
Contemporary Educational Psychology 69 (2022) 102064

Available online 30 March 2022
0361-476X/© 2022 Elsevier Inc. All rights reserved.

The evolution of metacognitive strategy use in an open-ended learning 
environment: Do prior domain knowledge and motivation play a role? 

Yingbin Zhang a,*, Luc Paquette a, Nigel Bosch b, Jaclyn Ocumpaugh c, Gautam Biswas d, 
Stephen Hutt e, Ryan S. Baker e 

a Department of Curriculum & Instruction, University of Illinois at Urbana-Champaign, 1310 S Sixth Street, Champaign, IL 61820, United States 
b School of Information Sciences and Department of Educational Psychology, University of Illinois at Urbana-Champaign, 501 E. Daniel St., Champaign, IL 61820, United 
States 
c Penn Center for Learning Analytics, University of Pennsylvania, 3700 Walnut St., Philadelphia, PA 19104, United States 
d Department of Computer Science/ISIS, Vanderbilt University, 1025 16th Ave South, Nashville, TN 37212, United States 
e Graduate School of Education, University of Pennsylvania, 3700 Walnut St., Philadelphia, PA 19104, United States   

A R T I C L E  I N F O   

Keywords: 
Metacognitive strategy 
Self-regulated learning 
Prior domain knowledge 
Task value 
Self-efficacy 

A B S T R A C T   

There is a growing interest in viewing self-regulated learning as events unfolding over time, especially when 
students perform learning tasks in computer-based environments. Metacognitive activities are critical events in 
self-regulated learning. This study investigated the evolution of metacognitive strategy use in an open-ended 
computer-based learning environment, Betty’s Brain. The data were from 93 sixth graders who used Betty’s 
Brain to learn about climate change for four days. We extracted indicators of metacognitive strategy use from 
action logs. A knowledge test and self-report questionnaire were administrated before students started using 
Betty’s Brain to assess prior domain knowledge and motivation, respectively. Results showed that metacognitive 
strategy use increased from the first to the second day and remained stable from the second to the fourth day of 
the study. The evolution of these behaviors varied across students. Task value and prior domain knowledge 
partially explained the individual differences in this evolution. Task value and prior domain knowledge also 
predicted the use of metacognitive strategies. Self-efficacy did not influence metacognitive strategy use. These 
results suggest the need for further investigation into the role of motivation and prior domain knowledge in the 
temporal evolution of metacognitive events.   

1. Introduction 

Open-ended, computer-based learning environments provide stu-
dents with the opportunity to experience complex phenomena in 
authentic problem-solving scenarios and the freedom to learn by making 
their own decisions (Land, 2000; Lowyck, 2014). However, the freedom 
and complexity demand that learners actively monitor and manage their 
activities (Kinnebrew, Segedy, & Biswas, 2017; Segedy, Kinnebrew, & 
Biswas, 2015a). That is, learners need to self-regulate learning (SRL; 
Zimmerman, 1990). Metacognitive strategies are an essential compo-
nent of SRL (Panadero, 2017), and their use can facilitate learning 
(Ohtani & Hisasaka, 2018). Studies have found that motivational factors 
and prior domain knowledge influence how learners use cognitive and 
metacognitive strategies (Liem et al., 2008; Ocak & Yamaç, 2013; Üner 
et al., 2020), but few studies have explored how these factors relate to 

changes in strategic behaviors over time. 
Learning has temporal characteristics because it is the acquisition 

process of knowledge and skills (Molenaar, 2014). It takes time for these 
new skills to manifest in behavioral changes (Soderstrom & Bjork, 2015; 
Zimmerman, 2002). There has been increasing interest in understanding 
the temporal aspects of SRL (Azevedo, 2014; Molenaar & Järvelä, 2014; 
Winne & Baker, 2013), as they have both theoretical and practical im-
plications. Understanding how strategic learning behaviors change over 
time—and how prior domain knowledge and motivation influence such 
change—can enrich SRL theories and lead to more informed decisions 
about when to provide scaffolding and to whom. As such, the present 
study investigated how metacognitive strategies use evolved over time 
in an open-ended computer-based learning environment, Betty’s Brain. 
Specifically, we examined how prior knowledge, task value, and self- 
efficacy related to the temporal evolution of metacognitive strategies. 
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1.1. Self-regulated learning (SRL) and its temporal characteristics 

SRL refers to how learners adaptively regulate their cognition, be-
haviors, motivation, and affect to achieve their learning goals (Schunk & 
Greene, 2017). SRL can be viewed as a series of cognitive and meta-
cognitive events (Azevedo, Moos, et al., 2010) unfolding over time 
(Greene & Azevedo, 2010; Hadwin, 2021; Molenaar & Järvelä, 2014; 
Winne & Baker, 2013). Examples of cognitive events include memori-
zation, elaboration, and reviewing, while examples of metacognitive 
events include goal setting, planning, self-monitoring, self-control, and 
self-evaluation (Dent & Koenka, 2016). 

These broad categorizations are important, but SRL events, like 
learning, are highly contextually dependent (Azevedo et al., 2012; Li 
et al., 2020). An SRL event should not be classified into a specific 
category (cognitive vs. metacognitive) or subcategory (e.g., memoriza-
tion and elaboration) without considering the specific context in which 
it occurs. For instance, in MetaTutor, an intelligent hypermedia envi-
ronment for learning human body systems (e.g., the circulatory system; 
Azevedo, Johnson, et al., 2010), the action of taking notes may align 
with different subcategories of cognitive events (Azevedo et al., 2013). If 
students create notes by copying text verbatim from the learning ma-
terial, taking notes may represent content reproduction (a shallow 
cognitive processing event). By contrast, if students create notes by 
integrating ideas from different sections, the note-taking action may 
represent elaboration (a deep cognitive processing event). 

Researchers have investigated SRL events across two dimensions: (1) 
individual and (2) sequential characteristics (Knight et al., 2017; 
Molenaar, 2014). Individual characteristics may include the occurrence 
rate, timing, and duration of an event during learning processes. 
Sequential characteristics may include the sequential relations and 
transitions among events (Molenaar & Järvelä, 2014)—for example, the 
conditional probability of reading relevant book pages after taking a 
quiz. The sequential characteristics of SRL events can be discovered via 
data mining techniques, such as sequential pattern mining (Kinnebrew 
et al., 2014), process mining (Bannert et al., 2014), and epistemic 
network analysis (Paquette et al., 2021), or advanced statistical models, 
such as lag-sequential analyses (Kuvalja et al., 2014) and statistical 
discourse analyses (Molenaar & Chiu, 2014). 

This paper focuses on the temporal change of individual character-
istics, specifically, the rate at which students use metacognitive strate-
gies and how the rate evolves during the learning process. We use the 
term evolution to refer to the temporal change of metacognitive strategy 
use based on the following considerations. Prior studies have used 
different terms such as evolution (de Backer et al., 2016; Kinnebrew 
et al., 2014), temporal variation (Paans et al., 2019; Zheng et al., 2019), 
and difference (Greene et al., 2021) to describe the change of SRL be-
haviors over time. Compared with the other terms, evolution implies 
that the behavioral change is systematic rather than random as the word 
evolution can refer to “a process of change in a certain direction” 
(Merriam-Webster, n.d.). Behavioral changes may demonstrate a 
learner’s ability to adapt as they acquire new knowledge (Greene et al., 
2021). However, this notion may only apply to systematic behavioral 
change as a random change does not require adaptivity. In summary, 
using evolution may match the SRL process better than other terms such 
as temporal variations and differences. 

Studies have examined the evolution of SRL behaviors in various 
contexts, including classrooms without technology (de Backer et al., 
2016), sheltered Internet-based learning environments (Paans et al., 
2019), online collaborative inquiry environments (Zheng et al., 2019), 
and learning management systems (Greene et al., 2021). This research 
has found differences in the evolution of SRL behaviors between high 
and low-performing groups (Paans et al., 2019; Zheng et al., 2019), 
suggesting that finding ways to support SRL behaviors may be one path 
to enhancing learning. However, these studies did not investigate the 
relationship between how students’ other characteristics related to the 
evolution of their SRL behaviors, which limits the inferences we can 

make about which SRL scaffolds were most effective to whom. In 
contrast, the current research investigates whether students’ charac-
teristics like prior domain knowledge, task value, and self-efficacy, 
explain the individual differences in the evolution of SRL behaviors 
within an open-ended learning environment. 

