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Abstract. Recent research has shown that differences in software design and 

content are associated with differences in how much students game the system 

and go off-task. In particular the design features of a tutor have found to predict 

substantial amounts of variance in gaming and off-task behavior. However, it is 

not yet understood how this influence takes place. In this paper we investigate 

the relationship between a student’s affective state, their tendency to engage in 

disengaged behavior, and the design aspects of the learning environments, to-

wards understanding the role that affect plays in this process. To investigate this 

question, we integrate an existing taxonomy of the features of tutor lessons [3] 

with automated detectors of affect [8]. We find that confusion and frustration 

are significantly associated with lesson features which were found to be associ-

ated with disengaged behavior in past research. At the same time, we find that 

the affective state of engaged concentration is significantly associated with fea-

tures associated with lower frequencies of disengaged behavior. This analysis 

suggests that simple re-designs of tutors along these lines may lead to both bet-

ter affect and less disengaged behavior.  

Keywords: Educational Data Mining, Intelligent Tutoring System, design fea-
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1 INTRODUCTION 

There has been considerable research into students’ disengaged behaviors in intelligent tutoring 

systems over the last few years [6, 7, 10, 11, 13, 15, 21, 29, 33]. This work has generally found 

that a range of disengaged behaviors are associated with negative learning outcomes, including 

both gaming the system and off-task behavior [cf. 1, 15, 30].  

Early work on why students became disengaged investigated whether fairly non-malleable 

factors such as goal orientation or motivation could predict disengaged behaviors [e.g. 10, 11]. 

However, recent research has suggested that differences in the design of intelligent tutoring 

systems can also have substantial impacts on student engagement. Relatively simple aspects of 

design such as the concreteness of problem scenarios and hints were found to predict a consid-
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erable proportion of the variance in gaming the system among a group of students using Cogni-

tive Tutor Algebra over the course of a year [6]. Off-task behavior has also been found to vary 

according to design features such as presence or absence of problem scenarios [3]. These find-

ings suggest that design aspects of tutor lessons may play a significant role in influencing the 

prevalence of disengaged behavior.   

However, we do not yet understand the mechanisms through which differences in the design of 

tutor lessons may influence disengaged behavior. One mechanism hypothesized in those earlier 

papers was that affect might be mediating the relationship between tutor design and disengaged 

behavior. There is evidence for reasonably strong relationships between affect and disengaged 

behavior. Research in Aplusix and The Incredible Machine (an ITS and a puzzle game) found 

that boredom preceded and co-occurred with a student’s choice to game the system [7]. Bore-

dom has also been found to precede off-task behavior [9] and off-task behavior within the 

learning environment (also called WTF/“without thinking fastidiously” behavior) within intel-

ligent tutoring systems [33]. There is also evidence that boredom leads to future off-task behav-

ior, within both the Chemistry Virtual Laboratory [9] and Science ASSISTments [22]. Howev-

er, it is not yet known how strong the relationships are between intelligent tutor design features 

and affect. 

Understanding the factors leading to differences in affect is important by itself as well. There is 

increasing evidence that differences in affect during use of educational software can have a 

substantial impact on learning. Craig and colleagues [16] investigated the relationships between 

learning gains and affect state and found that confusion and flow were positively associated 

with learning gains but boredom was negatively associated with learning. Pardos and col-

leagues [30] also found that affect in intelligent tutors can predict not just local learning, but 

longer-term learning outcomes (state standardized exam scores) as well, specifically finding 

that boredom is negatively associated with longer-term learning outcomes while engaged con-

centration (e.g. flow) and frustration were positively associated with learning gains. Evidence 

in that paper suggested that the context of affect matters more than the overall prevalence, with 

the relationship between boredom and learning outcomes reversing and becoming positive if 

the boredom occurs during scaffolding. Other work has suggested that the duration of affect 

also matters, with brief confusion correlating positively with learning but lengthy confusion 

correlating negatively with learning [26]. Flow/engaged concentration has also been shown to 

be associated with longer-term engagement with specific domains [17] One possible explana-

tion for this finding is that positive affect may lead to increased situational interest [23], which 

in turn has been theorized to lead to greater long term personal interest in the content domain 

[25]. 

Given the relationship between disengaged behavior and affect, and the importance of affect in 

general, it may be worth considering the ways in which tutor design features drive not just 

disengaged behaviors, but affect as well. In this paper we study the relationships between these 

three factors. We use an existing taxonomy of the features of tutor lessons [6] to express the 

differences between lessons. Taxonomies of this nature, also referred to as “design pattern 

languages” [35], can be useful tools for studying and understanding design. We integrate data 

from the application of this taxonomy to a set of lessons from an algebra tutor, with predictions 

from previously published automated detectors of affect [8] and disengaged behaviors [4, 5]. 

