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1 INTRODUCTION 

Metacognition, or thinking about thinking, is an activity that is crucial for learning [20,25,26,40,52,61]. Metacognition 
enables students to identify gaps in their own knowledge and devise strategies to fill those gaps [22]. In computerized 
learning environments, metacognition is especially important, because students are often expected to self-regulate their 
learning activities; that is, to decide what activities or topics to focus on at any given moment and what strategies to use 
for acquiring or applying knowledge. Self-regulated learning is possible when students have awareness of what they 
know and do not know (i.e., metacognitive knowledge) [43,53]. However, metacognition is difficult to study via typical 
methods like self-report questionnaires [29,58], which has led to additional measurement methods like analysis of prose 
[31] and sequences of activities [10]. In human–computer interaction (HCI) tasks in particular, metacognition has been 
assessed in terms of software interaction behaviors that are consistent with (but do not directly measure) metacognition 
[44,54,64], or by developing interfaces that allow users to explicitly note the metacognitive and self-regulated learning 
strategies they are currently using [5]. In this paper, we approach the problem of measuring metacognition during 
software interactions by applying natural language processing (NLP) methods to transcripts of interviews conducted 
with students as they used a computerized learning environment. In particular, we analyzed transcripts to count cases 
where students spoke about their own cognitive states or processes (i.e., verbalized metacognition). We explored how 
verbalized metacognition relates to learning, emotion, and software interaction behaviors. 

Computerized learning environments offer varying degrees of flexibility in terms of possible interaction behaviors 
and how interactions are guided. For example, some environments implement a mastery learning approach [14,30,48]. 
In mastery learning, the learning environment automatically selects learning content for the student to complete, based 
on measures of what the student already knows or does not know, until the student has mastered a particular topic [9]. 
In contrast, many other learning environments are open-ended, offering students a great deal of flexibility in deciding 
what content to consume next or how to approach solving a given problem [7,35,55,62]. In open-ended environments, 
metacognition allows students to choose learning strategies that may help them learn more efficiently [34], since 
students have many choices about what actions to take, including some that are better suited to their particular needs 
than others [57]. 

Metacognitive awareness of where knowledge gaps are is especially critical for students to be able to identify actions 
(e.g., read about a particular topic) that will address those gaps. Consequently, metacognitive monitoring skills are also 
needed to recognize the existence of knowledge gaps [51]. However, simply being aware of knowledge gaps is not always 
enough; students must also have strategies to close those gaps and take action to do so [28]. For example, students may 
become confused if they encounter a mismatch between content regarding a particular concept and their own 
understanding of that concept. If the source of that confusion is resolved, it may be beneficial to learning [19], whereas 
unresolved confusion may lead to frustration and eventual disengagement from learning [17]. Resolving confusion in 
an open-ended self-regulated learning environment requires four metacognitive elements: recognition of feelings of 
confusion (i.e., metacognitive experiences) to identify the existence of a knowledge gap (i.e., metacognitive knowledge), 
approaches to resolve those gaps (i.e., metacognitive strategies), and an intention to act on those strategies [23,24,28]. 
Treating confusion as a metacognitive experience (as opposed to focusing on the affective experience of confusion itself) 
broadens the focus to the source of confusion, and metacognitive strategies needed to resolve it. 

Metacognitive strategies are often observable in HCI contexts via interaction logs, the records of sequential actions 
users have taken in an interface. In the case of computerized learning environments, for example, we can observe 
whether students who struggle with a particular concept subsequently take action by seeking out more information 
about that concept in the learning environment [64]. However, other aspects of metacognition – students’ metacognitive 
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experiences and metacognitive knowledge – are often less salient. The approach to measuring metacognition that we 
explore in this paper (i.e., automated analysis of interview transcripts) enables assessment of metacognition across three 
elements of metacognition (experiences, knowledge, and strategies). We combined verbalized metacognition 
measurement with existing measures of confusion and metacognitive strategies, which are derived from students’ 
interaction logs in the learning environment. The interaction-based measures of metacognitive strategies also address 
the fourth aspect of metacognition: taking action. With these combined data, we investigated the following three 
research questions (RQs), which contribute to understanding of users (in this case, students) as they use an open-ended 
computerized learning environment. 

RQ1: Does verbalized metacognition relate to students’ learning? 
Hypothesis: We expect that students who express more metacognitive thoughts during interviews will learn more, 

because they are more aware of what they need to learn and how to learn it. 
Relevance to HCI: This research question focuses on the importance of metacognition, broadly conceptualized, in 

computerized learning environments, and thus how important it is to design such environments to support 
metacognition. 

RQ2: Does verbalized metacognition relate to confusion, as measured via interaction logs of student 
behaviors? 

Hypothesis: We expect that interviews coinciding with periods of student confusion will contain more verbalized 
metacognition from students, as they express their confusion and try to resolve it through think-alouds and conversation. 

Relevance to HCI: If confused students express more metacognition during interviews, it suggests that targeted 
interviews (or discussion, more generally speaking) may be an effective way to resolve confusion in learning software. 

RQ3: Does verbalized metacognition relate to metacognitive strategies students use in the software? And 
if so, which strategies? 

Hypothesis: We expect that students who exhibit more verbalized metacognition will also employ metacognitive 
strategies more frequently, since they are more likely to be aware of their knowledge gaps and have strategies to address 
those gaps. 

Relevance to HCI: The metacognitive strategies we extracted from interaction logs are hypothesized to measure 
metacognition based on coherence analysis [54], as described below. Aligning these metacognitive strategies with 
students’ verbalized metacognition will provide validation that these strategies are indeed indicative of metacognition 
and can thus be applied in contexts where more involved measures (like interviews or surveys) are difficult to use. 