1.2. Self-regulated learning and Open-ended learning environment 

Open-ended learning refers to situations in which learners determine 
what, how, and when to learn based on their unique intentions and 
external goals (Hannafin et al., 1994). It contrasts with directed 
learning, where the environment and designers determine what is to be 
learned and the sequence of action. Open-ended learning environments 
provide learners with authentic contexts and rich resources to support 
the exploration of complex phenomena, the integration of new knowl-
edge and daily experience, and learner-centered inquiries (Land, 2000). 
However, these environments demand that individuals actively monitor 
their understanding, evaluate their performance, and refine their stra-
tegies. As such, SRL is particularly critical in open-ended learning en-
vironments (Segedy et al., 2015a). Indeed, low-performing learners 
show fewer SRL activities and approach the task with less effective 
strategies (Kinnebrew et al., 2013; Roscoe et al., 2013; Sabourin et al., 
2013). Nevertheless, how SRL strategy use evolves in such environments 
is underexplored. Kinnebrew et al. (2014) showed that students who 
received different scaffolding differed in the evolution of their strategic 
and ineffective behaviors. Segedy et al. (2015b) found that students’ 
problem-solving strategies were relatively stable across days. The tem-
poral characteristics of SRL events require further research in open- 
ended learning environments. 

1.3. Self-regulated learning and prior domain knowledge 

The information processing theory of SRL emphasizes the role of 
prior domain knowledge in learning (Winne & Hadwin, 2008). Ac-
cording to this model, domain knowledge is a cognitive condition that 
impacts how learners understand a task. Taub et al. (2014) further 
illustrate how domain knowledge may influence the cognitive and 
metacognitive activities in the four phases of SRL, i.e., task definition, 
goal setting and plan, execution, and adaptation. Indeed, studies have 
found a positive association between domain knowledge and SRL stra-
tegies (Li, 2019; Moos & Azevedo, 2008, 2009a; Taub et al., 2014; Taub 
& Azevedo, 2019). Moos and Azevedo (2008) as well as Taub and 
Azevedo (2019) have investigated the relationship between domain 
knowledge and SRL in undergraduates’ learning about the human cir-
culatory system. In Moos and Azevedo’s (2008) research, learners with 
higher domain knowledge planned and monitored their learning more 
frequently than those with low domain knowledge. Learners with higher 
domain knowledge also engaged in more cognitive activities, such as 
note-taking, summarizing, and memorizing. Taub and Azevedo (2019) 
replicated these results, reinforcing the link between domain knowledge 
and SRL. 

The increased use of SRL strategies by students with high prior 
knowledge is possibly related to working memory (Moos & Azevedo, 
2008; Taub et al., 2014). Working memory has serious limitations in 
both capacity and duration when learners encounter novel information 
(Sweller, 2011). Learners with low domain knowledge need more 
working memory capacity for processing the information, while learners 
with high domain knowledge can allocate more of this capacity for 
regulation (Taub et al., 2014). As the learning process unfolds, domain 
knowledge increases, and some of the working memory capacity for 
novel information may be released. As these resources become available, 
learners engage in more regulatory activities. 

In this account, learners who frequently use SRL strategies as part of 
their normal learning practices may be less likely to increase SRL 
strategy use. Similarly, increases in domain knowledge may vary, 
especially between novice and more expert learners. Thus, domain 
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knowledge may influence both the overall SRL strategy use and the 
evolution of SRL strategy use. However, this assumption has not been 
examined. 

1.4. Self-regulated learning and motivation 

Motivation has been an essential component of several SRL models 
(Efklides, 2011; Pintrich, 2000; Winne & Hadwin, 2008; Zimmerman, 
2000). Monitoring learning processes and enacting proper strategies 
consumes energy, time, and effort (Zimmerman, 2000). If learners are 
not motivated, they tend not to apply proper strategies or persist with 
the learning activity. Motivation may serve as a predictor, mediator, or 
outcome of self-regulation activities (Zimmerman & Schunk, 2008). The 
present study investigates two prominent sources of motivation: self- 
efficacy and task value. These motivational components are mutually 
correlated, but each has unique effects on SRL behaviors (Pintrich & de 
Groot, 1990; Üner et al., 2020; Zimmerman & Schunk, 2008). 

1.4.1. Self-efficacy 
Self-efficacy refers to an individual’s beliefs about their capability to 

complete a task (Bandura, 1997). The social cognitive theory of SRL 
emphasizes the influential role of self-efficacy in SRL (Schunk & Ertmer, 
2000; Zimmerman, 2000). Learners with higher self-efficacy reported 
more cognitive and metacognitive strategy use (Pintrich & de Groot, 
1990). High self-efficacy learners tended to set challenging goals for 
themselves and persist when facing difficulty (Schunk & Ertmer, 2000; 
Zimmerman & Bandura, 1994). Similarly, high self-efficacy learners 
monitored working time more frequently than their low self-efficacy 
counterparts (Bouffard-Bouchard et al., 1991). 

Research has used learning process data to investigate the associa-
tion between self-efficacy and SRL. For instance, Moos and colleagues 
(Moos, 2014; Moos & Azevedo, 2009a) coded students’ think-aloud data 
for metacognitive monitoring processes based on a well-developed SRL 
coding scheme (Azevedo & Cromley, 2004). The results showed that 
self-efficacy positively predicted the behaviors of monitoring under-
standing and progress toward goals. Hong et al. (2020) examined un-
dergraduates’ motivation and metacognition in a biology course. They 
extracted metacognitive behavior metrics from students’ action logs in 
the Blackboard learning management system. Compared with groups 
reporting stronger performance-approach or performance-avoidance 
goals and psychological cost, the group characterized by higher self- 
efficacy, mastery-approach goal, and task value engaged more in ac-
tivities related to planning their learning and monitoring their perfor-
mance. Overall, the empirical evidence supports the claim that self- 
efficacy is positively related to SRL strategy use. 

1.4.2. Task value 
Task value refers to a student’s perceptions about the importance, 

usefulness, enjoyment, and cost of a task (Wigfield & Eccles, 1992). 
Eccles and colleagues’ expectancy-value model of achievement behavior 
claims that task-value beliefs, in addition to expectancy-related and 
ability-related beliefs, are critical determinants of task behaviors (Wig-
field & Eccles, 1992; Eccles et al., 1983). If students perceive a high 
probability of success in a task but do not value it, they may not choose 
to engage in or put little effort into the task. Social cognitive models of 
SRL highlight the role of task value in SRL, especially the phase of goal 
setting and plan (Pintrich & Zusho, 2002; Zimmerman, 2000). If stu-
dents highly value the task, they will spend more time on making and 
executing the plan. 

Studies have found associations between task value and meta-
cognitive strategy use. For instance, in Pintrich and de Groot’s (1990) 
study, seventh-grade students’ who perceived course work as important 
and interesting reported more use of SRL strategies, such as planning 
and comprehension monitoring. Task value has predicted cognitive and 
metacognitive strategy use in samples from adolescents and college 
students (Üner et al., 2020; Wolters & Pintrich, 1998), and the 

predicting effects were stable across the subjects of mathematics, En-
glish, and social studies (Wolters & Pintrich, 1998). Task value might 
indirectly impact the use of surface and in-depth learning strategies (e. 
g., memorization and questioning learning material) via achievement 
goals (Liem et al., 2008). It should be noted that measures of strategy use 
in these studies are self-reported. As Wigfield et al. (2008) suggest, using 
behavioral measures of SRL provides crucial supplementary information 
about associations between task value and SRL. Yet few studies have 
done so (Hong et al., 2020; Sabourin et al., 2013). As a result, it is un-
clear whether task value is also related to the temporal evolution of SRL 
strategy use. 

1.5. The present study 

The current study investigated how students’ metacognitive strategy 
use changed from day to day in Betty’s Brain, an open-ended learning 
environment, and examined the relationships that domain knowledge, 
task value, and self-efficacy had with metacognitive strategy use. Four 
research questions (RQs), based on the review of the literature, were 
investigated: 

RQ 1: Does the use of metacognitive strategies increase across days? 

