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Abstract (100-150 words) 
Bayesian Knowledge Tracing (BKT) is a knowledge inference model that underlies many 
modern adaptive learning systems. The primary goal of BKT is to predict the point at 
which a student has reached mastery of a particular skill. In this paper we examine the 
degree to which changes in sample size influence the values of the parameters within 
BKT models, and the effect that these errors have on predictions of student mastery. We 
generate simulated datasets of student responses based on underlying BKT parameters 
and the degree of variance they involve, and then fit new models to these datasets and 
compared the error between the predicted parameters and the seed parameters. We 
discuss the implications of sample size in considering the trustworthiness of BKT 
parameters derived in learning settings and make recommendations for the number of 
data points that should be used in creating BKT models. 
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Introduction 
Modeling student knowledge is a critical component of modern adaptive learning systems 
(Desmarais & Baker, 2012). These models make inferences about what students know, 
which are used for several purposes. The most common use of models of student 
knowledge is to assess whether a student has reached mastery of a given skill, driving 
mastery learning (Koedinger & Corbett, 2006). They are also extensively used to 
understand the properties of different skills in adaptive learning systems (Ritter et al., 
2009), and as components in other analyses (Hershkovitz et al., 2013). The problem of 
student knowledge modeling in adaptive learning systems differs from traditional 
contexts of psychometric application in that students are learning as they are being 
assessed – in other words, the student knowledge state is changing during the process of 
assessment itself. While psychometric methods have more recently been applied to this 
problem (e.g. Chen, Lee, & Chen, 2005; Pelánek, 2016; Wilson et al., 2016), the 
literatures of student modeling, intelligent tutoring systems, and educational data mining 
have artificial intelligence-based methods for modeling and assessing student knowledge 
in these contexts that goes back to the early 1990s. Perhaps the most popular framework 
for doing so is referred to as Bayesian Knowledge Tracing (BKT, Corbett & Anderson, 
1995), used within a range of widely-used adaptive learning systems, including perhaps 
most notably the Cognitive Tutor family of curricula (Koedinger & Corbett, 2006) used 
by hundreds of thousands of students a year.  
 
The BKT framework is a simple Hidden Markov Model (and also a simple Bayesian 
Network – Reye, 2004) that tries to estimate a single binary latent variable – has a student 
mastered the current knowledge component or not? The probability of a specific student’s 
knowledge at a specific time is calculated based on data using four parameters, which are 
estimated separately for each distinct skill or knowledge component within the dataset: 
 

p(L0), the probability that a student has mastered the skill before it is 
attempted for the first time 
 
p(G), the probability that a student correctly answers despite being in the 
no-mastery state (a guess) 
 
p(S), the probability that a student incorrectly answers despite being in the 
mastery state (a slip) 
 
p(T), the probability that, despite an incorrect answer, a student has 
learned from the attempt and reached the mastery state before they reach 
their next opportunity to practice the skill 
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Figure 1. Bayesian Knowledge Tracing (diagram reproduced from Baker, 2015) 

 
BKT has been successful at predicting future student performance within adaptive 
learning (e.g. Corbett & Anderson, 1995) and performance on later tests as well (Corbett 
& Anderson, 1995; Baker et al., 2010; Pardos et al., 2011). Considerable scholarly work 
has focused on expanding the original BKT framework in order to improve its predictive 
accuracy. To give just a few examples, Baker, Corbett, & Aleven (2008) generated 
contextual estimates of the probability that each student attempts represented a guess or a 
slip; this approach led to better predictive performance on some data sets but unstable, 
poorer performance on others. Pardos & Heffernan (2011) generated item-level 
parameters in order to estimate difficulty of specific problems by adding problem-
specific guess and slip parameters. They found that the addition of these parameters 
improved the performance of the knowledge tracing model in some cases (but not in all), 
and suggest that the inconsistent benefit could be due to over-parametrization of the item-
level model. Wang & Heffernan (2013) proposed methods for allowing partial-credit, 
rather than binary correct and incorrect responses. In this work, partial correctness was 
determined by the number of hints that a student used before attempting the problem, 
with a higher number of hints decreasing the percent correctness of the problem attempt. 
They found that the partial credit model was significantly better at predicting student 
performance than BKT’s original formulation. 
 
In addition to comparing different variants of BKT to one another, many papers have 
attempted to compare the effectiveness of BKT to other knowledge inference models. 
BKT typically performs comparably to models of similar complexity (e.g. Gong, Beck, & 
Heffernan, 2010; Baker et al., 2011). More complex extensions to BKT have performed 
comparably to more complicated models such as recurrent neural networks (Khajah, 
Lindsey, & Mozer, 2016); however, both of these approaches lose a great deal of the 
interpretability that BKT provides, and it has not been established whether these 
approaches predict long-term student performance as well as BKT. Overall, it seems 
likely that there is a limit to how well BKT can perform overall at predicting future 
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student performance. Beck and Xiong (2013) developed a series of ‘cheating 
experiments’ to identify the ideal performances of various permutations of BKT models. 
They found that knowledge tracing likely has a limit to its ability to predict future student 
performance within adaptive learning, with AUC ROC maxing out between 0.70 and 
0.75. 
 
