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Abstract 

Over the past decade, immersive virtual environments have been increasingly used to facilitate 

students’ learning of complex scientific topics. The non-linearity and open-endedness of these 

environments create learning opportunities for students, but can also impose challenges in terms 

of extraneous cognitive load and greater requirements for self-regulated learning (SRL). SRL is 

crucial for academic success in various educational settings. This chapter explores how the 

Immersive Virtual Assessments (IVAs), an immersive virtual environment designed to assess 

middle school students’ science inquiry skills, fostered SRL. Our analyses combining educational 

data mining techniques with multilevel analysis indicated that students developed self-regulatory 

behaviors and strategies as they used IVAs. Experience with IVAs prepared students to adopt more 

efficient note-taking and note-reviewing strategies. Students also learned to exploit more available 

sources of information by taking and reviewing notes on them, in order to either solve inquiry 

problems, or to monitor their solutions. 

Keywords: Immersive virtual assessments, self-regulated learning, note-taking, note-

reviewing, self-regulatory behaviors and strategies, monitoring, science inquiry, instructional 

design, scaffolding 
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How Immersive Virtual Environments Foster Self-Regulated Learning 

Introduction 

Self-regulated learning (SRL) is important for academic success in various educational 

settings (Zimmerman & Schunk, 2001). Research has indicated that even undergraduate students 

usually lack sufficient SRL skills and ability and are often faced with difficulties in using SRL 

(Moos & Azevedo, 2008). It has therefore developed as an important goal for many K-12 teachers 

to help their students develop into learners who can regulate their own learning with effective SRL 

strategies (Perry, Phillips, & Dowler, 2004). One increasingly popular strategy for fostering SRL 

is to use personalized learning within computer-based environments (Azevedo, 2005). An 

increasing number of personalized learning environments now include various types of support for 

students in developing SRL skills, including both modeling those skills (Khachatryan et al., 2014), 

giving regular reports about whether students are demonstrating SRL (Arroyo et al., 2007), and 

even providing immediate feedback when students demonstrate behaviors associated with poorer 

SRL (Roll, Aleven, McLaren, & Koedinger, 2007). The challenge of open-ended learning 

environments such as immersive virtual environments, even environments designed to personalize 

based on student knowledge, is that learners have to deploy self-regulatory processes and strategies 

in order to complete tasks and learn complex topics (Azevedo, 2005; Segedy, Kinnebrew, & 

Biswas, 2015). In the current study, we aim to explore how SRL manifests in an immersive virtual 

environment for middle school science, and how this environment can be enhanced to adapt to the 

needs and self-regulated learning of different learners. 

Self-Regulated Learning 

While researchers have developed many theoretical models of SRL (see Pintrich, 2000; 

Zimmerman & Schunk, 2001), most models and definitions agree that the cognitive and 
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metacognitive operations used in SRL require effort (Winne, 2011), and characterize learners as 

actively monitoring and controlling cognitive, motivational, and behavioral processes. In an 

attempt to integrate all the definitions, Pintrich (2000) organized published research around a set 

of phases of SRL. He described self-regulated learning as “an active, constructive process whereby 

learners set goals for their learning and then attempt to monitor, regulate, and control their 

cognition, motivation and behavior, guided and constrained by their goals and the contextual 

features in the environment” (p. 453). 

Winne and Hadwin’s (1998) framework proposes four distinguishable but recursively 

linked stages that SRL encompasses: 1) task definitions; 2) goal setting and planning; 3) enacting 

study tactics and strategies; and 4) metacognitively adapting studying (p. 278). In these phases, 

students develop an understanding of the learning task, set goals and construct plans to achieve 

their learning goals, execute various learning tactics and strategies, metacognitively monitor and 

reflect on their learning process, and adapt their plans, behaviors, and strategies accordingly. This 

framework offers a metacognitive view of SRL that integrates a more complex cognitive 

architecture (Greene & Azevedo, 2007; Winne, 2011), and has been adopted to study SRL in other 

open-ended learning environments (Moos, 2009; Moos & Azevedo, 2008). Given the interactive 

and open-ended nature of immersive virtual environments, this chapter applies Winne & Hadwin’s 

model of SRL to the context of an immersive virtual environment. 

SRL and Personalized Learning  

Given the importance of SRL, it is crucial that schools and educators provide personalized 

learning experiences for learners to help them successfully regulate their cognition, metacognition, 

and learning with effective SRL strategies (Zimmerman & Schunk, 2001). Over the past decade, 

research has been conducted on designing personalized learning within computer-based learning 
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environments to prompt, support and enhance self-regulated learning (Azevedo, 2005). In this 

chapter, we aim to identify effective SRL behaviors and strategies in an immersive open-ended 

learning environment and examine how the environment fosters SRL. This research will provide 

implications for the instructional design of personalized learning environments to measure SRL 

behaviors in real time, assist and scaffold students’ key self-regulatory processes and strategies, 

and prepare students as better self-regulated learners when these scaffolds fade out (Azevedo, 

2005). 

Student Behavior and SRL 

Students’ self-regulation has an impact on the observable behaviors that they exhibit, with 

students of different degrees of competence in SRL demonstrating different frequencies of 

behaviors during learning (Sabourin, Mott, & Lester, 2013). Therefore, researchers have studied 

students’ observed actions and sequences of behaviors in computer-based learning environments 

to assess their SRL (Zimmerman, 2008). For instance, Aleven and colleagues (2010) evaluated 

learners’ observed actions in an intelligent tutoring system to understand their use of help-seeking 

as an SRL strategy. Examining students’ observable behavior patterns to infer self-regulatory 

processes and use of strategies is unobtrusive, fine-grained, and could be more accurate than the 

other measures (Aleven et al., 2010; Zimmerman, 2008). 

Sequential Pattern Mining (Agrawal & Srikant, 1995), a methodology that has been 

extensively used in Educational Data Mining (Baker & Yacef, 2009), has shown potential for 

discovering complicated patterns of SRL behaviors within open-ended learning environments. For 

example, Kinnebrew and colleagues (2014) applied differential pattern mining techniques, a form 

of sequential pattern mining where patterns over time are compared between different groups of 

individuals, to log data produced by students engaging in activities within Betty’s Brain, an open-
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ended learning environment for science learning. This enabled them to study the differences in 

students’ SRL behaviors by identifying frequent sequential patterns indicative of SRL strategies 

and determining which sequential patterns were characteristic of high-performing students as 

compared to low-performing students. Results indicated that high-performing students showed 

better employment of self-regulatory strategies such as monitoring compared to low-performing 

students. For instance, high-performing students were more likely to correct their errors in concept 

map after taking quizzes than low-performers, indicating that they were evaluating their own 

progress. Differential pattern mining was also used by Sabourin and colleagues (2013) to analyze 

the differences in inquiry behaviors utilized by learners depending on their level of self-regulation 

within a virtual environment. In this chapter, we aim to apply sequential pattern mining to identify 

the action sequences that correspond to the four SRL processes in IVAs: task definitions, goal 

setting and planning, enacting study tactics and strategies, and metacognitively adapting study 

strategies. 

Note-Taking as an SRL Strategy 

Winne and Hadwin (1998) have identified the utilization of various learning strategies as 

a key component of their SRL framework. In immersive virtual environments, students are 

expected to determine which learning strategies would be effective in assisting the achievement of 

learning goals, correspondingly adopt these strategies, continuously evaluate and adaptively 

modify the use of these strategies in real time to facilitate their learning process. One frequently 

studied strategy in SRL literature is note-taking (Trevors, Duffy, & Azevedo, 2014). Note-taking 

is a nearly ubiquitous academic strategy that is commonly used by learners and highly encouraged 

by educators (Bonner & Holliday, 2006; Weiss, Banilower, McMahon, & Smith, 2001). Research 

has shown that paper-based note-taking from lectures or texts is associated with positive learning 
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outcomes (Armbruster, 2009). However, very few studies have examined the role of note-taking 

strategy in immersive virtual environments or other online contexts. 

Past research has shown that learners with different self-regulatory skills may invoke 

different note-taking/reviewing behaviors and show different patterns in the content of notes 

recorded (Trevors et al., 2014). In immersive virtual environments that pose high demands on self-

regulatory skills, regulating one’s use of note-taking strategy effectively is challenging for 

students, especially for students with insufficient SRL skills (Moos, 2009). Given the importance 

and effectiveness of note-taking and note-reviewing as SRL strategies and the difficulty of 

implementing these strategies, this chapter studies whether learning science through immersive 

virtual environments fosters students’ use of note-taking and note-reviewing strategies. 

Specifically, since previous research have revealed that the quantity and the content of notes are 

important components of SRL that are related to academic performance (Bretzing & Kulhavy, 

1979; Cohn, Cohn, & Bradley, 1995; Fisher & Harris, 1973; Peverly, Brobst, Graham, & Shaw, 

2003), the present study developed measures of both the quantity of note-taking/reviewing 

behaviors and the content of notes recorded by students to trace the growth of ability in applying 

these learning strategies over time. These measures may act as indicators of SRL, as students who 

develop better self-regulatory skills could be expected to not only to exhibit a higher frequency of 

note-taking and note-reviewing, but also – and more importantly – to take notes that are of higher 

quality and involve a deeper level of cognitive processing. 