Prior studies have found that, depending on the context, the fre-
quency of metacognitive strategy use may decrease, increase, or remain 
stable over time (de Backer et al., 2016; Greene et al., 2021; Paans et al., 
2019). In the current study, we expect the frequency would increase 
because students might become more familiar with Betty’s Brain, and 
their knowledge of the studied topic may increase over time. Such in-
creases in the knowledge about the environment and the domain might 
enhance students’ capacity for applying metacognitive strategies. 

RQ 2: If so, does the temporal evolution of the use of metacognitive 
strategies vary across students? 

The temporal change of SRL behaviors has been found to differ be-
tween groups, such as students with high and low performance (Paans 
et al., 2019) and students receiving different scaffolding (Kinnebrew 
et al., 2014). Although this study did not compare specific groups, it is 
reasonable to assume that the evolution of metacognitive strategy use 
would vary across students due to individual differences. 

RQ 3: Does students’ prior domain knowledge predict their use of 
metacognitive strategies? 

RQ 3.1: Is prior domain knowledge related to overall meta-
cognitive strategy use? 
RQ 3.2: Does prior domain knowledge explain the differences in 
the evolution of metacognitive strategy use across students? 

For RQ 3.1, we expect that prior domain knowledge would be posi-
tively related to overall metacognitive strategy use, which is in line with 
previous studies (Li, 2019; Moos & Azevedo, 2008; Taub et al., 2014). 
For RQ 3.2, students who frequently apply metacognitive strategies as 
part of normal practices might be less likely to increase their strategy 
use. Besides, increases in domain knowledge may vary between novice 
and more experienced students. Thus, we expect that prior domain 
knowledge would explain the differences in the evolution of strategy 
use. However, there is currently a lack of theory or empirical evidence to 
guide the direction of the hypothesis, i.e., whether prior domain 
knowledge would be positively or negatively related to the increases in 
strategy use. 

RQ 4: Do motivational factors (i.e., self-efficacy and task value) 
predict metacognitive strategy use? 

RQ 4.1: Are motivational factors related to overall metacognitive 
strategy use? 
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RQ 4.2: Do motivational factors explain the differences in the 
evolution of metacognitive strategy use across students? 

For RQ 4.1, prior studies have found that self-efficacy and task value 
are positively related to metacognitive strategy use (Moos, 2014; Moos 
& Azevedo, 2009a; Üner et al., 2020). Thus, we expect such associations 
in the current research. For RQ 4.2, students with higher task value and 
self-efficacy might engage in the task and adjust to the environment 
better than those with low task value and self-efficacy. However, their 
high motivation might not be sustained over multiple days, and de-
creases in motivation might cause smaller increases in metacognitive 
strategy use. Thus, we expect that task value and self-efficacy would 
explain some differences in the evolution of strategy use. Again, theory 
and empirical evidence are currently insufficient to guide the direction 
of the hypothesis. 

2. Methods 

2.1. Participants and procedure 

The data were collected from 93 sixth-grade students in an urban 
middle school (grades 5–8) in the Southern U.S. This school serves 
around 700 students each year. For the 2018–2019 school year (when 
data collection took place), this school reported a student population 
that was 60% White, 25% Black, 9% Asian, and 5% Hispanic. Around 
8% were enrolled in the free and reduced-price lunch program. 

No demographic data were collected from individual students, but 
informal observations of the classes where research was conducted 
suggested that these classes appeared to reflect the school-level de-
mographics for race, and sex was also well-balanced in this sample. 
Additionally, because this school was an academically competitive 
magnet school, students were not being tracked into high and low- 
performing groups, which sometimes leads to defacto segregation of 
meaningful demographic categories. 

Students came from four classrooms of 21 to 23 students, each. Four 
or five students were seated at a table but worked independently on 
separate laptops. They occasionally talked to others, but there was not 
any sustained collaboration. The study lasted seven school days. On day 
1, students spent 30 to 45 min completing a self-report questionnaire 
and a paper-based pretest. The self-report questionnaire measured stu-
dents’ motivation, and the pretest assessed their prior domain knowl-
edge of climate change and causal relationships. On day 2, they received 
a 30-minute training about how to use Betty’s Brain. Over the next four 
days, they spent 30 to 45 min per day learning about climate change 
within Betty’s Brain. On the final day, students completed a posttest 
identical to the pretest. 

2.2. Material 

2.2.1. Betty’s Brain 
Betty’s Brain is an open-ended computer-based learning environ-

ment that uses a learning-by-teaching approach (Biswas et al., 2016). 
Students learn about scientific phenomena, such as climate change and 
thermoregulation, by teaching Betty, a virtual student. Specifically, 
students build a causal map describing scientific phenomena, in which 
causal (cause-and-effect) relationships are represented by a set of con-
cepts connected by directed links (see Fig. 1). To build this map, students 
can access hypermedia resource pages on relevant scientific concepts. 
Students can evaluate their causal modeling progress by asking Betty to 
take graded quizzes or by querying her on cause-and-effect questions 
related to what she has been taught. Betty’s quiz grades or her expla-
nations of her answers can help the student keep track of her progress 
(and thus their own). By looking at Betty’s correct and incorrect an-
swers, students can identify problems in their causal map. They can then 
improve their understanding of the topic by reading the resource pages 
and correcting those problems (e.g., missing links and incorrect links 
between concepts). 

Students can also ask Mr. Davis, a virtual pedagogical agent 

Fig. 1. Screenshot of viewing quiz results and checking the chain of links Betty used to answer a quiz question. 
Note. The top right shows the quiz questions, answers, and grades. A gray grade means Betty could not answer the question because the question involved concepts or 
links that had not been added to the map. The second question, which was answered incorrectly, was selected, and the concepts and links that Betty used to answer 
this question were highlighted at the right bottom. 
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described to students as an experienced teacher, for help if they do not 
know how to use the system. In some situations, Mr. Davis may inter-
vene if the student has difficulties and is not making progress in their 
map-building tasks. He may prompt students to read resource pages 
containing information that could improve the causal map (e.g., “You 
should go and read the page on Deforestation and Carbon Dioxide”). The 
prompts are triggered in conditions such as “quiz score has not improved 
in the students’ last five attempts at updating their map”. 

The learning unit used in this study was on the topic of climate 
change. This unit was organized into four sections, including the 
introduction, greenhouse effect, human activities, and impacts on 
climate. It contained ten hypertext pages and covered 22 relevant sci-
entific concepts and 27 causal relationships between these concepts. 

2.2.2. Metacognitive strategy use 
This study operationalizes metacognitive strategy use as coherent 

actions (Segedy et al., 2015a). Coherent actions are actions that support 
later actions or are based on prior actions. For instance, in Fig. 1, the 
quiz results could inform students that the causal links between defor-
estation and carbon dioxide were incorrect. After viewing these quiz 
results, if students read the resource pages that contained information 
about the correct relationship between the two concepts, the viewing 
and reading actions were coherent. Coherent actions imply the use of 
metacognitive strategies because a coherent action entails that a student 
monitors information generated by the prior actions (e.g., viewing quiz 
results) and adapt current actions (e.g., reading pages) based on the 
acquired information (Segedy et al., 2015a; Zhang et al., 2020). The two 
actions do not need to be consecutive, but it is necessary to restrict the 
time interval between them. Prior research in Betty’s Brain found that 
students usually used information within 5 min of encountering the 
information (Segedy, 2014). The proportion of actions not supported by 
prior actions within 5 min was negatively correlated with students’ map 
scores within Betty’s Brain (the number of correct causal links minus the 
number of incorrect links; Segedy et al., 2015a). In contrast, the pro-
portion of information that was used within 5 min of encountering the 
information was positively related to students’ map scores and changes 
between pretest and posttest scores (Segedy et al., 2015a). 

We analyzed students’ action logs from Betty’s Brain to identify 
coherent actions. There were five kinds of coherent actions in Betty’s 
Brain: coherent viewing, prompts, edits, reading, and marking. Each type of 
coherent action had its incoherent counterpart, which might provide 
complementary information for understanding how metacognitive 
strategy use evolves. Thus, incoherent metrics were used in the analysis 
for RQ1 and defined here. 