We then conduct correlation mining (with post-hoc controls) to study the relationships between 

these variables.  

2 DATA SET 

Data was obtained from the PSLC DataShop (dataset: Algebra I 2005-2006 Hampton Only) 

[24], for 58 students’ use of Cognitive Tutor Algebra during an entire school year. The data set 



was composed of approximately 437,000 student transactions (entering an answer or requesting 

help) in the tutor software. All of the students were enrolled in algebra classes in one high 

school in the Pittsburgh suburbs which used Cognitive Tutors two days a week, as part of their 

regular mathematics curriculum. None of the classes were composed predominantly of gifted or 

special needs students. The students were in the 9th and 10th grades (approximately 14-16 

years old). The Cognitive Tutor Algebra curriculum involves 32 lessons, covering a complete 

selection of topics in algebra, including formulating expressions for word problems, equation 

solving, and algebraic function graphing.  

Data from 10 lessons was eliminated from consideration, to match the original analysis of this 

data in [6], where the relationship between tutor design and gaming the system was studied. In 

that original study, lessons were eliminated due to having insufficient data to be able to conduct 

a sufficient number of text replays to effectively measure gaming the system. On average, each 

student completed 9.9 tutor lessons (among the set of lessons considered), for a total of 577 

student/lesson pairs. 

3 METHOD 

In describing the methods sections, first we will describe taxonomic feature generation process 

and then describe affect detection process used to build machine learned affect models which 

were in-turn used in this analysis to obtain affect predictions. 

3.1 The Cognitive Tutor Lesson Variation Space (CTLVS) 

The enumeration of the ways that Cognitive Tutor lessons can differ from one another was 

originally developed in [6]. This enumeration, in its current form, is called the Cognitive Tutor 

Lesson Variation Space version 1.2 (CTLVS1.2).  

Table 1. Tutor design features which were significant predictors of disengaged behaviors in [3, 

6] 

1. Lesson is an equation-solver lesson, where a student is given an equation to solve mathe-

matically (with no story problem) 

2. Avg. amount that reading on-demand hints improves performance on future opportunities 

to use skill (using model from [12]) 

3. % of hint sequences with final “bottom-out” hint that explicitly tells student what to enter 

[cf. 1] 

4. Reference in problem statement to interface component that does not exist (ever occurs) 

5. Not immediately apparent what icons in toolbar mean 

6. Hint requests that student perform some action  

7. % of hints that explicitly refer to abstract principles 

8. % of problem statements that use same numeric value for two constructs 

9. % of problem statements with text not directly related to problem-solving task (typically 

included to increase interest) 

10. Any hint gives directional feedback (example: “try a larger number”)  

 



The CTLVS was developed by a six member design team with diverse expertise, including 

three Cognitive Tutor designers (with expertise in cognitive psychology and artificial intelli-

gence), a researcher specializing in the study of gaming the system, a mathematics teacher with 

several years of experience using Cognitive Tutors in class, and a designer of non-computerized 

curricula who had not previously used a Cognitive Tutor. 

During the first step of the design process, the six member design team generated a list with 

569 features. In the next step a list of criteria for features that would be worth coding, were 

developed. Finally the list was narrowed down to a more tractable size of 79 features. Inter-

rater reliability checks were not conducted, owing to the hypothesis-generating nature of this 

study. Then CTLVS1 was labeled with reference to the 21 lessons studied in this paper by a 

combination of educational data mining and hand coding by the educational designer and math-

ematics teacher. The 10 features among 79 within the CTLVS1.1 which were significant pre-

dictors of disengaged behaviors in [3, 6] are shown in Table 1. 

After initial publication of the results [e.g. 3, 6], using the CTLVS 1.1, additional coding was 

conducted by the gaming the system researcher and the designer of non-computerized curricula 

resulting in the addition of 5 more features, shown in Table 2. This produced a total of 84 quan-

titative and binary features within the CTLVS1.2.  