The Present Study 

In sum, the purpose of this chapter is to investigate how immersive virtual assessments 

foster self-regulated learning (SRL) and discuss how the learning processes and activities in the 

immersive virtual assessments map to various SRL processes. We explore these issues in the 



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           8 

context of the Immersive Virtual Assessment Project (IVA) (Clarke-Midura, McCall, & Dede, 

2012). IVAs are 3D immersive virtual environments that have the look and feel of a videogame 

but are designed to assess middle school students’ science inquiry skills in situ. The specific IVAs 

being studied were designed to be aligned with national standards for science education (National 

Research Council, 2011). Learning in the open-ended immersive virtual environments pose both 

opportunities and challenges for SRL. Two analyses were conducted to examine the effect of IVAs 

on SRL. In analysis 1, we applied sequential pattern mining on middle school students’ action log 

data as they used IVAs within their science classes to track how their behaviors demonstrated SRL, 

and whether using IVAs promoted students’ use of self-regulatory processes and strategies. In 

analysis 2, we employed feature engineering to explore the development of note-taking and note-

reviewing strategies in IVAs, which are effective self-regulatory strategies for learning. We 

conclude with a discussion of the implications of our results for the instructional design of 

immersive virtual environments to facilitate personalized learning. 

Immersive Virtual Assessments 

The context for this research was 3-D Immersive Virtual Assessments (IVAs) designed as 

part of the Virtual Performance Assessment Project (Clarke-Midura et al., 2012). On the front end, 

students navigate their avatar around the virtual environment and solve scientific problems by 

making observations, gathering data, interacting with non-player characters (NPCs), reading kiosk 

informational pages for research, conducting virtual laboratory experiments, and taking notes. On 

the back end, students’ actions are recorded automatically and unobtrusively in the form of process 

data (e.g., where they went and what they did in the immersive environment) as well as product 

data (e.g., student notes and final claims). The immersive assessments used in this study have been 
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validated in previous research to ensure that they are assessing the performance of science inquiry 

(Clarke-Midura et al., 2012; McCall & Clarke-Midura, 2013; Scalise & Clarke-Midura, 2014). 

[Place Figure 1 approximately here] 

This study uses data from two IVAs: the “frog scenario” (see Figure 1) and the “bee 

scenario.” The two scenarios were designed as different forms of a test meant to assess the same 

inquiry practices in different contexts. Therefore, they have similar structure and mechanics, but 

the problems students are asked to solve have different content and surface features. In the frog 

scenario, students must determine why a frog has grown six legs. In the bee scenario, they must 

figure out why the bees are dying. Both scenarios have a similar look and feel. They are designed 

around a village that contains four farms, a lab, and an information kiosk. In both scenarios, 

students are told that the possible causal factors are parasites, pesticides, pollution, radiation 

induced genetic mutation, and space aliens. In each scenario, only one of these factors is correct. 

Students can talk to NPCs from the farms who provide conflicting opinions, read informational 

pages about the five possible causal factors from a research kiosk, make observations at different 

farms, and conduct laboratory tests on samples they collect at the farms (e.g., frogs, tadpoles, water 

samples, bees, larvae, and nectar samples) in order to determine the correct answer (that parasites 

have caused the frog to grow six legs and radiation induced genetic mutation is causing the bees 

to die). 

In order to keep track of their data, students have a digital notepad (Figure 2) that can be 

accessed at any time. This notepad was designed to not allow the student to copy and paste 

information (e.g., kiosk research pages, dialogue with NPCs, laboratory test results, observation, 

etc.). Instead, students must hold the information they obtain in working memory and type in text 

in the notepad. The notepad can only contain text; there is no way for students to enter pictures. 
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[Place Figure 2 approximately here] 

Once students think that they have collected sufficient data, they submit a final claim on 

the causal factor resulting in the frog mutation or bee deaths from the list of possible hypotheses 

and justify their conclusion with supporting evidence. These two submissions form the primary 

basis of IVA’s assessment of science inquiry skills for each student. 

Importance of Immersive Virtual Environments for Learning and SRL 

Research suggests that many middle school students do not use effective SRL processes 

and strategies as they learn in open-ended learning environments (Moos & Azevedo, 2008). The 

non-linearity and open-endedness of immersive virtual environments such as IVAs create learning 

opportunities for students but can also impose challenges in terms of extraneous cognitive load 

and greater requirements for self-regulation (Azevedo, 2005; Moos, 2009; Moos & Azevedo, 

2008). In order to be successful in IVAs, students need to understand their inquiry tasks, set goals 

and make corresponding plans. Such plans include deciding where to go in the immersive 

environment, which information (e.g., research information from kiosk pages, information from 

conversations with NPCs, etc.) to collect and access, which activities to engage in, which resources 

to utilize, and in what sequence. At the same time, they must apply learning strategies such as 

recording information in the online notepad and reviewing their notes, reflect on their learning, 

and monitor their inquiry processes. Students with different levels of self-regulatory skills employ 

different SRL strategies and processes and exhibit unique behavior sequences. These behaviors 

and processes correspond to the recursive stages in Winne and Hadwin’s (1998) SRL framework: 

understanding task definition, goal setting and planning, enacting study tactics and strategies, and 

metacognitively adapting studying. In this chapter, we attempt to explore whether our immersive 
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virtual assessments help strengthen self-regulatory skills, and if so, how should educators design 

future environments to promote self-regulated learning. 

Study on Development of SRL Skills Within IVAs 

In order to illustrate how IVAs foster the development of skills in SRL, this chapter 

presents results from a study where more than 2,000 middle school students’ behaviors were 

examined at a fine-grained level as they used Immersive Virtual Assessments (IVAs) in their 

science classes. Specifically, we applied a combination of educational data mining techniques 

(e.g., sequential pattern mining, feature engineering) and multilevel analysis on students’ action 

log data and tracked how student behaviors demonstrated SRL, and how self-regulatory skills 

developed in IVAs. 

Participants 

The study presented in this chapter analyzed interaction log files produced by a total of 

2,429 seventh and eighth grade students (12-14 years old) who used IVAs within their science 

classes at the end of the 2011-2012 school year. These students were drawn from 130 classrooms 

that were taught by 39 teachers from a diverse selection of school districts in the Northeastern 

and Midwestern United States and Western Canada. 

Procedure 

Students were randomly assigned to begin with either the frog scenario (n = 1,232) or the 

bee scenario (n = 1,197). Each student was assigned the other scenario two weeks later (bee: 

n = 824; frog: n = 753), subject to some attrition. Prior to each assessment, students were shown a 

short introductory video that provided instructions on how to use the IVAs. Following the video, 

students worked within each scenario until they had completed the analysis and produced a final 

answer for its underlying problem (e.g., why does this frog have extra legs or why are these bees 
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dying). In sum, a total of 1,985 students completed the frog scenario and 2,021 students completed 

the bee scenario, with 1,577 students completing both scenarios. 

Student actions, notes, and performance in the virtual assessments were automatically 

logged as they worked within each IVA scenario, and used for later analyses. On average, students 

spent approximately half an hour in each scenario (frog: M = 30 min., 47 sec., SD = 14 min., 6 

sec.; bee: M = 26 min., 6 sec., SD = 12 min., 26 sec.). Overall, they generated a total of 381,331 

actions within the frog scenario and a total of 396,760 actions within the bee scenario. 

Data Analysis 

As mentioned in the previous section, students were randomly assigned to begin with either 

the frog or the bee scenario and were assigned to complete the other scenario two weeks later. 

Therefore, within each scenario, participants could be put into two groups – novice users who were 

using IVA for the first time (novice group), and experienced users who had previously experienced 

the other IVA scenario (experienced group). Accordingly, among the 1,985 students who 

completed the frog scenario, 1,232 were novices (frog-novice) and 753 were experienced (frog-

experienced). Among the students who completed the bee scenario, 1,198 were novices (bee-

novice) and 825 were experienced (bee-experienced). 

We explored students’ development of self-regulatory skills while playing with IVAs by 

comparing the novice group and the experienced group. Specifically, two analyses were conducted 

to examine the development of SRL skills in IVAs. In analysis one, we applied differential pattern 

mining to compare the frequency of action sequences that were identified as representing self-

regulatory processes and strategies between novice and experienced students in each scenario. In 

analysis two, we compared note-taking and note-reviewing behaviors, which are effective learning 
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strategies and important components of SRL, between the novice group and the experienced group 

within each IVA scenario. 

Accordingly, two different types of measures related to SRL processes within IVAs were 

collected and developed for analyses: 1) Frequency metrics of action sequences related to different 

SRL processes and strategies, identified through sequential pattern mining; 2) Variables related to 

note-taking and note-reviewing, including purely quantitative measures based on actions involving 

IVA’s digital notepad (e.g., frequency of note-taking or note-reviewing) as well as measures 

developed through qualitative coding of the notes. These measures are discussed in detail in the 

following sections. 