1. Coherent viewing was viewing quiz results actions that were 
coherent with later actions. It measured whether students used assess-
ment results to support later activities and might indicate self- 
monitoring (Zhang et al., 2020). 

Incoherent viewing was viewing quiz results actions that did not 
support later actions. In other words, students did not utilize informa-
tion generated by viewing quiz results to guide reading or editing 
actions. 

2. Coherent prompts. Mr. Davis might give prompts recommending 
students to read resource pages containing information that could 
improve the causal map. Coherent prompts were the prompts that stu-
dents used, i.e., students read the resource pages recommended by the 
prompts. Coherent prompts assessed whether students utilized external 
feedback and might reflect self-control. 

Incoherent prompts were prompts that students received but did not 
use. 

3. Coherent edits were map edit actions that were based on reading 
actions or viewing quiz results actions. It measured whether students 
edited the concept map based on previously acquired information and 
might reflect self-control (Zhang et al., 2020). 

Incoherent edits were map edit actions that were not supported by 
reading or viewing quiz results actions. For instance, if a student added a 

link between deforestation and carbon dioxide but did not read pages 
about their relationships, this edit would be incoherent no matter 
whether the link was correct or not. 

4. Coherent reading was page reading actions that were based on quiz 
results or prompts from the system. It measured whether students 
intentionally sought relevant information to improve their understand-
ing based on the quiz results or the prompt (Zhang et al., 2020). Thus, 
coherent reading might indicate self-control. 

Incoherent reading was page reading actions that were not based on 
quiz results or reading prompts from the system. For example, in Fig. 1, 
after viewing the quiz results, if a student read the resource pages that 
contained information about the relation between deforestation and 
carbon dioxide, this reading action would be coherent. By contrast, if the 
student read resource pages that did not contain any information related 
to the quiz questions answered incorrectly, the reading action would be 
incoherent. Note that if students read a page that they did not read 
before, these reading actions would not be labeled incoherent even 
though they were not supported by the quiz results or reading prompts. 
Such reading might indicate that students did not know what to read 
next and opened a new page randomly or that they intentionally 
searched for information about causal links not in the map. We could not 
verify which reason drove these reading actions. Thus, they were 
excluded from the analysis. 

5. Coherent marking was marking actions that were based on quiz 
results. This variable reflected how often, based on the quiz results, 
students understood what links on their map were correct or possibly 
incorrect and annotated them accordingly. Coherent marking might 
represent constructive monitoring behaviors because the marking action 
translates quiz results into systematic checking of the causal maps 
(Zhang et al., 2020). 

Incoherent marking was marking actions that were not based on quiz 
results. For instance, students labeled a causal link correct or wrong 
without using quizzes to test its correctness. 

Note that we did not examine incoherent metrics in the analyses for 
RQs 2 to 4 because these RQs focused on the use of metacognitive 
strategy, as measured through coherent actions (Segedy et al., 2015a; 
Zhang et al., 2020). No evidence supports the idea that incoherent ac-
tions may indicate metacognitive strategy use, although we do not as-
sume that incoherent actions represent less effective or inadequate 
strategies. 

In the current study, over half of the students did not use the marking 
functionality (86.6%, 56.5%, 47.7%, and 50.6% in the first, second, 
third, and fourth days of using Betty’s Brain, respectively). Low marking 
usage provided limited information about students’ differences in the 
application of metacognitive strategies. Thus, coherent and incoherent 
marking actions were not analyzed. 

The number of coherent edits and the number of coherent prompts 
were computed per day per student. For coherent reading and viewing, 
we used the sum of duration per day per student as indicators rather 
than the action counts because the duration of reading and viewing 
actions could vary from seconds to minutes. Using the action counts as 
the indicators of coherent reading and viewing would imply that a 
coherent reading action with a span of 10 s is equivalent to a coherent 
reading action with a span of 100 s. The time on Betty’s Brain varied 
across days and students, and thus, we divided the coherent action 
metrics by hours on Betty’s Brain to make them comparable within and 
between students. 

2.2.3. Prior domain knowledge 
Domain knowledge was operationalized as pretest scores. The test 

assessed knowledge of climate change and causal relationships and 
contained seven multiple-choice and three short-answer questions. Each 
question involved both climate change and causal relationships. Each 
multiple-choice question had four choices, and students got one point if 
they answered a question correctly. Short-answer questions asked stu-
dents to explain how one factor influenced another based on their 
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understanding of the causal relations among concepts in the climate 
change domain. The correct answer to each question contained three or 
four successive causal links between a relevant set of concepts. A student 
got one point if their answers had one link that was the same or close to a 
link in the correct answer. The appendix presents two example ques-
tions. Students could get a total maximum score of 18 points. A posttest 
was administrated to check students’ learning. The coefficient alpha was 
0.75 and 0.84 for the pretest and posttest, respectively, indicating 
acceptable to satisfactory internal consistency, given the small number 
of items (Cortina, 1993). 

2.2.4. Motivational factors 
The self-report questionnaire measured two motivational factors: 

task value and self-efficacy. All items were scored on a 5-point Likert 
scale. Task value reflected students’ perceived importance and utility of 
science in general and the learning topic (i.e., climate change). It was 
measured by three slightly modified items from the Science Learning 
Value subscale of Students’ Motivation toward Science Learning ques-
tionnaire (SMTSL; Tuan et al., 2005). The coefficient alpha was 0.69, 
indicating acceptable internal consistency, given the few items (Cortina, 
1993). The average item score was used as an indicator. 

Self-efficacy represented the extent to which students thought they 
were able to learn science in general. Three items from the self-efficacy 
subscale of the SMTSL questionnaire measured it (Tuan et al., 2005). 
The coefficient alpha was 0.75, indicating acceptable internal consis-
tency, given the few items (Cortina, 1993). The average item score was 
used as an indicator. 

2.3. Data analyses 

For RQ1, a one-way repeated analysis of variance (ANOVA) was 
conducted with each coherent metric as the dependent variable and day 
as the within-student independent variable. If a coherent metric varied 
across days, we used post-hoc pairwise comparisons to determine which 
pairs of consecutive days showed a significant difference. We applied a 
Bonferroni correction for multiple comparisons. 

For RQ2, we fitted mixed models to the data using the lme4 package 
in R (Bates et al., 2015), with each coherent metric as a response vari-
able and day as the predictor. We compared models with and without 
the random effect of the day. When examining the random effect, the 
commonly used Wald test and the likelihood-ratio test (LRT) will be 
invalid if the random effect is zero (Stram & Lee, 1994). The mixture chi- 
square LRT is a better option (Stram & Lee, 1994). This test computes the 
LRT statistic and compares the statistic to two chi-square distributions. 
One chi-square distribution has a degree of freedom the same as the chi- 
square distribution in the commonly used LRT, while another has a 
degree of freedom one less than the commonly used LRT if only one 
random effect is examined. Then, it averages the two p-values returned 
by the comparison. We rejected the null hypothesis (e.g., the random 
effect of day on coherent reading equals zero) when the average p-value 
was<0.05, suggesting that the evolution of coherent reading may vary 
across students. We fitted linear mixed models for coherent reading and 
coherent viewing since their durations were continuous and log-linear 
mixed models with the Poisson distribution for coherent edits and 
coherent prompts because their frequencies were count variables 
(Snijders & Bosker, 2012). Taking coherent reading as an example, the 
linear mixed model without the random effect for the day was the 
following: 

CRij = γ00 + γ10 × dayij + U0j + Rij (1) 

CRij refers to the duration of coherent reading per hour for student j 
on the ith day. γ00 is the fixed effect of the intercept, and U0j is the 
random effect of the intercept. If we let the value of dayij in the first day 
equal to 0, i.e.,day1j = 0, γ00 and U0j can be interpreted as the mean and 
variance of the coherent reading duration across students in the first 

day, respectively. γ10 is the fixed effect of day. Rij is residuals and in-
dependent of U0j. With the random effect of day, the linear mixed model 
becomes: 

CRij = γ00 + γ10 × dayij + U0j + U1j + Rij (2) 

U1j is the random effect of day, related to U0j but independent ofRij. 
For RQ3 and RQ4, we added domain knowledge, motivation, and 

their interaction with day to the mixed effect models. Taking coherent 
reading as an example, the linear mixed effect model is: 

CRij = γ00 +
∑

k
γ0k × Zkj +

(

γ10 +
∑

k
γ1k × Zkj

)

× dayij + U0j + U1j + Rij

(3) 

Zkj represents domain knowledge and motivation in student j. γ0k is 
the main effect of these student-level predictors, and γ1k is their inter-
action with day. The fixed effects were tested via 95% bootstrap confi-
dence intervals with 1,000 resampling iterations (Davison & Hinkley, 
1997). All predictors were grand-mean centered to mitigate the collin-
earity between the main and the interaction effects and ease the inter-
pretation (Enders & Tofighi, 2007). 