Other work has focused on underlying assumptions of knowledge tracing models. For 
instance, Fancsali, Nixon, & Ritter (2013) tested the performance of BKT when applied 
to datasets constructed by drawing simulated student response values generated from 
random BKT parameters, rather than fitting students to a stable underlying set of 
parameters. Because classical BKT calculates parameters for individual skills, across 
students, it assumes that any subgroups of students in the dataset have similar initial 
knowledge and learning rates, and that they guess and make careless errors at similar 
rates. Their work found that heterogeneous datasets do impact the performance of BKT, 
increasing the proportions of students who are either prematurely identified as being in 
the mastery state, or incorrectly identified as needing additional practice. When the data 
sets used to generate BKT parameters are heterogeneous, which is often the case, 
effective estimation by BKT is harder. 
 
Figuring out how much data is needed to estimate valid BKT parameters is a key 
practical question for adaptive learning system developers using BKT. In mature systems 
like Cognitive Tutor (Koedinger & Corbett, 2006), BKT parameters can be estimated on 
very large datasets – Cognitive Tutor is used by hundreds of thousands of students each 
year. However, BKT is used in many smaller systems as well – and in some cases, 
researchers have even tried fitting separate BKT models for individual students (e.g. Lee 
& Brunskill, 2012).  
 
In this paper, we examine the degree to which sample size influences the estimation of 
BKT parameters, and in turn the predictions of student knowledge that BKT makes. Prior 
published work has ranged from datasets consisting of thousands of students per model 
(Ritter et al., 2009; Beck & Xiong, 2013) to a single student per model (Lee & Brunskill, 
2012). In most situations, larger sample sizes produce better estimates and increase 
statistical power (Cohen, 1992), but decisions about sample sizes in student modeling are 
typically made using heuristics and “rules of thumb”. In this paper, we examine the 
degree of error associated with BKT parameter estimation, across different numbers of 
students and lengths of problem sets. 
 
To accomplish this, we generated multiple simulated sample datasets using various initial 
BKT parameters, with different numbers of students and practice opportunities. We then 
fit new BKT models to this data, comparing the error between the fit parameters and the 
initial parameters, as well as the error between fit parameters across multiple datasets 
generated using the same parameters. We aggregate and discuss these results, and then 
evaluate the degree to which differences in parameter estimates influence subsequent 
predictions about student knowledge. We conclude with recommendations for practice by 
practitioners developing models of BKT going forward. 
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The methods and results are presented in two sections. In the first section, we discuss our 
methods and findings for evaluating error in parameter estimates, and in the second we 
discuss our methods and findings for evaluating error in knowledge estimates. 
 
Methods – Evaluation of Error in Parameter Estimates 
BKT uses four parameters to generate its continually-updating inferences of student 
knowledge: p(L0), p(G), p(S), and p(T). The student starts out with a probability of p(L0) 
of knowing the skill (being in the mastery state). Then, for each problem the student 
encounters, the model checks whether the student answered the problem correctly or not. 
In most formulations of BKT, only the first attempt at a problem is considered evidence 
of whether the student knows the problem or not (Corbett & Anderson, 1995) – an 
exception to this is seen in Wang & Heffernan, 2013. BKT’s estimate of whether the 
student had mastered the skill before attempting the problem is updated based on the 
student’s performance on the problem, using Bayes Theorem:  
 

𝑝 𝐿!!! 𝑎𝑛𝑠 =  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗
𝑝 𝐿!!! ∗ 1− 𝑝 𝑆

𝑝 𝐿!!! ∗ 1− 𝑝 𝑆 + 1− 𝑝 𝐿!!! ∗ 𝑝 𝐺
+ 

 

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗  
𝑝 𝐿!!! ∗ 𝑝(𝑆)

𝑝 𝐿!!! ∗ 𝑝 𝑆 + 1− 𝑝 𝐿!!! ∗ (1− 𝑝 𝐺 )
 

 
Equation 1. Calculations for updating students’ probability of mastery before attempt. 

 
The system then calculates the probability the student had mastered the skill after 
attempting the problem. Most formulations of BKT assume that a student does not forget 
a skill he or she has mastered (but see Khajah et al., 2016) – however, a student who does 
not know the skill can learn it, with probability p(T). To get the student’s probability of 
having mastered the skill after attempting the problem, we take the probability that the 
student was in the mastery condition at the start of the previous problem, and we add to 
that the probability that, if the student was not in the mastery condition, they now are 
after completing the problem: 
 

𝑝 𝐿! =  𝑝 𝐿!!! + 1− 𝑝 𝐿!!! ∗  𝑝(𝑇) 
 

Equation 2. Calculations for updating students’ probability of mastery after attempt. 
 