In each analysis, multilevel modeling was conducted to investigate the potential differences 

between the novice group and the experienced group on these SRL-relevant measures. Multilevel 

models, also known as hierarchical linear models, are linear statistical models that are applied to 

nested data (e.g., data where individuals are nested within classes, classes nested within teachers, 

teachers nested within schools, etc.) by allowing coefficients to vary randomly and vary at more 

than one level (Snijders & Bosker, 1999). Accounting for the associations among observations 

within levels, separate equations are specified and fit at each level in multilevel modeling to 

contain both fixed and random effects. Multilevel modeling is often used in educational research 

because it takes into account the effects of common contexts shared by individuals, such as 

students grouped within the same class. The multilevel approach was adopted in the current study 

due to the hierarchical structure of our data, where the population consists of students nested within 

classes, and multiple classes that shared the same teacher. Specifically, three-level regression 

models with students in each scenario nested within classes, and classes nested within teachers 

were fit to explore whether systematic differences exist between the novice group and experienced 
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group on the frequency metrics of action sequences and the quantitative features on note-taking 

and note-reviewing. In these models, the dependent variable is each individual measure/feature 

related to SRL, while experience with IVAs (whether a student was a novice student (coded as 0) 

or had previous experience in the other IVA scenario (coded as 1)) serves as the single student-

level predictor variable in each model. These three-level analyses, taking the hierarchy of data into 

consideration, enabled us to examine the relationship between student’s experience with IVAs and 

their use of SRL processes and strategies after controlling for student- and teacher-level variability. 

In this study, multilevel analyses were conducted for each measure in each scenario and 

were implemented using the “lme4” package (Bates, Maechler, Bolker, & Walker, 2015) and the 

“lmerTest” package (Kuznetsova, Brockhoff, & Christensen, 2016) in the statistical software 

program R. Given the substantial number of statistical tests, we controlled for false discovery rate 

by applying the Benjamini and Hochberg’s (1995) post-hoc correction method. 

Analysis 1: Behavior Pattern Analysis 

In our previous work (Jiang, Paquette, Baker, & Clarke-Midura, 2015), we compared 

student performance on science inquiry tasks between the novice students and the experienced 

students within each IVA scenario, and found that experienced students showed significantly better 

performance on identifying the correct final claim (CFC) than novice students, in both the frog 

scenario and the bee scenario. Experienced students also outperformed novice students on 

designing causal explanations (DCE) in the bee scenario. The comparisons of student performance 

suggest that students are developing SRL skills across scenarios since SRL has been shown to be 

closely related to academic performance (Zimmerman, 1990), and the regulation of science inquiry 

performance is a crucial part of SRL (Pintrich & Zusho, 2002). In the current section, we aim to 

go beyond simply looking at whether previous experience in IVA improved student inquiry 
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performance, and instead delve into whether more experienced students used IVAs differently than 

less experienced students. Exploration of behaviors will enable us to better understand how 

students’ self-regulatory behaviors and strategies develop over time. According to Pintrich and 

Zusho (2002), self-regulating one’s behaviors and strategies are also key components of SRL. 

We investigated patterns in behavior by applying sequential pattern mining to identify and 

compare the frequent sequential patterns of student actions between the two groups. Sequential 

pattern mining is a popular data mining technique that automatically identifies frequent temporal 

patterns of actions in the data (Agrawal & Srikant, 1995). It can be used to detect differentially 

frequent behavioral patterns of different groups of students (Kinnebrew, Loretz, & Biswas, 2013). 

An example sequential pattern in IVAs is that students who talked to the NPC in a farm tended to 

pick up and inspect objects in the farm as a next step (i.e., talk → inspect). In sequential pattern 

mining, the most frequent sequential patterns are typically selected within the data set on the basis 

of two frequency metrics – support and confidence (Agrawal & Srikant, 1995). The support of a 

sequential pattern A → B corresponds to the percentage of transactions that contains the sequence 

A → B. The confidence of the pattern A → B can be viewed as the conditional probability and is 

defined as the percentage of transactions that meet the pattern A → B, divided by the percentage 

of transactions that contain A as the first element in the sequence. Short sequences with high 

confidence and support are combined into longer sequences, which are in turn checked for 

acceptably high confidence and support. Additional “interestingness” measures are further 

calculated to discover novel, interesting, and sometimes unexpected sequences of behaviors. Prior 

to performing sequential pattern mining, detailed raw interaction log data were transformed into 

more abstract sequences. This involved three steps. First, a set of actions related to science inquiry 
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were identified from the log files, including picking up and inspecting objects (e.g., frogs, tadpoles, 

bees, larvae, water sample, nectar sample) within IVA  (inspect), saving objects to backpack 

(save), discarding objects (discard), talking with NPCs (talk), opening and reading informational 

pages at the research kiosks (read), running laboratory tests (e.g., blood/protein test, water/nectar 

sample test, genetic test) (test), reviewing and looking at test results (look), accessing the notepad 

to take or review notes (note), opening the help page to review tasks (help), starting to answer final 

questions (start final questions), and submitting a final claim (final claim). Some actions that were 

irrelevant to the inquiry process, such as selecting an avatar and entering/exiting a specific area 

were filtered out from the raw interaction data. Second, as in Kinnebrew et al. (2013), repeated 

actions that occurred more than once in succession were distinguished from a single action and 

were labeled as the “action” followed by the “-MULT” suffix, in order to distinguish brief 

behaviors from more intensive patterns of behavior. Last, the actions were represented as 

sequences of actions for each student in each group. 

Simple two-action sequential patterns were identified using the arules package (Hahsler, 

Gruen, & Hornik, 2005) within the statistical software program R. Two-action sequential patterns 

are behavioral sequences that are comprised of two actions, such as viewing experiment results 

followed by reading research page at the kiosk (i.e., view → read). Arules was used to determine 

the most frequent two actions sequences by selecting the temporal associations of one specific 

action and a subsequent action with the highest support and confidence. In this study, sequential 

patterns of consecutive actions were selected with the cut-off thresholds of support = 0.0005 and 

confidence = 0.1. In the frog scenario, a total of 64 short sequential patterns (length = 2) were 

identified that met the minimum support and confidence constraints within the novice group; 61 

patterns were identified within the experienced group. In the bee scenario, 66 patterns were 
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identified within the novice group; 63 were selected within the experienced group. These patterns 

were similar across the four conditions, and most had support and confidence considerably higher 

than the threshold. They were then ordered according to their Jaccard similarity coefficient to find 

interesting sequential patterns. Jaccard was chosen as a measure of the pattern’s interestingness 

(Merceron & Yacef, 2008) because this metric was found to be the most highly correlated with 

human judgments (Bazaldua, Baker, & San Pedro, 2014). According to Bazaldua et al. (2014), 

lower Jaccard measures indicated higher interestingness for human raters, among rules already 

identified to have acceptably high support and confidence. Among the action sequences with high 

interestingness (i.e., low Jaccard), we then identified a subset of sequential patterns that we believe 

corresponded to self-regulatory processes and strategies, and compared their frequency between 

the two groups. 

To facilitate the comparison of the frequency metrics between the novice group and the 

experienced group, the support and confidence for each pattern were calculated separately for each 

student. Three-level regression tests that controlled for multiple comparisons with Benjamini and 

Hochberg (1995) corrections were then conducted to compare the metric values between the two 

groups in each scenario. Table 1 presents the comparison of the support and confidence metrics of 

frequent sequential patterns identified as reflective of self-regulatory processes and strategies that 

were found to be significantly different between the two groups. 

[Place Table 1 approximately here] 

Understanding Task Definition 

One interesting behavior pattern with high interestingness was help → note, which we 

postulate to be related to understanding task definition in the SRL cycle. Note that students have 

access to the help button throughout their exploration process in IVAs. A window would pop up 
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to remind students of the ultimate goals they need to achieve when the button is clicked on. It 

seems that this pattern showed significantly higher support for the novice group than the 

experienced group in both scenarios (frog: Ms = .0007 and .0003, t(1988) = −2.95, p = .003; bee: 

Ms = .0007 and .0003, t(1997) = −2.51, p = .012). We speculate that this was due to the novelty 

effect (Jiang et al., 2015). That is, due to the increased attention and enthusiasm as the novel IVA 

environment was first introduced to classrooms, students tended to take notes of the information 

they just read about what they were supposed to do in IVAs more frequently than experienced 

students, whereas previous experience in the other IVA scenario had familiarized experienced 

students with their tasks and they did not access the help page and take notes of it as often since 

the task information could be kept in mind. 

Enacting Study Tactics and Strategies 

Interesting sequential patterns were also found for the application of note-taking and note-

reviewing strategies after reading research pages or viewing laboratory test results. In the frog 

scenario, the pattern read → note-MULT had significantly higher support and confidence for 

experienced students than novice students (support: Ms = .0098 and .0063, t(1979) = 4.77, 

p < .001; confidence: Ms = .33 and .26, t(1044) = 3.51, p < .001). This pattern also showed 

significantly higher support for experienced students than novice students in the bee scenario 

(support: Ms = .0093 and .0064, t(2012) = 2.90, p = .004; confidence: Ms = .31 and .27, 

t(1033) = 1.46, p = .143). A similar pattern read-MULT → note-MULT also had significantly 

higher support and confidence for the experienced group than the novice group in the frog scenario 

(support: Ms = .0040 and .0029, t(1982) = 2.59, p = .010; confidence: Ms = .15 and .11, 

t(1387) = 3.03, p = .002). In the bee scenario, the support of this pattern was marginally 

significantly higher for the experienced group than the novice group (Ms = .0037 and .0027, 
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t(2018) = 2.27, p = .023, adjusted α = .015). These results suggested that the experienced students 

were more likely to open notepad repeatedly to take or review notes after reading a research page 

(once or repeatedly). In other words, experienced students tended to show better utilization of the 

note-taking and note-reviewing strategies, suggesting their growing competence in enacting self-

regulatory strategies. While taking notes of research information from the kiosk pages, students 

transferred the information presented in the kiosk to the digital notepad, which may have involved 

a generative process, strengthening student understanding of the domain-specific declarative 

information. Additionally, reviewing notes after reading kiosk pages may have helped students 

build connections between the notes previously recorded and the concepts they just read about. 