3. Results 

3.1. Preliminary analyses 

Table 1 displays the means, standard deviations, and correlations 
among pretest and posttest scores and motivational factors. The paired 
sample t-test showed that posttest scores were significantly higher than 
pretest scores (t = 11.60, p <.001), and the effect size was large (Cohen’s 
d = 1.20), indicating that students learned from using Betty’s Brain. 
Task value was related to neither pretest scores nor posttest scores. Self- 
efficacy was positively related to posttest scores. As in previous research 
(Liem et al., 2008; Üner et al., 2020; Wolters & Pintrich, 1998), the two 
motivational factors were positively related to each other. 

Fig. 2 displays the means of coherent and incoherent metrics with 
95% confidence intervals per day. There were remarkable increases in 
all coherent metrics from the first day to the second day. Daily increases 
in the remaining days were relatively weak, except for coherent viewing 
between the second and third days, the average duration of which rose 
from 6.54 min to 9.87 min per hour. For incoherent metrics, no 
noticeable change was found in the frequency of edits and the duration 
of viewing. There was a moderate decrease in the duration of incoherent 
reading from the first to the second day. Incoherent prompts increased 
gradually over the four days. 

3.2. The evolution of metacognitive strategy use 

Table 2 shows the results of the repeated ANOVA. The results indi-
cated that all actions had significant variations across days. Thus, we 
conducted post-hoc pairwise comparisons to determine which pairs of 
consecutive days showed a significant difference. Table 2 displays the 
results. In line with Fig. 2, the post-hoc pairwise comparison indicated 
that all coherent actions differed significantly between days 1 and 2. 
Students edited the causal map more frequently based on collected in-
formation (coherent edit), adhered more often to the reading prompts 

Table 1 
Descriptive statistics and correlations of time-invariant variables.   

Pretest scores Posttest scores Task value Self-efficacy 

Posttest scores  0.63**  –  –  – 
Task value  0.17  0.19  –  – 
Self-efficacy  0.21  0.31*  0.44**  – 
M  6.22  9.39  4.24  3.45 
SD  2.62  3.16  0.55  0.68 

Note: *p <.05, **p <.01. Bonferroni correction was applied for multiple tests. 
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from the learning system (coherent prompt), and spent more time on 
reading pages containing information that could improve the causal 
map (coherent reading). They also spent more time checking quiz results 
that generated information supporting later actions (coherent viewing). 
Coherent viewing also differed between days 2 and 3. 

For incoherent metrics, there were significant decreases in inco-
herent reading between days 1 and 2 and in incoherent edits between 
days 2 and 3. No significant daily change was found in incoherent 
viewing. Incoherent prompts increased significantly between all pairs of 
days. Overall, coherent actions increased over time, but incoherent ac-
tions decreased or did not change, except for incoherent prompts. 
Comparing the effect sizes of the change in coherent and incoherent 
prompts showed that the effect size for coherent prompts (η2 = 0.14) was 
larger than for incoherent prompts (η2 = 0.10). 

Since the duration of coherent viewing increased from the first to 
second days and the second to third days, we were interested in whether 
the daily growth rate was constant from the first to third days. We 

created a new day-related variable, day_34, which grouped the third and 
fourth days together (i.e., the value of day_34 is 0, 1, 2, and 2 for the 
first, second, third, and fourth days, respectively). We fitted two linear 
mixed models with coherent viewing as the response variable and 
day_34 as the predictor1. The difference between the two models was 
that day_34 was categorical in one model but numeric in another. The 
model with categorical day_34 assumed that the daily growth rate from 
the first to the third days might vary, while the model with numeric 
day_34 supposed that the daily growth rate was constant. The latter was 

Fig. 2. The average frequency or duration of coherent actions with 95% confidence intervals.  

Table 2 
Results of repeated ANOVA and post hoc pairwise comparisons.  

Dependent variable ANOVA Day 1 vs. 2 Day 2 vs. 3 Day 3 vs. 4 

F η2 t Cohen’s d t Cohen’s d t Cohen’s d 

Reading Coherent  13.19  0.14***  6.57  0.84***  1.96  0.22  1.37  0.16 
Incoherent  5.48  0.06***  − 2.59  0.33*  − 0.58  0.06  − 2.00  0.23 

Viewing Coherent  12.78  0.12***  5.22  0.67***  2.74  0.31*  1.14  0.13 
Incoherent  3.58  0.05*  0.48  0.06  1.04  0.12  1.05  0.12 

Edit Coherent  10.80  0.09***  6.89  0.88***  1.82  0.20  0.97  0.11 
Incoherent  3.21  0.04*  1.28  0.16  − 3.27  0.37**  1.83  0.21 

Prompt Coherent  12.36  0.14***  5.95  0.76***  1.18  0.13  1.43  0.16 
Incoherent  9.79  0.10**  3.45  0.44**  2.58  0.29*  2.97  0.34* 

Note: *p <.05; **p <.01; ***p <.001. The independent within student variable is day. Bonferroni correction was applied for multiple tests. 

1 We considered linear and quadratic models with the raw day variable (i.e., 
day = 0, 1, 2, 3 for the first, second, third, and fourth days, respectively). With 
the raw day variable, the quadratic model fitted the data better than the linear 
model (χ2 

= 5.39, df = 1, p =.02). However, the quadratic model with the raw 
day variable was not superior to the linear model with day_34 (χ2 = 2.13, df =
1, p =.14). 
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a restricted version of the former. Thus, the likelihood ratio test (LRT) 
could be used to determine whether the model with numeric day_34 
fitted the data the same as the model with categorical day_34. The LRT 
revealed that the two models fitted the data the same (χ2 = 0.70, df = 1, 
p =.40), indicating that the daily growth rate in coherent viewing was 
constant from the first to the third day. Thus, in subsequent analyses, we 
used the numeric day_34. 

To examine whether the increase in coherent metrics varied across 
students, we compared mixed models with and without the random 
effect of the day. There were increases from the first to the second days 
for coherent edit, read, and prompts, so we used a dummy day-related 
variable, not_first_day, which grouped the second, third, and fourth 
days together (i.e., for the first day, the value of not_first_day is 0, and for 
the other days, the value of not_first_day is 1). For coherent viewing, we 
used the day_34 variable described above. Table 3 shows the results of 
the mixture chi-square LRT. The evolution of coherent edits, read, and 
viewing varied across students, while the growth of coherent prompts 
did not. 

3.3. The influence of domain knowledge, task value, and self-efficacy 

Tables 4 to 7 present the results of mixed models for coherent 
reading, viewing, edits, and prompts, respectively. The base model only 
included the day as the explanatory variable. Models 1.1 and 1.2 con-
tained domain knowledge and its interaction with the day. Models 2.1 
and 2.2 had motivational factors and their interactions with the day. The 
final model only included variables that significantly predicted a 
coherent metric. 

Domain knowledge predicted all coherent metrics. Students with 
higher domain knowledge had more coherent edits and prompts and 
spent more time on coherent reading and viewing than those with lower 
domain knowledge on the first day. Table 5 shows that the random effect 
of the day on coherent viewing decreased from 2.52 to 2.31 from Model 
1.1 (without the interaction between domain knowledge and day) to 
Model 1.2 (containing the interaction), indicating that domain knowl-
edge explained 8.3% of the random effect of day on coherent viewing. 
The moderating effect was statistically significant at the 0.01 signifi-
cance level (γ = 0.30, 95% and 90% bootstrapped confidence intervals 
were [-0.02, 0.62] and [0.03, 0.57], respectively). On average, for stu-
dents with one SD higher in domain knowledge, their increases in 
coherent viewing from the first to the third days was 3.14 min higher 
than the increase in students with one SD lower in domain knowledge2. 
Compared with the average increase in coherent viewing (6.00 min), the 
moderation effect of domain knowledge might be at a medium level. 