Given these four parameters, we can also calculate the probability that a student will 
answer a question correctly given their current probability of mastery. This probability is 
equal to the probabilities that the student is not in the mastery condition and guessed, plus 
the probability that the student is in the mastery condition and did not slip: 
 

𝑝 𝑐𝑜𝑟𝑟 = 1− 𝑝 𝐿! ∗  𝑝 𝐺 +  𝑝 𝐿! ∗ (1− 𝑝 𝑆 ) 
 

Equation 3. Calculations for the probability of a correct answer on the next attempt. 
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Generating a Simulated Data Set 
In this work, we chose to use simulated data rather than secondary data sources for 
several reasons. First of all, we wanted to know what the true parameters were that 
generated the data, to see how closely BKT could re-capture these parameters. With real 
data, it is impossible to know what student’s true probability of learning or slipping is. 
Second, we wanted to experimentally compare and fit multiple different potential sets of 
model parameters, and locating a large number of different data sets that mapped to a 
broad and systematic range of parameters would have been a very time-consuming 
process. Third, we wanted to compare across multiple different sample sizes. While we 
could have sampled from existing datasets, we also wanted to ensure homogeneity of 
subjects (a concern raised for real-world data by Fancsali et al., 2013) to produce a 
consistent environment for calculating parameter error across underlying parameters. 
Simulating data also ensured that we had a perfect mapping between items and 
knowledge components, within the knowledge model, as an inaccurate mapping would 
lower the quality of our model fit for reasons other than the primary factors we are 
studying here.   
 
Our first step was to generate simulated logs of student interactions with intelligent 
tutoring systems – lists of 1s and 0s that correspond to correctness and incorrectness 
across multiple problems on a given problem set. We wanted to make sure that these 
response patterns were derived from an underlying BKT model, so that we could 
compare experimental model fit to the ‘ground truth’ that produced the data. 
 
We first took seed parameters that we wanted to construct the model on. Starting with 
these parameters, we calculated the probability that a student would answer a problem 
correctly based on them, using Equation 3. We then selected a random number between 0 
and 1 and compared the probability of correctness to this random value. If p(corr) was 
lower, we said that the student got the problem wrong, and if it was equal to or greater, 
the student got the problem right. This allowed us to convert continuous probabilities of 
correctness from p(correct) to the binary 0/1 response necessary to fit a BKT model. We 
then adjusted student knowledge using the equations listed above and continued the 
process until we had generated a data set with the requisite number of responses and 
students. 
 
Using this data set, we fit a new BKT model to our simulated data. We used the L-BFGS-
B function minimization process in Python 2.7’s SciPy library to obtain our estimates, 
using 30 random starts for each estimation of the parameters. We then compared the 
parameter estimates of the fitted model to the seed parameters used to construct the 
simulated response values. For each unique set of seed parameters, we repeated this 
process 30 times, each with a unique set of generated responses. We then calculated 
averages, deviations, errors, and ranges of the fitted parameter estimates for each set of 
seed parameters. 
 
We generated a total of 51,030 unique datasets, and fit a BKT model to each. The 
parameters and conditions that we varied are in Table 1. 
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Parameter Values 
Sample Size 5, 10, 25, 50, 100, 500 

Problem Set Length  3, 6, 10 
p(L0) 0.10, 0.25, 0.60 
p(G) 0.02, 0.10, 0.25 
p(S) 0.02, 0.10, 0.25 
p(T) 0.05, 0.15, 0.40 

Table 1. Parameters and sample sizes used for simulation trials. 
 
We chose our parameter values for simulated data generation to represent a range of 
values, subject to reasonable limits. For p(L0) we chose a minimum value very close to 0. 
This would represent a sample of students for whom the skill being learned is relatively 
novel – there is a very small probability that any given student has mastered the skill 
being taught before seeing the first problem. For an upper value, we chose p(L0) = 0.60 as 
a relatively high level of prior knowledge. A p(L0) of 1 would be meaningless to model 
within BKT, as it would represent a test of understanding for students who have already 
reached mastery – only the slip parameter would be relevant. 
 
For p(G) and p(S), it is necessary to limit values to avoid problems of model degeneracy, 
where getting a problem wrong is more evidence for mastery than getting it right (Baker, 
G, & Aleven, 2008).   Past research efforts have proposed varying upper limits for p(G) 
and p(S), such as p(G) + p(S) <= 1 (Beck, 2014), p(G) and p(S) each <= 0.50 (Baker, 
Corbett, & Aleven, 2008), and p(S) = 0.10, p(G) = 0.30 (Corbett & Anderson, 1995). In 
this paper, during model generation, we chose to limit P(G) and P(S) to being no higher 
than 0.25.  This both avoids model degeneracy, and avoids the “high-guess/high-slip” 
parameters seen mostly in systems with poorly-fit skill models, items of highly variant 
difficulty, or very careless students (see discussion in Baker et al., 2010). For the 
modeling process, we used the more liberal thresholds of 0.50 for both p(G) and p(S), in 
order to determine if data sets with relatively limited p(G) and p(S) can nonetheless yield 
models with high p(G) or p(S) values. Model degeneracy was prevented with the 
threshold chosen, as Pardos & Heffernan (2010) find that degenerate values can often fit 
data equally as well as appropriate values, simply by flipping the link between knowledge 
and performance.   
 