Furthermore, repeated access of notepad most likely indicates more complete notes being encoded 

by users, further fostering student learning (Armbruster, 2009). 

Similarly, experienced students were more likely to open the notepad to take or review 

notes after conducting laboratory experiments (experiment → note-MULT) or viewing test results 

(look → note). For the sequence experiment → note-MULT, the confidence for the experienced 

group was higher than that for the novice group in the bee scenario (Ms = .16 and .09, 

t(1071) = 3.91, p < .001). However, the confidence for this pattern in the frog scenario was not 

statistically significantly different (Ms = .14 and .12, t(1142) = 1.48, p = .139). For the pattern look 

→ note, the confidence for the experienced group was marginally significantly higher than that for 

the novice group in the both scenarios (frog: Ms = .12 and .08, t(1045) = 2.48, p = .013, adjusted 

α = .013; bee: Ms = .09 and .06, t(954) = 2.30, p = .022, adjusted α = .014). That is, experienced 

students were more likely to access the notepad immediately after viewing the results of lab tests; 

they were also more likely to open the notepad repeatedly after running laboratory tests. These 

patterns appear to have represented effective learning strategies; opening the notebook in these 
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contexts likely produced a second opportunity for students to understand the laboratory test results, 

elaborate on the results and make inferences, and connect them with other test results or the 

research information recorded in notepad. The information the students recorded or reviewed in 

the notepad on the laboratory tests also had the potential to help students with problem solving and 

hypothesis generation in IVAs. 

Monitoring 

The sequential patterns reflective of the monitoring process in SRL cycle involved making 

final claims (final claim), and accessing the digital notepad (note), such as “final claim → note” 

and “final claim → note-MULT”. These patterns indicated that students tended to open the notepad 

after submitting a final claim, perhaps to review the notes they had taken so far in order to self-

evaluate and assess their final claim just submitted. These patterns appeared to have higher support 

for experienced students than novice students. In the frog scenario, the pattern final claim → note 

showed significantly higher support (but not confidence) for the experienced group than the novice 

group (support: Ms = .0019 and .0012, t(1970) = 2.73, p = .006; confidence: Ms = .26 and .22, 

t(636) = 1.27, p = .205). In the bee scenario, this pattern showed both significantly higher support 

and confidence for experienced students than novice students (support: Ms = .0015 and .0007, 

t(2009) = 3.75, p < .001; confidence: Ms = .13 and .08, t(641) = 3.33, p < .001). A similar pattern 

“final claim → note-MULT” also showed significantly higher support and confidence for 

experienced students in the frog scenario (support: Ms = .0014 and .0007, t(1962) = 3.46, p < .001; 

confidence: Ms = .24 and .16, t(635) = 2.53, p = .012). This finding indicated that experienced 

students were more likely than novice students to review their notes (both once or repeatedly), 

where the information they considered as important for decision making was recorded, possibly to 

monitor their answers and reflect on previous steps (cf. Kuhn & Pease, 2008) after submitting a 
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final claim. The notepad serves as a resource of combined information from various sources that 

students considered as important for problem solving, and reviewing notes after submitting final 

claims could potentially help students check the claims and causal evidence they had just 

submitted. 

On the other hand, mixed results were found for the patterns related to reading kiosk pages 

after submitting final claims. In the frog scenario, the pattern final claim → read showed 

significantly higher confidence for the novice group than the experienced group (Ms = .25 and .16, 

t(639) = −2.78, p = .006). By contrast, this pattern showed marginally significantly higher support 

for the experienced group than the novice group in the bee scenario (Ms = .0015 and .0009, 

t(2013) = 2.42, p = .016, adjusted α = .013). The pattern final claim → read-MULT showed 

significantly higher confidence for the novice group than the experienced group in the bee scenario 

(Ms = .21 and .15, t(637) = −2.98, p = .003). This finding suggested that although experienced 

students were more likely to access the notepad after submitting final claims, novice students who 

were newly exposed to the IVA environment were sometimes more likely to read research 

information to check their answers after submitting a final claim than experienced students. 

Discussion 

In summary, our analysis of student behavior patterns within IVAs suggested that 

experience with learning in IVAs stimulated students to make better use of learning strategies, and 

better self-monitor and self-evaluate their learning and performance during the exploration and 

assessment process. Probably due to a novelty effect (cf. Kubota & Olstad, 1991), novice students 

who were introduced to IVA for the first time tended to access the help page that reminded them 

of their tasks and took notes on it more often than experienced students. This might suggest that 

students were more familiar with their tasks and did not need to record this information the second 
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time they used IVAs. On the other hand, experienced students generally showed better strategy 

usage than their novice counterparts during science inquiry. They tended to open the notepad more 

frequently after reading research information or running and viewing experiment results. 

Experienced students were also more likely to access the notepad, where information from various 

sources could be recorded and synthesized, potentially enabling them to review their notes to 

monitor and reflect on their final claims (cf. Kuhn & Pease, 2008) immediately after submitting a 

final claim. On the contrary, novice students were more likely than experienced students to read 

kiosk pages, information that they had not organized into notes, after making their final claims. 

Analysis 2: Development of Note-Taking/Reviewing Strategies in IVAs 

Results from analysis 1 indicate that the experienced students were more likely to utilize 

the digital notepad for note-taking or note-reviewing purposes after reading research pages and 

test results presented in the virtual environment or after submitting their final claims than the 

novice students. Taking and reviewing notes are popular learning strategies that have been deemed 

as beneficial for academic success (Armbruster, 2009). Meanwhile, note-taking/reviewing 

strategies are critical elements of self-regulated learning (Azevedo, 2005; Moos, 2009). Therefore, 

we aim to further investigate how IVAs fostered the development of note-taking/reviewing 

strategies in analysis 2. Specifically, we examine the regulation of note-taking/reviewing strategies 

by comparing both the quantity of note-taking/reviewing behaviors and the content of notes taken, 

between novice students and experienced students, in each IVA scenario. 

Quantity of Note-Taking/Reviewing Behaviors 

In this section, we examine whether there were consistent changes in the quantity of note-

taking and note-reviewing activities executed by students as they transitioned from one IVA 

scenario to another. Within IVAs, students could click on the digital notepad to take or review 
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notes. Measures representing the quantity of note-taking/reviewing behavior (see Table 2 for a 

description of the full set of measures) were developed and computed for each student based on 

the interaction logs and used in later analysis. 

[Place Table 2 approximately here] 

Results on the comparisons of note-taking/reviewing quantity between novice and 

experienced students after applying Benjamini and Hochberg’s post-hoc control method are 

presented in Table 2. Overall, the novice students who used IVA for the first time and the 

experienced students who had previously used the other IVA scenario did not differ significantly 

on their average frequency of notepad access, the total amount of time spent in the notepad, or the 

proportion of total time in IVA that was distributed to the digital notepad in either the frog scenario 

or the bee scenario. 

Despite the lack of significant differences in the quantitative measures of overall notepad 

access, further analysis that distinguished note-taking activities from note-reviewing activities 

revealed consistent differences between novice and experienced students in both scenarios. Among 

the note-takers, experienced students opened the notepad to take notes more frequently than novice 

students in both the frog scenario (Ms = 13.60 and 10.52, t(1158) = 4.51, p < .001) and the bee 

scenario (Ms = 13.72 and 10.27, t(1162) = 4.23, p < .001). Experienced students also devoted 

significantly more time to taking notes in the digital notepad than novice students in both scenarios 

(frog: Ms = 5 min. and 3 min., 57 sec., t(1154) = 3.97, p < .001; bee: Ms = 5 min. and 3 min., 51 

sec., t(1166) = 3.77, p < .001). In addition, notes recorded by experienced students were comprised 

of significantly more words (frog: Ms = 65.30 and 56.33, t(1162) = 2.42, p = .016; bee: Ms = 66.60 

and 50.88, t(1166) = 3.76, p < .001) and more sentences (frog: Ms = 9.65 and 7.88, t(1159) = 3.69, 
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p < .001; bee: Ms = 9.72 and 7.49, t(1156) = 3.99, p < .001) on average than notes recorded by 

their novice counterparts. 

Although the experienced students recorded a higher quantity of notes than the novice 

students, they did not review notes significantly more frequently than novice students in either 

scenario (frog: Ms = 4.77 and 4.30, t(1170) = 1.10, p = .272; bee: Ms = 4.56 and 4.17, 

t(1166) = .28, p = .776). Likewise, note-takers from the two groups spent a similar total amount of 

time reviewing their notes (frog: Ms = 52 sec. and 44 sec., t(1172) = 1.05, p = .294; bee: Ms = 48 

sec. and 39 sec., t(1168) = 1.29, p = .196). 

Note Content 

Considering that students became more frequent note-takers and took a greater quantity of 

notes as they became experienced in using the IVAs, it would be useful to further explore how the 

content of notes taken by students in IVAs developed over time. For example, which type of notes 

did the experienced students record more than the novice students, and how did the content and 

quality of notes differ between the two groups? 