Task value predicted coherent viewing (see Table 5). Students that 
valued the task spent more time on coherent viewing. In Table 6, the 
random effect of the day on coherent edits decreased from 0.42 to 0.36 
from Model 2.1 (without the interaction between task value and day) to 
Model 2.2 (containing the interaction), indicating that task value 
explained 14.29% of the random effect. The moderating effect was 
statistically significant at the 0.05 significance level (γ = -0.39, 95% 
bootstrapped confidence intervals = [-0.76, − 0.01]). The moderating 
effect indicates that students with high task value had fewer increases in 
coherent edits from the first to the second day. On average, for students 
with one SD higher in task value, their increase rate in coherent edits 
from the first to the second days was 65.12% of the increase rate in 
students with one SD lower in task value3. 

Self-efficacy neither predicted any coherent metric nor moderated 
their changes over days. Its coefficient estimates were much smaller 
than the coefficient estimates of task value. 

4. Discussion 

SRL is a dynamic process that unfolds over time (Azevedo, Moos, 
et al., 2010; Winne & Hadwin, 2008), and thus, researchers have been 
increasingly interested in the temporal characteristics of SRL events 
(Greene et al., 2021; Molenaar & Järvelä, 2014; Paans et al., 2019). This 
study investigated how metacognitive strategy use evolved daily within 
an open-ended learning environment and whether students showed 
different rates of change. It also examined whether these differences 
were related to students’ domain knowledge, task value, and self- 
efficacy. 

4.1. The evolution of metacognitive strategy use (RQ1 + RQ2) 

The current study found that students’ coherent actions increased 
over time, while their incoherent actions decreased, did not change, or 
experienced relatively fewer increases (depending on the type of action). 
The η2 ranged from 0.04 to 0.14. The range of effect size matches prior 
work, where the η2 of students’ behavioral change over time fell be-
tween 0.01 and 0.22 (Paans et al., 2019). The increased use of meta-
cognitive strategies (operationalized as coherent actions) might be 
related to the increases in familiarity with the learning content (climate 
change) and environment (Betty’s Brain). As the learning process 
unfolded, students knew more about climate change (this is supported 
by significant gains from the pretest scores to the posttest scores). Both 
the present and prior studies have found that domain knowledge was 
positively related to metacognitive strategy use (Li, 2019; Moos & 
Azevedo, 2008; Taub et al., 2014). Increases in domain knowledge 
might enhance students’ capacity for applying metacognitive strategies. 
In addition to becoming more familiar with the learning material, 
learners also became more familiar with the interface features of Betty’s 
Brain over time. Familiarity with Betty’s Brain features enabled students 
to utilize the tools offered by the system effectively, such as adopting the 
advice that recommended individual book pages, having Betty take a 
quiz, and analyzing the quiz results to identify incorrect causal links. 

The growth of coherent actions lessened after the first two days. One 
possible explanation may be that, after using Betty’s Brain for two days, 
students were now relatively familiar with the features of Betty’s Brain 
and might have determined what strategies they found helpful towards 
making progress on the learning task. Thus, their coherent actions 
became stable. Alternatively, the students in this study might not possess 
sufficient working memory capacity to continue improving the fre-
quencies of coherent actions. Sixth graders’ cognitive and metacognitive 
skills are still under development (de Bruin et al., 2011), and the 
application of metacognitive strategy requires effortful control of 
behavior (Efklides, 2011). Moreover, students might become bored with 
the task (Roscoe et al., 2013) and less willing to exert effortful control of 
behavior. Decreases in motivation might mitigate the effect of increases 
in domain knowledge. Nevertheless, this hypothesis needs further 
examination. 

Note that coherent prompts did not increase from the second to the 
fourth day, but incoherent prompts continued rising. Prompts recom-
mended pages for reading, and incoherent prompts were those that 
students received but did not read the recommended pages. The results 
meant that students received an increased number of prompts from the 
system over days, but the number of prompts they followed each day 
remained stable. That is, they might select which prompts to follow. This 
may be a sign of more effective learning regulation compared to 
following all prompts provided by the system. 

The second research question focused on whether the evolution of 
metacognitive strategy use varied across students. The increases in the 
frequency of adopting reading prompts showed no individual 

2 The 3.14 min was the product of 0.30 (the coefficient of the domain 
knowledge*day interaction in model 1.2 of Table 5), 2 (two days between the 
first and third days), 2.62 (the SD of domain knowledge in Table 1), and 2 (two 
SDs).  

3 The 65.12% was the natural exponential to the power of the product of 
− 0.39 (the coefficient of the task value*day interaction in the final model of 
Table 6), 0.55 (the SD of task value in Table 1), and 2 (two SDs). 
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differences, but we found variation across students in the growth of 
coherent edits, reading, and viewing. The individual differences in the 
growth of coherent edits and viewing were partially explained by stu-
dents’ domain knowledge and task value. We discuss these in the 
following sections. 

4.2. The impact of prior domain knowledge on metacognitive strategy use 
(RQ3) 

Prior domain knowledge was positively associated with all types of 
metacognitive strategy use. This was in line with prior studies (Moos & 
Azevedo, 2008, 2009a; Taub & Azevedo, 2019). High domain knowl-
edge allows learners to process novel information with less working 
memory capacity (Taub et al., 2014). Students with high domain 
knowledge might be able to apply more working memory resources to 
monitor and control activities and execute more coherent actions. 

The moderation effect of domain knowledge on the day was statis-
tically significant for coherent viewing at the 0.10 significance level. The 
random effect of the day on coherent viewing decreased 8.3% after 
adding the moderation effect of domain knowledge to the model. The 
reason for this moderation effect might be that domain knowledge is 
associated with efficient learning (Alexander et al., 1994; Beier & 
Ackerman, 2005). High domain knowledge students might learn faster 
than low domain knowledge students, and the greater daily knowledge 
acquisition in climate change, in turn, led to greater increases in 
coherent viewing. Overall, the result suggests that domain knowledge 
may contribute to the evolution of metacognitive strategy use. Future 
research can examine this assumption by using larger sample sizes, 
measuring daily learning gains, and relating it to the evolution of met-
acognitive strategy use. 

4.3. The impact of motivation on metacognitive strategy use (RQ4) 

In line with existing findings (Üner et al., 2020; Wolters & Pintrich, 
1998), task value positively predicted the application of one 

Table 3 
Results of the mixture chi-square LRT for the random effect of the day.   

Model No. τ Deviance Test statistics  p from  

χ2
2 χ2

1 average 

Coherent reading Null 1  2026.3     
Full 2  2020.9  5.4  0.069  0.020  0.043 

Coherent viewing Null 1  2129.9     
Full 2  2106.8  23.1  < 0.001  < 0.001  < 0.001 

Coherent edit Null 1  2360.8     
Full 2  2300.8  60.0  < 0.001  < 0.001  < 0.001 

Coherent prompt Null 1  1288.7     
Full 2  1284.5  4.2  0.120  0.040  0.080 

Note: Null model, only a random effect for intercept. Full model, containing random effects for intercept and day. No. τ, the number of random effects. 

Table 4 
The linear mixed model for coherent reading.   

Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       
Intercept 6.93 [6.19, 7.70]* 6.91 [6.16, 7.67]* 6.91 [6.13, 7.65]* 6.94 [6.09, 7.72]* 6.91 [6.16, 7.72]* 6.91 [6.21, 7.59]* 
not_first_day 4.89 [3.44, 6.31]* 4.86 [3.34, 6.26]* 4.85 [3.38, 6.28]* 4.88 [3.39, 6.29]* 5.00 [3.54, 6.44]* 4.86 [3.44, 6.25]* 
domain knowledge  0.44 [0.12, 0.72]* 0.44 [0.17, 0.73]*   0.44 [0.15, 0.73]* 
not_first_day*domain knowledge  0.06 [− 0.49, 0.62]    
Task value    − 0.57 [− 2.22, 0.89] − 0.65 [− 2.13, 1.01]  
Self-efficacy    0.23 [− 1.00, 1.57] 0.28 [− 0.99, 1.48]  
not_first_day*Task value    − 1.93 [− 4.84, 0.80]  
not_first_day*Self-efficacy    − 0.15 [− 2.57, 2.27]  
Random effects       
Intercept 6.33 5.21 5.21 6.15 6.30 5.21 
not_first_day 3.78 3.88 3.87 3.66 3.23 3.88 

Note: not_first_day = 0 if the first day; else not_first_day = 1. *, the 95% confidence intervals do not contain zero. 

Table 5 
The linear mixed model for coherent viewing.   

Base 
model 

Model 
1.1 

Model 
1.2 

Model 
2.1 

Model 
2.2 

Final 
Model 

Fixed 
effects       

Intercept 6.25 
[5.30, 
7.26]* 

6.22 
[5.30, 
7.16]* 

6.21 
[5.22, 
7.17]* 

6.19 
[5.15, 
7.14]* 

6.23 
[5.29, 
7.25]* 

6.18 
[5.22, 
7.11]* 

day_34 2.99 
[2.15, 
3.82]* 

2.97 
[2.09, 
3.78]* 

2.96 
[2.13, 
3.81]* 

3.05 
[2.17, 
3.87]* 

3.00 
[2.15, 
3.87]* 

3.00 
[2.12, 
3.87]* 

domain knowledge 0.57 
[0.16, 
0.93]* 

0.56 
[0.21, 
0.93]*   

0.52 
[0.18, 
0.85]* 

day_34*domain 
knowledge  

0.30 
[− 0.02, 
0.62]    

Task 
value    

2.04 
[0.04, 
3.88]* 

1.99 
[0.17, 
4.04]* 

2.06 
[0.20, 
3.77]* 

Self- 
efficacy    

0.66 
[− 0.87, 
2.36] 

0.63 
[− 0.89, 
2.21]  

day_34*Task value    0.33 
[− 1.37, 
1.95]  

day_34*Self-efficacy    0.60 
[− 0.83, 
2.05]  

Random 
effects       

Intercept 12.14 9.89 10.09 10.47 10.62 9.09 
day_34 2.90 2.52 2.31 2.78 2.67 2.31 

Note: day_34 = 0 if the first day; day_34 = 1 if the second day; else day_34 = 2. *, 
the 95% confidence intervals do not contain zero. 
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metacognitive strategy: coherent viewing. Students who thought the 
task and science were important spent more time on coherent viewing 
than those with lower task value on the first day. The result suggests that 
starting the task with high value may drive students to evaluate their 
understanding and decide the next step based on the evaluation results. 

Students with higher task value had smaller increases in the fre-
quency of coherent edits than those with lower task value. The reason 
may be their high value toward the task is not maintained through the 
learning process (Wigfield et al., 1997). When students devalue the ac-
tivity, they may put less effort into monitoring and controlling their 
behavior and cognition (Wigfield et al., 2008). Thus, decreases in the 
value for the task may lead to smaller increases in coherent edits. It is 
unexpected that self-efficacy was not a significant predictor of meta-
cognitive strategy use given prior work, as discussed below in sections 
4.4 and 4.5. 

4.4. Implications 

This study contributes to our understanding of SRL as a series of 
events unfolding over time. We found that students evolved toward 
increased use of metacognitive strategies and decreased use of less 
effective behaviors. This result suggests that learners as young as sixth- 
grade students may be able to regulate behaviors adaptively in an open- 
ended learning environment. However, their adaptivity may be limited 
since the increases in metacognitive strategy use lessened after the first 
two days. The change in the magnitude of increases or decreases of SRL 
behaviors implies opportunities for adaptive scaffolding (De Backer 
et al., 2016). For example, in Betty’s Brain, the number of coherent 
actions increased little after the first two days, but one-fourth to one- 
third of reading, viewing, and editing actions were still incoherent 

(see Fig. 2). Thus, during these days, students may need scaffolding that 
differs from the first two days to enhance metacognitive strategy use. 
However, further investigation is needed to determine why increases in 
coherent actions tapered off and what scaffolding could help. 

This study found that task value explained the individual differences 
in the evolution of metacognitive strategy use, but self-efficacy did not. 
Moreover, self-efficacy was not related to the overall frequency of any 
metacognitive strategy use. Motivation have been viewed as factors that 
are worth adapting instruction to (Aleven et al., 2017; Shute & Zapata- 
Rivera, 2012). The current findings suggest that adapting metacognitive 
strategy scaffolding to task value may be better than adapting to self- 
efficacy. At least, it may not be beneficial to adapt scaffolding to task- 
independent self-efficacy, which was measured in this study. 

Prior domain knowledge positively predicted the use of meta-
cognitive strategy use, no matter which type of metacognitive strategy. 
This effect implies that it is necessary to provide learners with tailored 
scaffolding based on their domain knowledge in open-ended learning 
environments (Land, 2000). Learners with low prior knowledge need 
more support on utilizing the functions offered by open-ended learning 
environments. For example, in Betty’s Brain, learners with low prior 
knowledge may need longer training on how to use this system. After 
they start learning activities in Betty’s Brain, the system may provide 
them with scaffolding to interpret quiz results, extract causal relation-
ships between concepts from the resource page, and transfer their un-
derstanding to the causal map. Furthermore, we found a positive 
association between prior knowledge and the use of prompts (see 
Table 7), which indicates that learners with low prior knowledge may be 
less likely to utilize the support of Betty’s Brain. Thus, instructors and 
learning systems may particularly demonstrate and emphasize the use-
fulness of the support to learners with low prior knowledge. For high 

Table 6 
The log-linear mixed models with the Poisson distribution for coherent edits.   

Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       
Intercept 2.60 [2.46, 2.74]* 2.60 [2.46, 2.73]* 2.60 [2.47, 2.74]* 2.60 [2.45, 2.74]* 2.59 [2.46, 2.74]* 2.60 [2.47, 2.72]* 
not_first_day 0.68 [0.47, 0.89]* 0.66 [0.47, 0.86]* 0.68 [0.48, 0.90]* 0.68 [0.49, 0.88]* 0.70 [0.50, 0.92]* 0.68 [0.49, 0.87]* 
domain knowledge  0.09 [0.04, 0.14]* 0.10 [0.05, 0.15]*   0.09 [0.04, 0.14]* 
not_first_day*domain knowledge  − 0.05 [− 0.13, 0.03]    
Task value    0.01 [− 0.26, 0.29] 0.08 [− 0.21, 0.36] 0.05 [− 0.17, 0.29] 
Self-efficacy    0.08 [− 0.16, 0.31] 0.08 [− 0.14, 0.31]  
not_first_day*Task value    -0.38 [-0.76, -0.01]* -0.39 [-0.76, -0.02]* 
not_first_day*Self-efficacy    -0.00 [-0.28, 0.31]  
Random effects       
Intercept 0.43 0.36 0.36 0.42 0.42 0.35 
not_first_day 0.42 0.42 0.42 0.42 0.36 0.37 

Note: not_first_day = 0 if the first day; else not_first_day = 1. *, the 95% confidence intervals do not contain zero. The coefficient is at the log scale of coherent edits. 
Taking the coefficient of domain knowledge in the final model as an example, holding other variables, one unit increase in domain knowledge means that coherent 
edits per hour were expected to increase e0.09 = 1.09 times. 

Table 7 
The log-linear mixed models with the Poisson distribution for coherent prompts.   