For p(T), we picked relatively lower parameters than for p(L0) for data generation 
because low rates of learning are common in intelligent tutoring systems, and in many 
learning contexts in general. Despite some arguments that students are not making 
progress if they need 10 or more attempts to learn a skill (e.g. Beck & Gong, 2013), some 
skills legitimately need a considerable amount of practice to master. Additionally, BKT 
models with high p(T) rapidly approach mastery, and leave little variance to be modeled. 
A maximum p(T) of 0.40 allows for a high rate of learning while still producing an 
amount of data that can be analyzed for trends. The p(L0) and p(T) parameters were 
allowed to take on any values between 0 and 1 during model fitting. 
 
Results – Evaluation of Error in Parameter Estimates 
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Confirming Degree of Model Convergence to Seed Parameters 
Our first step in studying our simulations is to confirm that our fitted models converged 
on the seed parameters used to construct the data. If fitted BKT models don’t generally 
produce the same parameters as the original seed parameters, this would indicate a 
problem in either the simulation or the fitting procedure – or a serious problem in BKT 
itself. Table 2 shows the average deviation of the parameter estimates from the seed 
parameters, averaged across all 30 trials and across all parameters (standard deviations 
will be given in the following section). In other words, we took the average of the 
averages of each parameter estimate, per sample size and problem set length. ns is the 
number of simulated students in the sample, while np is the number of simulated 
problems. 
 

 np = 3 np = 6 np = 10 
ns = 5 0.116 0.078 0.070 

ns = 10 0.040 0.027 0.013 
ns = 25 0.008 0.008 ~	0 
ns = 50 0.004 -0.001 0.002 

ns = 100 0.007 0.001 -0.001 
ns = 250 ~	0 0.002 ~	0 
ns = 500 0.003 0.001 ~	0 

Table 2. Average deviation from seed parameters for each block of trials. 
 

As Table 2 shows, ns = 5 and ns = 10 do not appear to converge to the seed parameters, 
while n (s) = 25 and up did. This finding suggests that our BKT-based simulations are 
indeed producing data which can be modeled using BKT for sample sizes of at least 10. 
For ns = 5 and ns = 10, however,  this approach does not appear to work – the average of 
parameter estimates across 30 trials is not the same as the seed parameters used to 
generate the data. Therefore, we do not report findings for ns = 5 and ns = 10 in the rest of 
the paper. 
 
After confirming that our simulation process had worked, we next examined the 
differences in parameter estimates across different numbers of students and problem set 
lengths. Table 3 shows the standard deviations of our estimates of p(L0), p(G), p(S), and 
p(T) for each block of 30 simulations that we conducted. For these tests, we wanted to 
determine the amount of variance for each parameter within the 30 trials that we ran for 
each condition. 
 

 p(L0) = 0.10 p(L0) = 0.25 p(L0) = 0.60 
ns = 25 0.105 0.136 0.159 
ns = 50 0.091 0.105 0.117 

ns = 100 0.068	 0.079 0.088	 
ns = 250 0.044 0.053	 0.059	 
ns = 500 0.033 0.038	 0.043	 

    
 p(G) = 0.02	 p(G) = 0.10	 p(G) = 0.25	
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ns = 25 0.046	 0.078	 0.121	
ns = 50 0.032	 0.058	 0.100	

ns = 100 0.021	 0.044	 0.076	
ns = 250 0.014	 0.030	 0.051	
ns = 500 0.011	 0.022	 0.038	

    
 p(S) = 0.02	 p(S) = 0.10	 p(S) = 0.25	

ns = 25 0.052	 0.076	 0.111		
ns = 50 0.040	 0.062	 0.094		

ns = 100 0.028	 0.046	 0.076		
ns = 250 0.017	 0.031	 0.055		
ns = 500 0.015	 0.024	 0.041		

    
 p(T) = 0.05	 p(T) = 0.15	 p(T) = 0.40	

ns = 25 0.080	 0.107	 0.146	
ns = 50 0.050	 0.075	 0.108	

ns = 100 0.034	 0.049	 0.077	
ns = 250 0.021	 0.033	 0.049	
ns = 500 0.015	 0.022	 0.035	

Table 3. Standard deviations for parameter estimates of p(L0), p(G), p(S), and p(T) 
across different student sample sizes. 

 
Table 3 shows several effects. First, the standard deviation of parameter estimates 
decreases as student sample size increases. Larger numbers of students to fit a BKT 
model to leads to less error in parameter estimates. Second, increasing parameter values 
increases prediction error. The difference between the lowest and highest p(L0) that we 
tested was relatively small, 0.01 at ns = 500, while error from the lowest to highest values 
of p(G), p(S), and p(T) doubled. Finally, we found that estimates for p(L0) seem to be the 
most error-prone, with generally higher standard deviations than the other parameters we 
tested. 
 