We followed the procedures recommended by Chi (1997) and Trevors et al. (2014) for the 

development of quantitative measures of note content. Each student’s notes were automatically 

parsed into sentential segments (i.e., sentence-based units) (Chi, 1997; Trevors et al., 2014), using 

the Stanford CoreNLP tool (Manning et al., 2014). These segments were then checked manually 

by the first author, who adjusted inappropriate segmentation. This process resulted in the 

identification of 9,983 segments in the frog scenario and 9,738 segments in the bee scenario. All 

segments were then coded using three coding schemes: (1) The type of note coding scheme 

(verbatim or paraphrased content; Trevors et al., 2014), (2) The source of note content coding 
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scheme, and (3) The hypothesis or conclusion coding scheme. Details and examples of the coding 

schemes are shown in Table 3. 

[Place Table 3 approximately here] 

Two coders (i.e., the first and the second author) independently coded all note segments 

from a random 10% sample of students (among those who ever took notes) in the frog scenario. 

Cohen’s (1960) kappa showed substantial inter-rater agreement was achieved for the type of note 

(κ = .81) and the source of note (κ = .90). Results for Hypothesis/Conclusion (κ = .74) showed the 

need for further refinement, so definitions of each category in this scheme were further clarified 

in order to improve the reliability. Two rounds of coding of notes from an additional 10% of sample 

participants were conducted and a significantly improved agreement was achieved for 

Hypothesis/Conclusion (κ = .90). Discrepancies in final ratings in these random samples were 

resolved by discussion between the raters. Once the acceptable inter-rater agreement was 

established, the remaining note segments were then coded by the first author. 

After all segments were coded, quantitative measures based on these categories were 

calculated for each note-taker (e.g., student who took notes) and used in later analysis. For example, 

the number of each code (e.g., content reproduction, content elaboration, etc.) were calculated for 

each note-taker, and each coding scheme, in each scenario. In addition, we computed the number 

of aggregated labels across coding schemes (e.g., segments coded as content reproduction from 

the research kiosk, content elaboration from field observation, etc.). In cases where a segment 

combined information from multiple disparate sources (e.g., dialogue and test), we counted this 

note as both a combination segment and as the specific categories they belonged to when 

calculating these measures. 

[Place Table 4 approximately here] 
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Content reproduction and content elaboration. Comparisons of the number of note 

segments from each note content category between note-takers in the novice group and those in 

the experienced group are reported in Table 4. According to the results, the higher quantity of notes 

for experienced students compared to novice students was highly driven by the difference in the 

content reproductive notes. In both scenarios, the experienced students recorded significantly more 

sentence segments that were verbatim copies or close paraphrases of the content presented in the 

IVA environment than the novice students (frog: Ms = 7.78 and 6.14, t(1161) = 3.73, p < .001; 

bee: Ms = 7.86 and 6.05, t(1157) = 3.52, p < .001). That is, students with previous experience 

using the other IVA scenario tended to reproduce more content presented in the learning 

environment into notes in the digital notepad without adding new semantic information or ideas 

than students who were newly exposed to the environment. 

Mixed results were found for the content elaborative notes that involved a deeper level of 

cognitive processing. In the bee scenario, note-takers in the experienced group recorded 

significantly more note segments that entailed elaboration of instructional content presented in the 

environment than their novice counterparts (Ms = 1.55 and 1.16), t(1163) = 2.72, p = .007. 

According to Chi’s (2009) Interactive-Constructive-Active-Passive (ICAP) framework, 

elaborative and generative note-taking is a constructive learning activity that involves deep 

cognitive processing, and it predicts superior academic achievement than note-taking that involves 

relatively shallower level of processing such as verbatim copying, though verbatim copying still 

constitutes an active learning activity (Armbruster, 2009). That is, in the bee scenario, previous 

experience in completing the IVA frog scenario seemed to have not only led students to copy or 

paraphrase more information in notes, but may have also prompted students to go beyond the 

superficial meaning of the instructional content and process the information deeply, through such 
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techniques as generating inferences, identifying underlying patterns of data, constructing 

connections, self-questioning, and concept mapping. Engaging in constructive note-taking activity 

more for experienced students might also explain their superior performance in the bee scenario 

in both identifying correct final claims (CFC) and designing causal explanations (DCE) tasks, 

compared to novice students (Jiang et al., 2015). On the contrary, this trend was not replicated in 

the frog scenario, where no significant difference was found in the number of content elaborative 

note segments between novice students (M = 1.32, SD = 1.93) and experienced students (M = 1.44, 

SD = 2.45), t(1167) = .99, p = .324. Prior usage of the IVA bee scenario was not associated with 

differences in the quantity of content elaborative notes and level of cognitive processing involved 

in note-taking in the frog scenario. 

Source of note content. Comparison of the source of note content between the two groups 

of students revealed differences between novice and experienced students. In both scenarios, 

experienced students recorded more sentences based on research information from the kiosk than 

novice students (frog: Ms = 4.41 and 3.13, t(1164) = 3.94, p < .001; bee: Ms = 4.35 and 2.89, 

t(1161) = 4.28, p < .001). This result was in line with our previous finding that experienced 

students were more likely to access the notepad after reading kiosk pages. Accordingly, 

experienced students tended to make use of the digital notepad to verbatim copy or paraphrase 

information from the research kiosk more than the novice students (frog: Ms = 3.95 and 2.80, 

t(1165) = 3.68, p < .001; bee: Ms = 3.80 and 2.57, t(1161) = 3.75, p < .001). The higher relative 

frequency of reading research information and taking notes on it, which might help experienced 

students interpret laboratory test results and facilitate the acquisition of domain-specific 

knowledge (Chen & Klahr, 1999), may have contributed to their higher inquiry performance than 

novice students. 
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Beyond taking more notes on kiosk research information, experienced students also took 

more notes than novices from other sources. For example, in the frog scenario, experienced 

students took more notes that were based on observations than novices (Ms = 3.11 and 2.16, 

t(1166) = 3.80, p < .001), whereas in the bee scenario, experienced students recorded more 

sentences based on laboratory experiment results than novices (Ms = 2.21 and 1.59, t(1161) = 2.90, 

p = .004). 

Moreover, experienced students wrote nearly twice as many note segments that integrated 

information from multiple disparate sources than novice students in the bee scenario (Ms = .46 and 

.25), t(1162) = 2.99, p = .003. Previous experience in IVA appears to have led students to process 

information more deeply, to realize the connections between multiple pieces of information 

obtained from various sources, to organize and synthesize the information, and to construct more 

connections in notes in the bee scenario. Further examination of the combination notes indicated 

that most of the combination notes involved elaboration of combined content. Experienced 

students in the bee scenario produced nearly twice as many sentences as novices in which they 

elaborated on information combined from multiple sources (Ms = .33 and .17, t(1161) = 3.03, 

p = .003). This result also echoed our finding that experienced students took more elaborative notes 

than novice students in the bee scenario. 

Hypothesis and conclusion notes. Experienced students also generated significantly more 

hypotheses related to the cause of the bee population death than their novice counterparts in the 

bee scenario (Ms = .55 and .34), t(1146) = 3.49, p < .001. Similarly, students who were using the 

IVAs for the second time also produced more sentences where they drew conclusions from data 

they collected (Ms = .62 and .36, t(1163) = 3.43, p < .001). Both hypothesis notes and conclusion 

notes are important components of content elaborative notes that involve constructive learning. 
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These differences were consistent with the higher quantity of content elaborative notes for 

experienced students in the bee scenario and affirmed the relatively deeper level of cognitive 

processing as students used IVAs for the second time. However, these differences were not 

replicated in the frog scenario. 

Discussion 

Our analysis on the differences in the evolution of the quantity of note-taking/reviewing 

behaviors and note content further suggested the more sophisticated utilization of these learning 

strategies by experienced students than novice students. To begin with, while using the IVAs, 

students increasingly made use of the digital notepad to take notes. In both scenarios, note-takers 

with previous experience in the other IVA scenario tended to engage in a significantly higher 

frequency of note-taking activities, spend significantly more time on taking notes in the notepad, 

and record significantly more words and sentences in the notes than their counterparts who were 

exposed to IVA for the first time. More information was transferred from the IVA environment 

and encoded as notes in notepads, and more complete notes were produced by experienced 

students, potentially strengthening their understanding and mental representations of the 

instructional content. However, a short session of using one IVA scenario was not sufficient to 

change students’ note-reviewing patterns in the other scenario; experienced students were not more 

likely to review notes more frequently or spend more time reviewing notes. 

Investigation of the content of notes taken by students indicated that the experienced 

students tended to reproduce instructional content presented in IVAs more than novice students. 

Particularly, they were more likely to copy or paraphrase research information from kiosk pages, 

which could potentially facilitate construction of a solid knowledge base. Probably due to the 

differences in the content of the two scenarios, experienced students also encoded a higher quantity 
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of notes in different sources depending on the scenario (observations in the frog scenario, and tests 

and combined sources in the bee scenario). 

In the bee scenario, students with previous experience also tended to process information 

more deeply and engage in generative note-taking more than note-takers in the novice condition. 

Further analysis suggested that this behavior was driven largely by the experienced students’ 

engagement in building internal connections between information obtained from various sources, 

generating hypotheses and inducing conclusions, and elaborating on the research information. 