3.2 Affect detection process 

In order to study the relationship between students’ affect and tutor design, we used previously 

developed detectors of student affect within Cognitive Tutor Algebra [cf. 8]. Unlike many of 

the pioneering efforts to detect student affect in intelligent tutoring systems [2, 18, 27], this 

work does not make use of any visual, audio or physiological sensors such as webcams, pres-

sure sensing keyboard and mice, pressure sensitive seat pads and back pads, or wireless con-

ductance bracelets in detecting affect. Instead, affect is detected solely from log files, support-

ing scalable analyses. These affect detectors were originally developed by labeling a set of 

students’ affective states with field observations and then using those labels to create machine-

learned models which automatically detect the student’s affective state. Affect detectors were 

developed for the states of boredom, confusion, frustration, and engaged concentration (the 

affect associated with the flow state [cf. 7]. A separate detector was developed for each affec-

tive state. The goodness of the detectors (under student-level cross-validation) is given in Table 

3. Note that the A’ values for the models are lower than presented in the original paper [8]. This 

is because the implementation of AUC in RapidMiner 4.6 [28] was used to compute the A’ 

values. This implementation has a bug, where estimates of A’ are inflated, if multiple data 

points have the same confidence. In this paper we report estimates computed through directly 

computing the A’/Wilcoxon statistic, which is more computationally intensive but mathemati-

cally simpler (involving a set of pairwise comparisons rather than integrating under a complex 

function), using the code at http://www.columbia.edu/ ~rsb2162/edmtools.html 

Table 2. The design features added in CTLVS1.2 

1. % of hints with requests for students with politeness indicators 

2. % of scenarios with text not directly related to problem-solving task 

3. Maximum number of times any skill is used in problem 

4. Average number of times any skill is used in problem 

5. Were any of the problem scenarios lengthy and with extraneous text? (Long Ex-

traneous Text) 

http://www.columbia.edu/


 

Table 3. Goodness of the affect models [cf 8] 

Affect Algorithm Kappa A’ 

Engaged Concentration K* 0.31 0.67 

Boredom Naïve Bayes 0.28 0.69 

Confusion JRip 0.40 0.71 

Frustration REPTree 0.23 0.64 

 

To apply the machine-learned models to the data set used in this paper, we computed the fea-

tures which were used in the models. The data was divided into “clips”, of 20 second intervals 

of student behavior (the same grain-size used in the original observations which were used to 

build the detector), using the absolute time of each student action.  Next, the 15 features used in 

the detectors [cf. 8] were computed for each clip. Finally RapidMiner 4.6 [28] was used to load 

each of the affect models and then each of the affect models were applied on the algebra data 

set to obtain assessments of affect for each clip, which were then aggregated to compute each 

student’s proportion of each affective state in each lesson.  

4 RESULTS 

For each lesson in the data set, we computed values for each of the 84 taxonomical features 

discussed in the data section. The value of each taxonomic feature was then correlated to the 

proportion of each of the four affective states (engaged concentration, boredom, confusion and 

frustration) detected within the log data for the lesson. As this represents a substantial number 

of statistical analyses (84*4 = 336), we controlled for multiple comparisons. In specific, the 

analyses in this study utilize the false discovery rate (FDR) [14] paradigm for post-hoc hypoth-

esis testing, using the method by Storey [34] in specific. This method produces a substitute or 

p-values, termed q-values, driven by controlling the proportion of false positives obtained via a 

set of tests. Whereas a p-value expresses that 5% of all tests may include false positives, a q-

value indicates that 5% of significant tests may include false positives. As such, the FDR meth-

od does not guarantee each test’s significance, but guarantees a low overall proportion of false 

positives, preventing the substantial over-conservatism found in methods such as the Bonferro-

ni correction [cf. 31]. The FDR calculations in the results section were made using the 

QVALUE software package [34] within the R statistical software environment [32]. 

Across the features, only the five following tutor design features achieved statistically signifi-

cant correlation to any of the affective states. 

1.  Lesson is an Equation Solver lesson (Equation Solver) 

2. % of problem statements with text not directly related to problem-solving task (Ex-

traneous Text),  

3. % of problem statements which involve concrete people/places/things (Concrete 

Problem Statements),  

4. Were any of the problem scenarios lengthy and with extraneous text? (Long Extrane-

ous Text) 

5. Average percent error in problem (Percent Error)  



Table 4 summarizes the results. Equation Solver was statistically significantly positively asso-

ciated with Concentration, r=0.728, t(1,19)=4.622, q<0.01; on the other hand 2 of the features 

Concrete Problem Statements and Long Extraneous Text were statistically significantly nega-

tively associated with Concentration; Concrete Problem Statements r= -0.604, t(1,19)= -3.31, 

q=0.013; Long Extraneous Text  r= -0.538, t(1,19)= -2.78, q=0.032. 