Evaluating Differences in Parameter Estimates Based on Problem Set Length 
In addition to varying the number of students simulated, we also varied the number of 
opportunities to practice a skill that a given student has. Longer problem sets provide 
more information that the BKT model can use to infer student learning and derive 
appropriate parameters. Table 4 shows the standard deviations for each of the four BKT 
parameters across each condition of problem set length that we tested. As with Table 3, 
each cell consists of a sample of 30 simulated datasets.  
 

 p(L0) = 0.10 p(L0) = 0.25 p(L0) = 0.60 
np = 3 0.126 0.148 0.168 
np = 6 0.105 0.128 0.153 

np = 10 0.095 0.122 0.149 
    
 p(G) = 0.02	 p(G) = 0.10	 p(G) = 0.25	
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np = 3 0.060	 0.086	 0.127	
np = 6 0.058	 0.074	 0.107	

np = 10 0.051	 0.072	 0.097	
    
 p(S) = 0.02	 p(S) = 0.10	 p(S) = 0.25	

np = 3 0.094	 0.113	 0.144	
np = 6 0.052	 0.068	 0.090	

np = 10 0.033	 0.043	 0.061	
    
 p(T) = 0.05	 p(T) = 0.15	 p(T) = 0.40	

np = 3 0.131	 0.164	 0.187	
np = 6 0.093	 0.115	 0.148	

np = 10 0.075	 0.094	 0.140	
 

Table 4. Standard deviations for parameter estimates of p(L0), p(G), p(S), and p(T) 
across different problem set lengths. 

 
There are several differences between how problem set lengths and student sample size 
each impact the stability of parameter estimates. While longer problem sets were 
associated with more stable parameter estimates, the effect was not as large as for 
increases in student sample size. Additionally, the standard deviation of estimates for 
p(T) remained particularly high compared to changes in student sample size. This 
suggests that BKT estimation is most effective if students complete more problems, and 
indeed that BKT may perform even better if students complete more than 10 problems. 
However, many researchers argue that learning systems should be designed to avoid 
having students work for more than 10 problems on the same skill (e.g. Beck & Gong, 
2013).  
 
Identifying Instances of Extreme Parametrization 
Finally, we wanted to examine unexpected outcomes that we noticed in the earlier 
analyses. Even for relatively high student sample sizes and problem set lengths, some 
simulated datasets produced parameter estimates that were unexpectedly large – reaching 
the maximum bound adopted during estimation. This phenomenon is often seen in real-
world use of BKT, but was previously often assumed to represent a flaw in the skill being 
studied rather than a property of BKT.  
 
We aggregated the number of times a simulation produced an extreme parameter, and 
these counts are shown in Table 5. We define an extreme parameter here as one which 
reaches the bounds of the model (p(L0) or p(T) = 0 or 1, p(G) or p(S) = 0 or 0.50), in the 
direction away from the seed parameter. That is, an extreme parameter for p(L0) = 0.10 
would be 1 (but not 0.01), while an extreme parameter for p(L0) = 0.60 would be 0.01 
(but not 1). For middle parameters, such as p(S) = 0.10, we counted both the lower 
extreme and upper extreme as extreme parameter estimates. Table 5 shows the percent of 
all simulated trials of a given student sample size and problem set length (n = 2430) 
which produced either an extremely low or extremely high parameter estimate. 
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 np = 3 np = 6 np = 10 
p(L0) Low High Low High Low High 

ns = 25 12.67% < 1% 12.51% None 10.86% None 
ns = 50 4.69% < 1% 5.19% None 5.76% None 

ns = 100 3.13% < 1% 2.30% None 2.14% None 
ns = 250 < 1% None < 1% None < 1% None 
ns = 500 < 1% None < 1% None < 1% None 

       
p(G) 	 	 	 	 	 	

ns = 25 41.56%	 <	1%	 34.90%	 <	1%	 31.03%	 <	1%	
ns = 50 34.57%	 <	1%	 27.98%	 <	1%	 23.54%	 <	1%	

ns = 100 26.67%	 <	1%	 17.04%	 None	 15.23%	 <	1%	
ns = 250 20.49%	 None	 11.03%	 None	 7.90%	 None	
ns = 500 13.83%	 <	1%	 5.76%	 None	 5.84%	 None	

       
p(S) 	 	 	 	 	 	

ns = 25 38.68%	 3.00%	 30.04%	 <	1%	 24.86%	 None	
ns = 50 36.30%	 1.85%	 25.02%	 <	1%	 19.84%	 None	

ns = 100 30.37%	 1.11%	 19.51%	 None	 13.17%	 None	
ns = 250 25.51%	 <	1%	 11.60%	 None	 6.01%	 None	
ns = 500 21.15%	 <	1%	 6.67%	 None	 2.06%	 None	

       
p(T) 	 	 	 	 	 	

ns = 25 23.12%	 <	1%	 13.50%	 <	1%	 4.94%	 <	1%	
ns = 50 16.63%	 <	1%	 6.01%	 <	1%	 1.23%	 None	

ns = 100 11.93%	 <	1%	 3.46%	 None	 <	1%	 None	
ns = 250 6.34%	 None	 <	1%	 None	 None	 None	
ns = 500 3.87%	 None	 None	 None	 None	 None	

 
Table 5. Number of cases with extreme parameter values (out of 2430) by parameter, 

student sample size, and problem set length.  
 