These note contents all correspond to constructive learning, leading to deeper-level mental 

representations of the instructional content (Bui, Myerson, & Hale, 2013) and may have led to the 

better performance seen in the bee scenario on both CFC and DCE for experienced students. It 

seems that students’ generative note-taking strategies developed as they transitioned from the frog 

scenario to the bee scenario, but not the other way around. We postulate that this difference was 

most likely caused by the differences in the content of the two learning contexts, despite similar 

design goals. It seems that it is slightly more difficult for students to infer and justify the causal 

factors in the bee scenario than in the frog scenario, as indicated by the relatively lower average 

DCE performance in the bee scenario than the frog scenario (Jiang et al., 2015). Therefore, the 

students’ previous experience in the frog scenario, which was slightly easier and required a lower 

cognitive load, might have led students to engage in a deeper level of cognitive processing in the 

bee scenario than those who were introduced to IVA for the first time. However, previous 

experience in the more difficult bee scenario did not encourage experienced students in the frog 

scenario to delve deeper and generate more elaborative notes than novice students in the frog 

scenario. 
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Conclusion and Implications for Instructional Design 

This chapter explores how student self-regulatory behaviors and strategies evolved within 

an immersive virtual environment for middle school science, combining educational data mining 

techniques such as sequential pattern mining and feature engineering with multilevel analysis. In 

conclusion, students gained skills in regulating their inquiry behaviors and adopted more 

successful self-regulatory strategies as they used IVAs. As such, after just a half hour completing 

the first scenario, students demonstrated more expert-like SRL behaviors in their second scenario 

— they executed note-taking strategies more often, and were more opportunistic in using resources 

and exploited more available sources of information (e.g., laboratory test results, research 

information) to help them solve inquiry problems than the novices (Gilhooly et al., 1997). The 

IVAs also enabled students to develop skills in self-monitoring and self-assessment, by stimulating 

students to make better use of their notes taken during learning to monitor and reflect on their 

learning and solutions. Our analysis on note-taking and reviewing further affirmed that experience 

with the open-ended learning environment prepared students to adopt more efficient note-taking 

strategies to assist their self-regulated learning. They gradually learned to take notes more 

frequently, take more complete notes, and reproduce more important domain-specific knowledge 

information from kiosk research pages, behaviors which have been previously found to promote 

inquiry performance. Particularly, students with previous experience in the IVA frog scenario 

engaged in deeper-level cognitive processing and content elaboration during note-taking in the bee 

scenario than students in the novice condition, through such techniques as generating inferences, 

constructing connections between information from various sources, and generating hypotheses 

and conclusions in notes. Altogether, the relatively more sophisticated self-regulatory behaviors 

and strategies seen within the experienced students over novice students could potentially help 
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explain their superior performance on science inquiry tasks such as identifying correct final claims 

and designing causal explanations to support their final claims. 

Implications for Instructional Design of Immersive Virtual Assessments 

Our results on the development of SRL skills within IVAs provide implications for the 

instructional design of immersive virtual environments that assess science inquiry and learning of 

ill-structured science topics. IVAs, an open-ended virtual environment without any scaffolding 

embedded, have shown to foster self-regulated learning in our study. Meanwhile, researchers have 

argued for the effectiveness of scaffolds in open-ended computer-based learning environments 

(Azevedo, 2005; Quintana et al., 2004; Segedy et al., 2015). Therefore, adaptive scaffolds have 

great potentials in further invoking self-regulatory behaviors and strategies in IVAs. In the 

following section, we discuss the implications of our results for designing future immersive virtual 

environments to facilitate personalized learning and self-regulated learning. 

To begin with, sequential pattern mining helped us identify a list of behavior patterns in 

IVAs that mapped with various SRL phases and explore how they developed over time. Despite 

that we were able to detect behavior patterns related to understanding task definitions, tactic 

execution of learning strategies, and self-monitoring, little information was obtained regarding the 

goal setting and planning mechanism in the SRL cycle. Did students make plans to accomplish 

their tasks, and how did they execute and adaptively change their plans? How detailed and practical 

were their goals? With the under-representation of the planning process by the behavior sequences 

or notes, we do not have insights about whether IVAs promoted students to better plan their inquiry 

and problem solving process, let alone providing adaptive scaffolding to deploy goal setting and 

planning to students who were in need. To better evaluate, emulate, and facilitate this process, 

online prompts and scaffolding could be implemented to enable students to set meaningful learning 
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goals and subgoals, explicitly list their plans in notepad after being introduced to IVAs, and 

evaluate and adapt their plans in real time. For example, students whose plans were too general 

according to natural language processing results could be prompted to create more practical 

subgoals (e.g., illustrate their subgoals on tool usage, data collection, and data analysis). 

As students used the system for the second time, they were less likely to access the help 

button and take notes of their ultimate tasks in the notepad than students who used IVAs for the 

first time. This might suggest that students were familiar with what they were supposed to do and 

did not need to record it the second time they used IVAs. Given that understanding task definition 

is a key SRL mechanism, guiding questions could be used to evaluate student understanding of 

their tasks, direct student attention to their tasks and lead them to take notes of it when students’ 

behaviors showed evidence of confusion or signs of being at a loss about what they should do (e.g., 

indicated by long pauses or repeated meaningless actions). Implementing these prompts to ensure 

that users have a good understanding of their tasks is especially meaningful when students were 

exposed to IVAs for the first time and not sure about what they should achieve. 

This chapter’s findings also illuminate the instructional design of scaffolds to improve 

student utilization of learning strategies such as note-taking and note-reviewing. Students’ use of 

note-taking and note-reviewing strategies could be scaffolded by embedding prompts related to 

the notepad. For instance, students can be encouraged by computer agents in real time to access 

notepad to take notes more frequently and type more notes in order to promote their understanding 

and learning if the system detects low notepad access or low word count in notes. If low frequency 

of notepad access is recorded after reading kiosk pages or running experiments, appropriate cues 

or prompts can be provided to encourage students to take notes of these important contents that 

are crucial for problem solving. Such prompts may be less necessary when students access 
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information of lower-importance, such as talking with NPCs, in order to avoid encouraging less 

effective note-taking strategies. Similarly, our analyses provide insights on designing scaffolds to 

foster generative note-taking in IVAs by encouraging the use of strategies such as connecting, 

generating inferences, and hypothesizing. For example, as behavior patterns where students access 

information from two different sources (e.g., reading kiosk page followed by viewing test results, 

or viewing both genetic test results and blood test results) are identified, the system could prompt 

students to go beyond verbatim copying or closely paraphrasing the content, and to delve deeper 

into the underlying meanings of the information and construct connections to interpret the test 

results based on the information in the research page, or compare the results from two tests. 

In this study, the self-monitoring process was mainly deployed by students during the final 

assessment stage, where students reviewed notes or read kiosk pages to self-evaluate their final 

claims. However, the system could provide scaffolds and feedback to encourage students to engage 

in monitoring activities throughout the learning and scientific inquiry process. For example, IVAs 

could periodically prompt students to report their self-evaluation of knowledge (e.g., how much 

they feel that they have understood the content presented in the environment) and their judgment 

of learning and adequacy of information collected for problem solving, enable students to mark 

their goals and subgoals as accomplished or incomplete, and display their progress toward the 

goals to students so that they could monitor their learning (Azevedo, 2005). Adaptive scaffolds 

could be provided based on students’ self-reports as well as their behavior patterns on self-

monitoring and self-evaluation. 

The personalized scaffolds proposed above are meant to prompt and support students’ self-

regulatory processes and strategies in IVAs in real time. They would be embedded in a broader 

design where they were introduced because of evidence of student need, and then gradually faded 
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as the student demonstrated the relevant skills (as in Roll et al., 2007), so that students would 

emerge from their experience using the system with more generalizable self-regulated learning 

skill. 

Through introducing adaptive scaffolds that fade as the student demonstrates skill, it may 

be possible to enhance students’ self-regulated learning in immersive virtual assessments, 

benefitting not just their performance on the assessments, but what they take away from the 

experience.  



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           36 

References 

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the 11th IEEE 

International Conference on Data Engineering, 3-14.  

Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. (2010). Automated, unobtrusive, action-

by-action assessment of self-regulation during learning with an intelligent tutoring 

system. Educational Psychologist, 45(4), 224–233.  

Armbruster, B. B. (2009). Taking notes from lectures. In R. F. Flippo & D. C. Caverly (Eds.), 

Handbook of college reading and study strategy research (pp. 220-248). New York, NY: 

Routledge. 

Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., . . . Woolf, B. P. 

(2007). Repairing disengagement with non-invasive interventions. Proceedings of the 

13th International Conference on Artificial Intelligence in Education (pp. 195-202). 

Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? 

The role of self-regulated learning. Educational Psychologist, 40(4), 199-209.  

Baker, R. S. J. d., & Yacef, K. (2009). The state of Educational Data Mining in 2009: A review 

and future visions. Journal of Educational Data Mining, 1(1), 3-17.  

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models 

using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01 

Bazaldua, D. A. L., Baker, R. S., & San Pedro, M. O. Z. (2014). Comparing expert and metric-

based assessments of association rule interestingness. In J. Stamper, Z. Pardos, M. 

Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on 

Educational Data Mining (pp. 44-51). 



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           37 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B 

(Methodological), 57(1), 289-300.  

Bonner, J. M., & Holliday, W. G. (2006). How college science students engage in note-taking 

strategies. Journal of Research in Science Teaching, 43(8), 786–818.  

Bretzing, B. H., & Kulhavy, R. W. (1979). Notetaking and depth of processing. Contemporary 

Educational Psychology, 4(2), 145-153.  

Bui, D. C., Myerson, J., & Hale, S. (2013). Note-taking with computers: Exploring alternative 

strategies for improved recall. Journal of Educational Psychology, 105(2), 299-309.  

Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the 

control of variables strategy. Child Development, 70(5), 1098-1120.  

Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide. The 

journal of the learning sciences, 6(3), 271-315.  

Chi, M. T. H. (2009). Active‐constructive‐interactive: A conceptual framework for 

differentiating learning activities. Topics in Cognitive Science, 1(1), 73-105.  

Clarke-Midura, J., McCall, M., & Dede, C. (2012, February). Designing virtual performance 

assessments. Paper presented at the meeting of the American Association for the 

Advancement of Science, Vancouver, Canada. 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological 

measurement, 20(1), 37-46.  

Cohn, E., Cohn, S., & Bradley, J. (1995). Notetaking, working memory, and learning in 

principles of economics. The Journal of Economic Education, 26(4), 291-307.  



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           38 

Fisher, J. L., & Harris, M. B. (1973). Effect of note taking and review on recall. Journal of 

Educational Psychology, 65(3), 321-325.  

Gilhooly, K. J., McGeorge, P., Hunter, J., Rawles, J. M., Kirby, I. K., Green, C., & Wynn, V. 

(1997). Biomedical knowledge in diagnostic thinking: The case of electrocardiogram 

(ECG) interpretation. European Journal of Cognitive Psychology, 9(2), 199-223.  

Greene, J. A., & Azevedo, R. (2007). A theoretical review of Winne and Hadwin’s model of 

self-regulated learning: New perspectives and directions. Review of Educational 

Research, 77(3), 334-372.  

Hahsler, M., Gruen, B., & Hornik, K. (2005). Arules -- A computational environment for mining 

association rules and frequent item sets. Journal of Statistical Software, 14(15), 1-25.  

Jiang, Y., Paquette, L., Baker, R. S., & Clarke-Midura, J. (2015). Comparing novice and 

experienced students in Virtual Performance Assessments. Proceedings of the 8th 

International Conference on Educational Data Mining, 136-143.  

Khachatryan, G. A., Romashov, A. M., Khachatryan, A. R., Gaudino, S. J., Khachatryan, J. M., 

Guarian, K. R., & Yuga, N. V. (2014). Reasoning Mind Genie 2: An intelligent tutoring 

system as a vehicle for international transfer of instructional methods in mathematics. 

International Journal of Artificial Intelligence in Education, 24(3), 333-382.  

Kinnebrew, J. S., Loretz, K. M., & Biswas, G. (2013). A contextualized, differential sequence 

mining method to derive students' learning behavior patterns. Journal of Educational 

Data Mining, 5(1), 190-219.  

Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2014). Analyzing the temporal evolution of 

students’ behaviors in open-ended learning environments. Metacognition Learning, 9(2), 

187–215.  



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           39 

Kubota, C. A., & Olstad, R. G. (1991). Effects of novelty‐reducing preparation on exploratory 

behavior and cognitive learning in a science museum setting. Journal of Research in 

Science Teaching, 28(3), 225-234.  

Kuhn, D., & Pease, M. (2008). What needs to develop in the development of inquiry skills? 

Cognition and Instruction, 26(4), 512-559.  

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: Tests in linear 

mixed effects models. R package version 2.0-32.  

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The 

stanford CoreNLP natural language processing toolkit. Proceedings of 52nd Annual 

Meeting of the Association for Computational Linguistics: System Demonstrations (pp. 

55-60). 

McCall, M., & Clarke-Midura, J. (2013, February). Analysis of gaming for assessment. Paper 

presented at the meeting of the Association of Test Publishers, Orlando, FL. 

Merceron, A., & Yacef, K. (2008). Interestingness Measures for Association Rules in 

Educational Data. In R. S. J. d. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 

first International Conference on Educational Data Mining (pp. 57-66). Montreal, 

Canada. 

Moos, D. C. (2009). Note-taking while learning hypermedia: Cognitive and motivational 

considerations. Computers in Human Behavior, 25(5), 1120–1128.  

Moos, D. C., & Azevedo, R. (2008). Self-regulated learning with hypermedia: The role of prior 

domain knowledge. Contemporary Educational Psychology, 33(2), 270–298.  

National Research Council. (2011). A framework for K-12 science education: Practices, 

crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. 



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           40 

Perry, N., Phillips, L., & Dowler, J. (2004). Examining features of tasks and their potential to 

promote self-regulated learning. Teachers College Record, 106(9), 1854-1878.  

Peverly, S. T., Brobst, K. E., Graham, M., & Shaw, R. (2003). College adults are not good at 

self-regulation: A study on the relationship of self-regulation, note taking, and test taking. 

Journal of Educational Psychology, 95(2), 335-346.  

Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. 

R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 451–502). Orlando, 

FL: Academic Press. 

Pintrich, P. R., & Zusho, A. (2002). The development of academic self-regulation: The role of 

cognitive and motivational factors. In A. Wigfield & J. S. Eccles (Eds.), Development of 

achievement motivation (pp. 249–284). San Diego, CA: Academic Press. 

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., . . . Soloway, E. 

(2004). A scaffolding design framework for software to support science inquiry. The 

journal of the learning sciences, 13(3), 337–386.  

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2007). Designing for metacognition 

— Applying cognitive tutor principles to the tutoring of help seeking. Metacognition and 

Learning, 2(2–3), 125–140.  

Sabourin, J., Mott, B., & Lester, J. (2013). Discovering behavior patterns of self-regulated 

learners in an inquiry-based learning environment. In H. C. Lane, K. Yacef, J. Mostow, & 

P. Pavlik (Eds.), Lecture Notes in Computer Science: Artificial Intelligence in Education 

(pp. 209–218). Berlin, Heidelberg: Springer. 



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           41 

Scalise, K., & Clarke-Midura, J. (2014, April). mIRT-bayes as hybrid measurement model for 

technology-enhanced assessments. Paper presented at the meeting of the National 

Council on Measurement in Education, Philadelphia, PA. 

Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2015). Using coherence analysis to characterize 

self‐regulated learning behaviours in open‐ended learning environments. Journal of 

Learning Analytics, 2(1), 13–48.  

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and 

advanced multilevel modeling. London: Sage Publications. 

Trevors, G., Duffy, M., & Azevedo, R. (2014). Note-taking within MetaTutor: Interactions 

between an intelligent tutoring system and prior knowledge on note-taking and learning. 

Educational Technology Research and Development, 62(5), 507-528.  

Weiss, I. R., Banilower, E. R., McMahon, K. C., & Smith, P. S. (2001). Report of the 2000 

national survey of science and mathematics education. Retrieved from Horizon Research 

website: http://2000survey.horizon-research.com/reports/status.php 

Winne, P. H. (2011). A cognitive and metacognitive analysis of self-regulated learning. In B. J. 

Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and 

performance (pp. 15-32). New York: Routledge. 

Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. 

Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice 

(pp. 277–304). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. 

Educational Psychologist, 25(1), 3-17.  

http://2000survey.horizon-research.com/reports/status.php


HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           42 

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, 

methodological developments, and future prospects. American Educational Research 

Journal, 45(1), 166–183.  

Zimmerman, B. J., & Schunk, D. H. (Eds.). (2001). Self-regulated learning and academic 

achievement: Theoretical perspectives. Mahwah, N.J.: Lawrence Erlbaum Associates. 

 

  



HOW IMMERSIVE VIRTUAL ENVIRONMENTS FOSTER SRL                                                           43 

 

Figure 1. Screenshots of the IVA frog scenario. 
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Figure 2. Screenshot of the digital notepad within IVA. 
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Table 1. Comparisons of the support and confidence of frequent sequential patterns related to 

self-regulatory processes and strategies between novice and experienced conditions in each 

scenario. Average support/confidence values and t-statistics from three-level regressions 

comparing differences in these values are reported for novice students (N) and experienced 

students (E) by scenario. Statistically significant results after Benjamini and Hochberg’s post-hoc 

control are marked with *. 

Pattern 
Support in frog Confidence in frog Support in bee Confidence in bee 

N E t N E t N E t N E t 

help → note .0007 .0003 −2.95* .13 .13 −.03 .0007 .0003 −2.51* .13 .17 1.14 

read → note-MULT .0063 .0098 4.77* .26 .33 3.51* .0064 .0093 2.90* .27 .31 1.46 

read-MULT → note-MULT .0029 .0040 2.59* .11 .15 3.03* .0027 .0037 2.27 .11 .13 1.30 

look → note .0019 .0022 .90 .08 .12 2.48 .0012 .0019 2.19 .06 .09 2.30 

experiment → note-MULT .0031 .0030 −.42 .12 .14 1.48 .0025 .0031 1.47 .09 .16 3.91* 

final claim → note .0012 .0019 2.73* .22 .26 1.27 .0007 .0015 3.75* .08 .13 3.33* 

final claim → note-MULT .0007 .0014 3.46* .16 .24 2.53* .0007 .0010 1.56 .08 .09 .56 

final claim → read .0013 .0012 −.64 .25 .16 −2.78* .0009 .0015 2.42 .10 .12 .86 

final claim → read-MULT .0020 .0024 .94 .37 .33 −.85 .0020 .0020 −.09 .21 .15 −2.98* 
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Table 2. Comparisons of features related to note-taking/reviewing quantity between novice 

students and experienced students in each scenario. Descriptive statistics (means with standard 

deviations in parentheses) of the features are reported for novice students (N) and experienced 

students (E) by scenario. T-statistics from three-level regressions comparing differences in note-

taking/reviewing quantity by experience are reported. Statistically significant results after 

Benjamini and Hochberg’s post-hoc control are marked with *. The first three features were 

computed for all students, and the remaining ones were computed for note-takers only. 