Table 4. Statistical Significant results with q-values from FDR analysis 

Design Features Affect r q 

Equation Solver Concentration 0.728 <0.01 

Extraneous Text Confusion 0.787 <0.001 

Concrete Problem Statements Concentration -0.604 0.013 

Concrete Problem Statements Confusion 0.644 <0.01 

Long Extraneous Text Concentration -0.538 0.032 

Long Extraneous Text Confusion 0.716 <0.01 

Percent Error Frustration -0.718 <0.01 

 

Three of the features were statistically significantly positively associated with Confusion, Con-

crete Problem Statement r=0.644, t(1,19)=3.67, q<0.01; Long Extraneous Text r=0.716, 

t(1,19)=4.47, q<0.0; Extraneous Text r=0.787, t(1,19)=5.56, q<0.001.  

Only one of the features, Percent Error was statistically significantly negatively associated with 

Frustration, r= -0.718, t(1,19)= -4.5, q<0.01.  

None of the features showed significant association with Boredom. The strongest correlation 

was achieved by “Hint gives directional feedback (example: “try a larger number”)”, r=0.50, 

t(1,19) = 2.5, q=0.30. It is worth noting that the original p value, before post-hoc correction, 

was p=0.02; hence, it may be worth considering this feature in future research, but there is 

insufficient evidence to make a conclusive inference about it at this point. 

In terms of past features associated with gaming (in [6], it was hypothesized that this relation-

ship was mediated by boredom), boredom appeared to be weakly correlated with Extraneous 

Text r=0.160, t(1,19) = 0.71, q=0.78 and Long Extraneous Text r=0.264, t(1,19)=1.19, q=0.64 

and appeared to be moderately correlated with Concrete Problem Statements, r=0.335, t(1,19)= 

1.55, q=0.64. None of these relationships, however, would be statistically significant even 

without post-hoc controls.  

5 DISCUSSION AND CONCLUSIONS 

The result here suggests that there are significant relationships between affect state of students, 

and the taxonomic features of an intelligent tutoring system. Five out of 84 taxonomic features 

were found to be statistically significantly associated with affect. These findings correspond in 

interesting ways to prior results regarding the relationship between disengaged behaviors and 

these same taxonomic features [cf. 3, 6].  

Students were found to be concentrating significantly more during equation-solver lessons. 

These same lessons have also been found to be associated with a lower degree of off-task be-

havior and gaming the system in the previous research [3, 6].  



We also found that students’ concentration was reduced when the student encountered lessons 

with substantial extraneous text, as well as or problem statements and scenarios with concrete 

people, places or things. These same features were also associated with increased confusion. 

These are somewhat surprising findings, as extraneous text was also associated with gaming the 

system in earlier research [6]. Since gaming is thought to be negatively associated with engaged 

concentration [7], it is surprising that the same features of an interface are associated both with 

gaming and less engaged concentration. This finding clearly calls for greater research to under-

stand its full implications. 

At the same time, the connection between substantial extraneous text and concrete scenarios, 

and confusion, accords well to past findings in other contexts. The details in these long concrete 

scenarios could be considered “seductive details” – details which draw student attention away 

from the content. Seductive details have been found to be associated with poorer learning in 

laboratory studies [20]; the initial interpretation of [6] seemed to contradict this finding, but our 

results here seem more in keeping with it. Of course, it also may be that tutor designers have 

chosen (whether consciously or not) to increase the complexity of the scenarios when material 

is more confusing; as such, it would take an experimental study to be fully confident of the 

hypothesis generated here.  

One unexpected finding was negative correlation between percent error and frustration, which 

should be investigated further. In a different intelligent tutor, frustration was found to be posi-

tively correlated with learning, suggesting that frustration’s role in learning may be somewhat 

different than typically hypothesized [cf. 30].  

Another surprising finding is that none of the taxonomic features were significantly associated 

with boredom, a persistent affect state within several types of learning environments [7]. We 

had earlier hypothesized that the negative relationship between gaming and lengthier scenarios 

would be mediated by boredom [e.g. 6], a finding not obtained here.  Though we found some 

appearance of correlation between boredom and lengthier scenarios as well as other features 

known to be associated with gaming, these associations were not significant even without tak-

ing post-hoc adjustment into account, suggesting that it is unlikely that boredom is a key me-

diator between these tutor design features and gaming the system. 

One of the final things that can be noted from this analysis is that the designs of educational 

interfaces have a considerable impact on student affect. Although only a relatively small num-

ber of relationship remained significant after post-hoc testing, it is worth noting that the con-

servatism of post-hoc approaches meant that the relationships that remained significant had 

extremely high correlations (in the 0.7 range). This finding implies that relatively small modifi-

cations to intelligent tutors may result in substantial impacts on student experiences.   
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