Findings from Table 5 suggest that longer problem sets are less susceptible to extreme 
parametrization estimates than shorter problem sets. A similar effect was observed for 
greater student sample size, however, even with large student sample sizes, extreme 
parameters remained common at np = 3 and np = 6. Increasing problem set length appears 
to result in a greater reduction in extreme parametrizations than increasing student sample 
size. Additionally, extreme parametrizations of p(G) and p(S) were somewhat more 
common than for p(L0) and p(T). This could either be due to more variance being 
inherent in predictions of p(G) and p(S), or it could be a consequence of the narrower 
range of values that these parameters can take in most BKT models, to avoid model 
degeneracy.  
 
Methods – Evaluation of Error in Knowledge Estimation 
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The preceding analyses showed that model parameters can deviate considerably from the 
original “ground truth” in the data simulation, for small numbers of students, and 
especially for small amounts of data per student. However, these deviations in values do 
not entirely communicate the practical significance of these model errors. The larger 
question is how effective the models are at predicting when a student reaches mastery. To 
put it another way, how much does a larger standard deviation for a specific parameter 
translate into differences in the point at which a student is predicted to master a skill? 
How sensitive are BKT mastery predictions to variance in parameter estimates? 
 
Once we had completed the process of data generation and model fitting, we computed 
the variance in estimations of the point of student mastery. In other words, we wanted to 
know the degree to which the models varied in their inferences about whether a student 
had reached mastery based on changes in the underlying parameters.  
 
To accomplish this, we conducted a second simulation, taking a similar approach to 
Fancsali, Nixon & Ritter (2013). This approach starts by using the p(L0) parameter 
according to its original semantic meaning in (Corbett & Anderson, 1995); as an indicator 
of what proportion of students have mastered the skill before starting to work in the 
system. We randomly assign simulated students to the mastery or no mastery state, 
according to this probability. For instance, p(L0) = 0.30 means that 30% of a sample of 
simulated students begin in the mastery state. Then, for each opportunity to practice the 
skill, an additional proportion of students who have not yet mastered transition to the 
mastery state after completing the problem. By the definition of BKT, this proportion is 
equal to p(T). Once we have determined when each student reached mastery, correct and 
incorrect answers can be generated – a student in the mastery state generates correct 
answers with probability (1-p(S)), while a student in the no mastery state generates 
correct answers with probability p(G). Following the generation of this simulated dataset 
we fitted a new BKT model to the student correctness data, and compared when the 
ground truth model indicated that a student reached mastery to when the fitted model 
inferred that the student had reached mastery.  
 
As Fancsali and colleagues (2013) note, there will inherently be some disagreement 
between when the student reaches mastery and when the model infers that they have 
reached mastery. Generally, BKT is unable to predict that a student is in the mastery 
condition from the first attempt, except for abnormally high values of p(L0). Fancsali and 
colleagues term this the ‘acceptable lag’ – the period of time where BKT is unable to 
make a prediction of mastery because insufficient data has been obtained about a specific 
student to make a valid inference about that student. In Fancsali et al. (2013), this is 
operationalized as the theoretical minimum value that p(Ln) can reach, given a string of 
infinite incorrect answers. For this paper, we use a slightly different operationalization: 
we define the theoretical minimum p(Ln) for a student as p(T). We choose this value for 
the following reason: After a given problem, a student with p(Ln) = 0 has a probability 
p(T) of transitioning to the mastery state. We chose to use this particular approach 
because we wanted to rely on knowing the state of the hidden node as much as possible, 
rather than inferring it from data, and p(Ln) = 0 reflects a student who is not in the 
mastery state.  
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From there, we calculate the number of consecutive correct answers necessary to go from 
p(Ln) = p(T) to p(Ln) = 0.95. The number of attempts this process takes is what we define 
as the acceptable lag, and we subtract this acceptable lag from the difference between 
ground truth mastery and the model’s predictions of mastery. We use p(Ln) = 0.95 as it is 
a commonly-used (almost always-used in systems that use BKT) threshold for 
determining whether a student has reached mastery. 
 
Conducting such an analysis achieves two goals; first, it assists in establishing a 
principled recommendation for the number of problems and students that should be used 
to conduct BKT analyses. Second, this analysis establishes whether extreme parameter 
values observed are a serious problem: how much of an impact do these extreme 
parameter values have on predictions of mastery? Using the procedure described above, 
we generated a single simulated data set using a set of parameters that might reflect a 
‘normal’ knowledge component: (L0) = 0.25, p(G) = 0.10, p(S) = 0.10, p(T) = 0.15. For 
this set of analyses, using a single dataset allowed us to compare differences in 
knowledge estimation between models without variance between multiple different 
simulated datasets that used the same underlying parameters. 
 
We then performed a series of trials to fit new models onto this simulated dataset. We 
varied the degree of ‘error’ present in the models by choosing a range of parameters 
centered around the ground truth used to generate the original dataset. For p(L0) we used 
the parameters {0.01, 0.10, 0.20, 0.22, 0.25, 0.28, 0.30, 0.50, 0.75}, for p(G) and p(S) we 
used the parameters{0.01, 0.05, 0.07, 0.09, 0.10, 0.11, 0.13, 0.15, 0.25, 0.45}, and for 
p(T) we used the parameters{0.01, 0.05, 0.10, 0.12, 0.15, 0.18, 0.20, 0.25, 0.35}. For 
each of these models, we took the difference between a student’s true point of mastery in 
the simulated data, and that student’s estimated point of mastery in the fit model, 
accounting for the acceptable lag in each model. This produced a measure for each 
student of the error between the ground truth and the model equal to the model 
prediction, minus the ground truth observation, minus the acceptable lag. We then 
calculated the standard deviation of these values. We performed these trials for each 
parameter, while holding all other parameters constant at their seed parameter value – for 
each value of p(L0) that we tested, p(S) and p(G) were fixed at 0.10, and p(T) was fixed 
at 0.15. 
 
