice.  
 For testing stated hypotheses, significantly more density-first students demonstrated 
this skill in their first data collection than the phase-change first condition. However, there 
was no significant difference on levels of mastery. We interpret these findings to mean that 
this skill, too, has a domain general component, given the group difference on this skill in the 
first activity. We also believe that since this skill may be easier to acquire than the designing 
controlled experiments skills, as evidenced by the finding that it took fewer practice 
opportunities to acquire it. Thus, overall our findings support earlier studies that data 
collection skills have a domain-general component to them, and that once learned/mastered, 
they can be transferred (e.g. Klahr & Nigam, 2004; Harrison & Schunn, 2004; Dean Jr. & 
Kuhn, 2006).  

It is also worth noting that even with additional practice in density, only 29% of the 
students showed mastery of designing controlled experiments and only 41% showed mastery 
at testing stated hypotheses after completing the phase change activities. This may be for two 
reasons. First, students were not given explicit feedback on their experimentation procedures. 
Such feedback may help students acquire these skills (Klahr & Nigam, 2004; Strand-Cary & 
Klahr, 2008; Sao Pedro et al., 2009, 2010). In addition, students did not engage in long-term, 
repeated practice, which has been shown to promote acquisition and transfer of these skills 
(Dean Jr. & Kuhn, 2006). In future work, we will address if providing both real-time 
feedback on students’ experimentation strategies and/or practicing across several domains 
will improve learning and transfer of these skills.  

One possible limitation of this study is that we did not analyze whether transfer was 
bidirectional, meaning whether practice in phase change first impacted performance in 
density activities. We did not do so because our detectors had not yet been validated to work 
across physical science domains. As mentioned earlier, these analyses could be used to help 
determine if practicing inquiry in separate domains can function as preparation for future 
learning. This transfer is of interest to us also since the density activities were slightly more 
open-ended than the phase change activities since the inquiry support tools (e.g. 
hypothesizing widget) were not present in the density activity. If transfer from state change to 
density were borne out, this would provide further evidence of domain generality of inquiry 
skills. Additionally, since phase change included widgets that supported students’ inquiry and 
density did not include these widgets, transfer from phase change to density would 
demonstrate mastery of inquiry processes. Such a finding would illustrate Vygotsky’s (1978) 
notion of scaffolding. 

As previously mentioned, central to our approach is the use of EDM for the 
development of our models, one for assessing these skills during a data collection activitiy, 
and one for aggregating assessments to yield an estimate of skill after completing the activity. 
This approach, which requires as a first step text replay tagging (Montalvo et al., 2010; Sao 
Pedro et al., 2010, in press) and educational data mining, is novel in its application to the 
systematic study of inquiry learning. Text replay tagging, a form of protocol analysis 
(Ericsson & Simon, 1980, 1984), leveraged human judgment to identify whether students’ 
log files demonstrated inquiry skill. The data mining portion enabled us to leverage human’s 
codes to build and validate automated “detectors” of each skill that can replicate human 
judgment. Our skill proficiency estimation (aggregation) model was built using a Bayesian 
Knowledge-Tracing framework (Corbett & Anderson, 1995). This approach, was chosen for 



two reasons: 1) it had demonstated prior success in estimating skill in several domains (e.g. 
Koedinger & Corbett, 2006; Beck & Chang, 2007), and 2) enabled us to measure the validity 
of these skill estimates (Sao Pedro et al., in press). 
 We believe our approach has three primary benefits over previous approaches. First, 
analyzing log data in this way enables a rigorous and scalable way to assess students’ inquiry 
processes (Rupp et al., 2010). Second, with regard to the two skills of interest, our approach 
is advantageous over knowledge engineered approaches (e.g. Schunn & Anderson, 1999; 
McElhaney & Linn, 2008, 2010) in that the validity of our assessments can be more easily 
determined (Sao Pedro et al., in press). Finally, our approach can identify skill in situations 
where students also employ a variety of other valid inquiry strategies (cf. Schunn & 
Anderson, 1998; Veermans, 2003), whereas other approaches cannot because they 
exclusively code sequential pairwise trials (e.g. Dean Jr. & Kuhn, 2006; Kuhn & Pease, 2008; 
McElhaney & Linn, 2008, 2010). 

In the future, we aim to address whether we can leverage data mining for other 
complex inquiry skills such as interpreting data and warranting claims with data (NSES, 
1996; NRC, 2011). This will involve similar methods and techniques to those described in 
this paper, namely text replay tagging and educational data mining, to identify such skills in 
students’ log files. We also aim to leverage the existing models to study transfer across more 
disparate science domains, namely biology and earth science. Such models can not only help 
to more quickly assess students inquiry in a more principaled way, but also can enable 
conducting broader-scale studies to empirically address questions such as the domain 
generality of inquiry skills. 
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