Base model Model 1.1 Model 1.2 Model 2.1 Model 2.2 Final Model 

Fixed effects       
Intercept 0.91 [0.74, 1.06]* 0.90 [0.72, 1.04]* 0.89 [0.73, 1.03]* 0.90 [0.73, 1.06]* 0.89 [0.72, 1.05]* 0.90 [0.74, 1.04]* 
not_first_day 1.12 [0.86, 1.43]* 1.12 [0.87, 1.42]* 1.17 [0.88, 1.52]* 1.13 [0.89, 1.45]* 1.16 [0.88, 1.55]* 1.12 [0.88, 1.42]* 
domain knowledge  0.11 [0.05, 0.16]* 0.12 [0.06, 0.18]*   0.11 [0.06, 0.17]* 
not_first_day*domain knowledge  − 0.07 [− 0.18, 0.05]    
Task value    0.15 [− 0.17, 0.47] 0.18 [− 0.16, 0.50]  
Self-efficacy    0.09 [− 0.14, 0.36] 0.11 [− 0.14, 0.39]  
not_first_day*Task value     − 0.15 [− 0.84, 0.46]  
not_first_day*Self-efficacy    − 0.10 [− 0.66, 0.36]  
Random effects       
Intercept 0.38 0.32 0.32 0.37 0.37 0.32 

Note: not_first_day = 0 if the first day; else not_first_day = 1. *, the 95% confidence intervals do not contain zero. The coefficient is at the log scale of coherent prompts. 
Taking the coefficient of domain knowledge in the final model as an example, holding other variables, one unit increase in domain knowledge means that coherent 
prompts per hour were expected to increase e0.11 = 1.12 times. 
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prior knowledge learners, the system may reduce the spontaneous sup-
port and provide support only when they request, given that the 
expertise reversal effect suggests that superfluous support may hamper 
high-domain knowledge learners’ learning (Kalyuga, 2007). 

The prompt in Betty’s Brain was adaptive because it was triggered in 
particular conditions, such as missing a quiz question multiple times 
(Biswas et al., 2016). Clarebout and Elen (2008) found that students 
were more inclined to take adaptive advice on using tools than random 
advice during open-ended learning. The current study found that stu-
dents only used a stable number of prompts, even though they received 
increasing prompts over days. Thus, offering more advice to learners 
does not necessarily increase the frequency of advice adoption, even 
though the advice is adaptive. Moreover, the increasing number of un-
used prompts raises the concern that excessive prompts may frustrate 
students and interfere with learning. If so, the prompt triggering 
mechanism should ensure that learners will not receive excessive 
prompts. This may be achieved by restricting the number of prompts 
that the system offers to learners within a period and avoiding duplicate 
prompts. 

4.5. Limitations and further research 

One limitation of this study is the lack of student-level demographics 
in this sample. We collected school-level demographics, which we ex-
pected to resemble the sample demographics closely, but the sample’s 
specific race, age, and gender distributions were unknown. This is an 
acknowledged weakness since prior research has shown that de-
mographic differences relate to metacognition and SRL. Specifically, 
prior research has shown that metacognitive skills are still developing in 
middle school students (de Bruin et al., 2011), but that gendered dif-
ferences in these constructs have already begun to emerge (see discus-
sion in Pajares, 2002). Velayutham et al.’s (2012) research suggests that 
task value shows gendered differences in SRL, for example, but Schnell 
et al.’s (2015) work on self-efficacy and SRL strategies did not find a 
moderating effect of gender. Although gender was well-balanced in this 
study, our results may still be obscuring important differences that 
might be relevant to identifying which SRL interventions are most likely 
to help. 

Similarly, previous research has shown differences in self-regulation 
strategies by students from different ethnic backgrounds. For help- 
seeking behaviors, these demographic differences have been studied at 
both the student and the school level (Karumbaiah et al., 2021; Schenke 
et al., 2015). While the driving forces for these differences are not fully 
understood, they do suggest the importance of incorporating de-
mographic variables into future research. 

Future research should make greater efforts to incorporate de-
mographics into analyses. For example, researchers may examine 
whether demographics explain individual differences in the evolution of 
metacognitive strategy use and moderate the relationships between 
other variables and metacognitive strategy use. Such results may deepen 
the understanding of the role of demographic factors in the dynamic SRL 
process and generate insights about adapting support to these factors. 
Collecting this demographic information is also vital to other kinds of 
analyses, for example, predictive modeling, as it is the only way to 
ensure against algorithmic biases (Paquette et al., 2020). 

Studies have found that self-efficacy is one of the most critical factors 
that impact learning (Chin-Chung et al., 2011; Moos & Azevedo, 2009b; 
Pajares, 1996a). However, in the present study, neither its main effect 
nor its interaction with the day was significant on any coherence metric. 
A possible explanation might be that the measure of self-efficacy in this 
study was toward science in general rather than task-specific. Compared 
with task-specific self-efficacy, domain self-efficacy measures have no or 
weaker predictive power to task performance (Liu et al., 2020; Pajares, 
1996b; Ramos Salazar & Hayward, 2018). When students respond to the 
science self-efficacy items, they may not have knowledge about the 
learning topic (e.g., climate change) in mind (Pajares, 1996a). Further 

research may compare the associations between metacognitive strategy 
use and domain-specific as well as task-specific self-efficacy. Another 
possible explanation is that students’ self-efficacy expectations may not 
fit the Betty’s Brain context. Betty’s Brain utilizes a learning-by-teaching 
paradigm and is open-ended (Biswas et al., 2016). It supports the 
development of SRL skills by requiring students to plan, regulate, and 
manage their activities. Self-efficacy is built on previous experiences 
(Bandura, 1997). In this study, previous experiences might not fit the 
current task because students might have little experience with learning 
environments similar to Betty’s Brain. Thus, when investigating the role 
of self-efficacy in SRL, researchers need to consider how self-efficacy 
items touch on the learning content and environment. 

This study did find associations between task value and meta-
cognitive strategy use, but the overall effect of task value was small. The 
reason may be that sixth-grade students’ metacognitive skills are under 
development (de Bruin et al., 2011). The relations between task value 
and regulating activities may gradually grow as children learn how to 
regulate their behavior. We expect that a more substantial effect of task 
value may be found in older populations, such as college students. 
Moreover, this study did not decompose task value into different facets, 
such as incentive and attainment value, utility value, and cost (Wigfield 
& Eccles, 2000), because of limited task value items. Different value 
facets have different associations with SRL (Wigfield et al., 2008). The 
effect of task value on the evolution of metacognitive strategy use may 
also depend on the exact facet. 

Another limitation is that this study viewed motivation as static 
during the task. However, motivation may fluctuate as the learning 
process unfolds (Bernacki et al., 2015; Kalyuga, 2007). Furthermore, 
motivation is also a target of regulation and serves as both predictors 
and outcomes of self-regulation activities (Zimmerman & Schunk, 
2008). The association between metacognitive strategy use and moti-
vation may also be bidirectional during learning (Pavlik Jr, 2013). 
Further studies may measure both metacognitive strategy use and 
motivation at multiple points and investigate their mutual influence in 
evolution. 

Metacognitive strategies generally include goal setting, planning, 
self-monitoring, control, and evaluation (Dent & Koenka, 2016). Meta-
cognitive strategy use in this study mainly covered monitoring and 
control. The evolution of other metacognitive strategy use may be 
different from self-monitoring and control activities. For instance, 
learners’ metacognitive behaviors evolved toward deep-level goal 
setting and monitoring activities but not planning and evaluation in one 
prior study (de Backer et al., 2016). Consequently, the role of domain 
knowledge and motivation in the evolution of metacognitive strategy 
use may depend on the type of metacognitive strategies. 

4.6. Conclusion 

This study supports the continued calls for temporal analyses of SRL 
events (Azevedo, 2014; Hadwin, 2021; Molenaar & Järvelä, 2014; 
Winne, 2010). Specifically, it shows how metacognitive strategy use 
evolved daily in an open-ended learning environment. Students used 
metacognitive strategies more frequently on the second day of learning 
than on the first day, implying students’ adaptivity in metacognitive 
strategy use. The evolution of metacognitive strategy use varied across 
students, and task value and prior domain knowledge partially 
explained this variation. Task value and prior domain knowledge posi-
tively predicted the overall metacognitive strategy use. The results 
suggest further investigations into the role of motivation and prior 
domain knowledge in the temporal evolution of SRL events. The findings 
imply that learners may need different scaffolding at different task- 
solving phases. Adapting scaffolding to task-independent self-efficacy 
may not be useful. It may be beneficial to nudge those with low prior 
knowledge to utilize the scaffolding. 
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