Results – Evaluation of Error in Knowledge Estimation 
  
To avoid parameter instability due to insufficient data, we simulated 5000 students; to 
give the simulation enough data for most of the students to reach mastery, we simulated 
20 problems per student. Nonetheless, it is possible for students in the simulated model to 
never reach mastery, and for the fitted model to fail to predict mastery. The simulated 
model, using ground truth parameters, contained 673 students who did not reach mastery, 
13.5% of the sample; because of different ground truth parameters, the number of 
students predicted to not reach mastery in the fitted model changed for each trial of the 
simulation. Data of students who reached mastery, and for whom the models did predict 
mastery, are presented in Table 6.  
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p(L0) 

Students who 
reached 
mastery 

SD of 
prediction 

error p(G) 

Students who 
reached 
mastery 

SD of 
prediction 

error 
0.01 4965 1.367 0.01 4999 2.880 
0.10 4965 1.395 0.05 4969 1.387 
0.20 4965 1.395 0.07 4967 1.393 
0.22 4965 1.395 0.09 4966 1.393 
0.25 4965 1.395 0.10 4965 1.395 
0.28 4965 1.395 0.11 4965 1.395 
0.30 4965 1.395 0.13 4945 1.064 
0.50 4965 1.400 0.15 4943 1.089 
0.75 4965 1.397 0.25 4926 1.375 

   0.45 4790 1.930 
      

p(S) 

Students who 
reached 
mastery 

SD of 
prediction 

error p(T) 

Students who 
reached 
mastery 

SD of 
prediction 

error 
0.01 4965 1.431 0.01 4881 1.489 
0.05 4965 1.395 0.05 4933 1.223 
0.07 4965 1.395 0.10 4945 1.064 
0.09 4965 1.395 0.12 4950 1.035 
0.10 4965 1.395 0.15 4965 1.395 
0.11 4965 1.395 0.18 4966 1.393 
0.13 4966 1.393 0.20 4966 1.393 
0.15 4966 1.390 0.25 4969 1.379 
0.25 4969 1.386 0.35 4974 1.575 
0.45 4969 1.288    

 
Table 6. Standard deviations of differences between time when simulated student 

reached mastery and when model estimates mastery reached.  Seed parameters are given 
in boldface.  

 
Table 6 suggests that there are differences in error of mastery predictions based on 
differences in parameter estimates. The ‘base rate’ for prediction error in BKT seems to 
be about 1.4 opportunities to practice – even at the seed parameters, there was an error of 
1.395 problems between the ground truth mastery point and the model estimation of 
mastery. For p(L0), this error rate stayed quite stable, and there was very little difference 
in prediction error whether p(L0) was very small or very large. Very low and very high 
values of p(G) led to higher error rates, while p(G) of 0.13 and 0.15 produced less error 
than the seed parameter value. For p(S), very low values led to higher error rates, while 
very high values of p(S) led to less error than seed parameter values. For p(T), very low 
and high values both led to higher error rates, while the lowest error rates were at p(T) = 
0.10 to 0.12. 
 
Discussion 
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Variance in Model Parameters Based on Sample Sizes 
Our analyses suggest a high degree of variance in the parametrization of BKT models 
based on both the number of students included in a dataset as well as the number of 
problems included in a problem set. We found that there is about four times as much 
error in parameter estimations for ns = 25 compared to ns = 500, and about twice as much 
error in parameter estimations for np = 3 compared to np = 10. 
 
Additionally, we found differences in parameter estimation based on the value of the 
underlying parameters being used. As a general trend, larger parameter values appear to 
have more error associated with subsequent predictions; an effect that seems to occur 
largely independent from changes in ns and np. This suggests that learning environments 
or skills where students are very likely to understand the material before starting or where 
students receive strong scaffolding between problems may not be as appropriate for 
applying BKT. Because these settings are likely to produce high estimates of p(L0) and 
p(T), respectively, they are more prone to high error rates in predictions of parameters 
and estimates of student knowledge. On the other hand, errors in these contexts – where 
students need minimal practice -- are more likely to produce over-practice than under-
practice, and the correct performance these already-mastered students achieve suggests 
that they will soon reach mastery anyways.  
 