Feature Description Frog-N Frog-E t Bee -N Bee -E t 

Notepad access 
frequency 

Frequency of opening the notepad 
window 

9.20 
(12.98) 

10.50 
(15.63) 

1.75 
8.89 
(12.24) 

10.11 
(15.34) 

.52 

Notepad time 
Total amount of time in minutes that 

notepad was open 

2.85 

(4.14) 

3.38 

(5.50) 
2.08 

2.72 

(3.82) 

3.15 

(5.09) 
.74 

Percent of time on 

notepad 

Total amount of time on notepad divided 

by total time in IVA  

11% 

(18%) 

12% 

(19%) 
.48 8% (10%) 

10% 

(12%) 
1.96 

Word count in note Number of words in note-taker’s note 
56.33 
(54.74) 

65.30 
(65.22) 

2.42* 
50.88 
(52.06) 

66.60 
(66.95) 

3.76* 

Segment count in 

note 

Number of sentence segments in note-

taker’s note 

7.88 

(7.09) 

9.65 

(8.32) 
3.69* 

7.49 

(6.49) 

9.72 

(8.62) 
3.99* 

Note-taking 

frequency 
Frequency of note-taking actions  

10.52 

(10.13) 

13.60 

(12.66) 
4.51* 

10.27 

(9.71) 

13.72 

(12.49) 
4.23* 

Note-reviewing 
frequency 

Frequency of note-reviewing actions  
4.30 
(5.24) 

4.77 
(6.05) 

1.10 
4.17 
(5.10) 

4.56 
(5.63) 

.28 

Percent note-taking 

actions 

Frequency of note-taking divided by 

frequency of notepad access 

73% 

(20%) 

76% 

(19%) 
2.58* 

73% 

(20%) 

77% 

(17%) 
3.44* 

Percent note-

reviewing actions 

Frequency of note-reviewing divided by 

frequency of notepad access 

27% 

(20%) 

24% 

(19%) 
−2.58* 

27% 

(20%) 

23% 

(17%) 
−3.44* 

Note-taking duration 
Total amount of time (in minutes) spent 
on taking notes  

3.95 
(3.53) 

5.01 
(4.97) 

3.97* 
3.86 
(3.48) 

4.99 
(4.69) 

3.77* 

Note-reviewing 

duration 

Total amount of time (in minutes) spent 

on reviewing notes  
.74 (1.58) .86 (1.91) 1.05 .65 (1.25) .80 (1.47) 1.29 

Avg note-taking 

duration 

Average duration (in minutes) of a note-

taking action 
.48 (.47) .44 (.33) −1.48 .49 (.48) .46 (.44) −.92 

Avg note-reviewing 
duration 

Average duration (in minutes) of a note-
reviewing action 

.13 (.24) .12 (.16) −.11 .12 (.19) .14 (.25) 1.40 

Note-taking to 

notepad time 

Ratio of time spent on note-taking actions 

and total time on notepad 

88% 

(14%) 

88% 

(13%) 
1.01 

88% 

(14%) 

89% 

(13%) 
1.44 

Note-reviewing to 

notepad time 

Ratio of time spent on note-reviewing 

actions and total time on notepad 

12% 

(14%) 

12% 

(13%) 
−1.01 

12% 

(14%) 

11% 

(13%) 
−1.44 
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Table 3. Coding schemes for note content. Description of each category of the measures and 

relevant examples are provided. 

Scheme Category Description Example 

Type of 

Note 

Content 

Reproduction 

Note segment is a verbatim copy or close paraphrase of the content 

presented in the environment that does not introduce new semantic 
information or ideas. 

Ethonal [sic] is a natural chemical 

produced by plants 

Content 

Elaboration 

Note segment introduces new semantic information/ideas/meaning 

to content immediately available in the environment (e.g., making 
an inference, connecting information with prior knowledge, 

identifying underlying patterns of data, constructing internal 

connections, etc.). 

The tadpole from Jones pond had a 

short tail and missing an eye, a reaction 
to the pesticides in the water . 

Metacognitive Note segment pertains to reflecting on and monitoring one’s own 
learning process, knowledge, and experience with IVA. 

so far the water samples that I have 
collected there is only one water sample 

that really stands out to me . 

Other Note segment does not belong to any of the other categories (i.e., 
Reproduction, Elaboration, Metacognitive). 

all bees are starving 

Source of 

Note 

Kiosk Note segment contains information from research kiosk pages. pesticides can cause mutations 

including extra limbs in frogs 

Test Note segment contains information that could be traced to the 

laboratory test results.  

water test : pH 4.5 , atrazine 

Observation Note segment contains information based on what students 

observed in the virtual environment. 

yellow tadpole : smaller than normal , 

short tail 

Dialogue Note segment contains information from conversation with NPCs in 

IVA.  

Another nam [sic] says that pesticides 

are the reason because ‘he’ sprays his 
fields with imidacloprid [sic]. 

Combination Note segment involves coordinating and integrating pieces of 

information from multiple disparate sources from the other 
categories (i.e., Kiosk, Test, Observation, Dialogue). 

Internet Kiosk says pesticide (such as 

atrazine , which someone accused 
Garcia of using) can cause extra limbs 

to appear in frogs .  

Unknown Note segment contains information whose source could not be 
identified. 

i think the frog is an alien frog. 

Hypothesi

s/Conclusi

on 

Hypothesis Note segment proposes a possible final hypothetical claim and 

generates a hypothesis about the possible causal factors (e.g., 

pesticides, pollution, parasites, genetic mutation, aliens) leading to 
the mutation of the six-legged frog or the death of the local bee 

population. 

I think that the reason why the frong 

[sic] was abnormal and had six legs was 

because the water and pestisides [sic] in 
the water 

Conclusion Note segment pertains to forming and drawing a conclusion from 

data that students collected (e.g., test results, kiosk pages, 
observation, dialogue, etc.). 

Red bee is infected by parasites (Varroa 

Mites) as it has SMALL BROWN OR 
RED SPOTS AND STUBBY WINGS . 

Other Note segment does not belong to Hypothesis or Conclusion. frog has really low white blood 
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Table 4. Comparisons of the number of various categories of segments in a student’s note between 

note-takers in the novice group and the experienced group in each scenario. Descriptive statistics 

(means with standard deviations in parentheses) of the note content are reported for novice students 

(N) and experienced students (E) by scenario. T-statistics from three-level regressions comparing 

differences between the two groups are reported. Statistically significant results after Benjamini 

and Hochberg’s post-hoc control are marked with *. 

Note Segment Frog-N Frog-E t Bee -N Bee -E t 

Reproduction 6.14 (6.57) 7.78 (7.57) 3.73* 6.05 (5.92) 7.86 (7.81) 3.52* 

Elaboration 1.32 (1.93) 1.44 (2.45) .99 1.16 (1.83) 1.55 (2.26) 2.72* 

Metacognition .10 (.49) .09 (.87) −.18 .08 (.69) .07 (.40) −.42 

Test 1.99 (3.20) 1.68 (3.27) −1.60 1.59 (2.74) 2.21 (3.59) 2.90* 

Kiosk 3.13 (4.69) 4.41 (5.93) 3.94* 2.89 (4.55) 4.35 (5.77) 4.28* 

Observation 2.16 (3.64) 3.11 (4.91) 3.80* 2.54 (4.04) 2.95 (4.41) 1.23 

Dialogue .30 (1.26) .25 (1.32) −.60 .34 (1.43) .28 (1.49) −1.03 

Combination .19 (.71) .30 (1.51) 1.70 .25 (.89) .46 (1.24) 2.99* 

Hypothesis .51 (1.06) .53 (1.07) .40 .34 (.87) .55 (1.19) 3.49* 

Draw Conclusion from Data .46 (1.04) .54 (1.21) 1.19 .36 (1.02) .62 (1.24) 3.43* 

Reproduction of Test 1.49 (2.63) 1.18 (2.46) −2.00 1.22 (2.30) 1.68 (2.91) 2.60 

Reproduction of Kiosk 2.80 (4.53) 3.95 (5.59) 3.68* 2.57 (4.34) 3.80 (5.36) 3.75* 

Reproduction of Observation 1.58 (3.09) 2.42 (4.29) 3.93* 2.00 (3.53) 2.24 (3.80) .76 

Reproduction of Dialogue .27 (1.20) .23 (1.30) −.48 .31 (1.35) .26 (1.43) −.90 

Reproduction of Combination .01 (.09) .01 (.14) .95 .09 (.53) .13 (.54) 1.24 

Elaboration on Test .48 (1.13) .50 (1.54) .33 .35 (.86) .51 (1.20) 2.35 

Elaboration on Kiosk .30 (.90) .44 (1.47) 2.00 .28 (.83) .48 (1.33) 2.94* 

Elaboration on Observation .56 (1.16) .65 (1.38) 1.14 .51 (1.20) .69 (1.40) 1.97 

Elaboration on Dialogue .03 (.22) .01 (.10) −1.42 .03 (.24) .02 (.15) −.90 

Elaboration on Combination .18 (.70) .29 (1.49) 1.62 .17 (.62) .33 (1.09) 3.03* 

 

 