Sample Sizes Needed to Avoid Extreme Parameters 
One potential issue that we noticed with fitting these models is that BKT has a tendency 
in some cases to produce extreme parameter values, such as a p(T) = 1 for an initial 
parameter of p(T) = 0.15, in some cases. These extreme parameter values are problematic 
because of the interpretations of learning that they lead to – for instance, a skill with p(T) 
= 1 is a skill where every student, without fail, attains mastery of the skill they are 
learning after completing a single problem. High values of p(G) and p(S) present similar 
problems. A model with p(G) = 0.50 reflects a model where students in the no mastery 
state still answer correctly half the time; a model with p(S) = 0.50 reflects a model where 
students in the mastery state still answer incorrectly half the time; a model with p(G) = 
0.50 and p(S) = 0.50 reflects a chance model, where nothing about mastery can be 
inferred; and when p(S) or p(G) go above 0.5, students who have not mastered a skill are 
expected to perform better than those who have. Extreme parameters are common when 
applying BKT to small numbers of students and small numbers of problems completed 
per student, in specific cases occurring up to 42% of the time. However, they are much 
rarer when BKT is applied to larger numbers of students who completed more problems. 
The number of students in the data set appears to play a larger role in whether extreme 
parameter values are seen than how many problems students receive. For p(G) and p(S) 
however, even at a student sample size of 500 and a problem set length of 10, there was 
still a considerable number of trials that resulted in extreme parameters. Even larger 
sample sizes and problem set lengths may be necessary to ensure that parameter values 
are reliable for a specific dataset; but more than 10 problems completed is not desired for 
many learning systems, making this goal hard to achieve. 
 
Sample Size Recommendations Based on Mastery Predictions 
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Perhaps the best indicator of whether a set of parameters is problematic is how much 
impact it has on the number of problems the student receives before being assessed to 
have mastery. As such, this paper also examines the degree to which variance in 
parameter estimates led to variance in predictions of mastery for students. We found very 
little difference in prediction errors for p(L0), regardless of its estimation. Since p(L0) is 
replaced by estimates of p(Ln) after the first opportunity to practice a skill, based on 
actual student performance, it is perhaps unsurprising that p(L0) does not influence 
mastery predictions much – as a problem set gets longer the influence of p(L0) rapidly 
decreases. We can see a similar range of values for p(G), with p(G) = 0.05 to p(G) = 0.25 
all producing similar error rates in estimates of student mastery. Once the model starts 
moving into higher parameter ranges, like p(G) = 0.45, the error in mastery predictions 
starts to increase, reaching a standard deviation of nearly two opportunities to practice. 
For p(S), however,  rates of error actually improve as p(S) approaches 0.45. p(T) has the 
narrowest window of optimal parameters out of all four, from about p(T) = 0.10 to p(T) = 
0.12.  
 
Summary 
Our analyses suggest a set of criteria that BKT analyses should meet. If the primary goal 
of an analysis is to predict future correctness, it appears to be feasible to estimate BKT 
parameters on as few as 25 students, provided that parameter values are relatively low 
(Table 2). If the goal of the BKT model is to predict student mastery, at least 25 students 
and at least 3 opportunities to practice a given skill seems to be sufficient. At these 
sample sizes, even large error rates in parameter estimates will not change mastery 
estimates by more than two or three problems. If a lower degree of error is desired due to 
having relatively lengthy problems for students to complete, error in mastery estimates 
can be brought under two problems for low values of P(T) by fitting models to data from 
250 students, and for high values of P(T) by fitting to data from 500 students.  
 
However, if the goal of the model is to make inferences about properties of the 
underlying skills, significantly larger sample sizes appear to be necessary. Parameter 
error continues to decrease through even up to samples of 500 students and 10 problem 
completed per skill for the student, and even larger sample sizes and problem set lengths 
may produce better estimates. Additionally, to avoid extreme parameter estimates, 
sample sizes of at least 250 students and 6 problems per skill per student appear 
warranted. 
 
Future Work 
Although the work presented here establishes some findings about the robustness of 
BKT, and the sample sizes needed, it may be valuable for future work to also investigate 
the effects of even larger numbers of students on parameter estimates. We chose a 
maximum of ns = 500 in this paper, due to the goal of establishing the consequences of 
the small samples often used to develop BKT models for new adaptive learning systems. 
However, some larger adaptive learning systems have data available for thousands or 
even tens of thousands of students. It’s currently unclear how much more improvement 
can be obtained to BKT’s properties under these conditions, an area of potential 
relevance to more widely-used adaptive learning systems. 
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It is also worth considering how these findings apply when considering extensions to the 
BKT framework, to examine whether other variants of BKT offer less error in predictions 
of parameters or of mastery. For predictions of student mastery, even when ground truth 
parameters and fitted parameters were matched, there were still errors in estimations of 
mastery of about a problem and a half. It’s unclear whether this error reflects the ceiling 
of BKT’s accuracy (e.g. Beck & Xiong, 2013) or whether other variants can offer better 
accuracy in their predictions. Though BKT remains the most widely-used student 
knowledge modeling algorithm in adaptive learning, other algorithms such as 
Performance Factors Analysis (PFA), ELO, and Deep Knowledge Tracing (DKT) may 
have different impacts from changes in sample size.  
 
By investigating more thoroughly how sample size interacts with the reliability of student 
knowledge model parameters and predictions, we can better understand the practical 
implications of different sample sizes. This in turn can influence practice in when BKT is 
applied in a learning system’s life-cycle, and ensure that its use is principled and valid – 
producing better pedagogical decisions and hopefully better student outcomes as well. 
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