Taken together, these three research questions expand our understanding of the relationships between verbalized 
metacognition and measures that are more common in computerized learning environments. Specifically, these 
questions explore the importance of students’ verbalized metacognition in learning (RQ1), how verbalized metacognition 
relates to confusion (RQ2) and how verbalized metacognition relates to enacted metacognitive strategies (RQ3). The 
contributions of this paper consist of the results of a real-world classroom study that investigated these research 
questions, as well as the details of our novel verbalized metacognition measurement process. We provide procedures 
and code needed to apply our method to other HCI contexts so that verbalized metacognition can be studied more 
generally in think-aloud studies, voice user interfaces, or other applications. The contributions in this paper are founded 
on previous research on the intersection of metacognition, learning, and HCI, which we discuss next. 
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2 RELATED WORK 

Research on metacognition began in earnest in the 1970s [25,26], resulting in a large body of research exploring it across 
various domains. Here, we focus specifically on research that has quantified the role of metacognition in HCI, then how 
it relates to confusion and software usage behaviors. 

2.1 Metacognition in HCI 

Metacognition is helpful, or even essential, in a wide variety of HCI tasks, such as using computer programming tools 
[8,39,46], writing argumentative text on the web [60], creating and assessing visualizations [33], and learning via 
technology [4]. Metacognition is also important in activities that commonly take place during HCI research, like 
participatory design, where participants need metacognitive knowledge to be able to identify what knowledge to 
contribute to a design [16]. 

In one study, Vu et al. [59] asked users to self-assess their expertise (i.e., make a metacognitive judgment) before 
describing how to complete tasks in word processing software. Self-assessed expert users were more accurate in their 
descriptions of how to complete the tasks, and they used more complex strategies when needed for difficult tasks. These 
findings indicate that users’ metacognitive evaluation of knowledge correlates with application of that knowledge for 
some HCI tasks.  

However, Ackerman and Goldsmith [1] found some limitations in users’ metacognitive knowledge. They compared 
how well users read text on a computer screen versus on paper, in terms of a reading comprehension post-test. Users 
were also required to estimate how well they would perform on the post-test before taking it, which served as a measure 
of metacognitive knowledge (i.e., whether their estimates aligned with how well they actually performed). While both 
computer- and paper-reading users overestimated their actual post-test scores, computer users did so significantly more. 
Moreover, when given a fixed amount of time to complete the reading, post-test scores were similar across computer 
and paper conditions, but when users were allowed to read for as long as they wanted, they achieved significantly better 
post-test scores reading from paper. These findings suggest that metacognitive knowledge is comparatively lacking in 
computerized environments, and that self-regulation (in this case, deciding how long to read) may also be more difficult 
to calibrate for computer users, perhaps because diminished metacognitive knowledge prevents users from accurately 
deciding how long to spend on the task. 

Users’ metacognition has also been measured by means other than questionnaires in some tasks. For example, Litman 
and Forbes-Riley [38] measured metacognition during interactions with a conversational computerized learning 
environment in which students learn by verbally discussing introductory physics topics with the computer. A researcher 
transcribed students’ speech in real-time to provide text to the learning software, and annotated the text for statements 
of certainty (i.e., verbalized metacognitive knowledge). In a subsequent version, automatic speech recognition provided 
transcriptions while a machine learning model trained on speech features (e.g., pitch, energy) classified certainty. In 
both versions, verbalized metacognition was positively related to how much students learned. 

These previous studies have shown that metacognition is important for understanding users’ interactions with 
computers, including during learning experiences. Our work extends this area of research by considering verbalized 
metacognition expressed during interviews, as opposed to questionnaires or other methods, and by exploring 
relationships between verbalized metacognition and users’ software interactions (including those that indicate confusion 
and metacognitive strategies, as discussed below). 
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2.2 Metacognition and Confusion 

Expressing confusion requires awareness of the existence of confusion (a metacognitive experience) and may 
incorporate the cause of that confusion (metacognitive knowledge) [21]. When students encounter a knowledge gap or 
conflict between their existing mental model and newly encountered information, confusion may result [18]. When 
students are aware of the cause of that confusion, they have an opportunity to address the cause and thus learn 
something new [15,17,19,37], provided that they intend to act on that opportunity [28]. Hence, promoting awareness of 
confusion is a common tool for improving metacognition and learning [56]. 

Several studies have measured confusion, or even manipulated it [37], to determine its relationships to metacognition 
and its role in learning. Campbell et al. [11] annotated students’ computer-mediated messages to a human tutor in an 
computerized environment for learning about electronics and electricity. Specifically, researchers marked statements 
made by students about comprehension (e.g., “I understand”) and confusion (e.g., “I don’t understand”) as measures of 
metacognitive experiences. Both types of metacognitive statements were negatively related to post-test scores. However, 
in contrast to research by Litman and Forbes-Riley [38] and Dowd et al. [21] (discussed below), Campbell et al. did not 
measure learning (i.e., improvement between pre- and post-tests); thus, their results are consistent with the possibility 
that students with low prior knowledge (and thus low pre- and post-test scores) may have engaged in more 
metacognitive activity by necessity. 

Conversely, Dowd et al. [21] controlled for pre-test score in an analysis of students’ self-reported confusion, and 
found that confusion was positively related to learning introductory physics. They also found that confusion was 
negatively related to pre-test score, which suggests that more confused students did have lower prior knowledge, but 
were able to learn from their confusion. Notably, students self-reported confusion, thus only capturing metacognitive 
experiences of confusion, where they were paying attention to their confusion and thus well-positioned to address it. 

Rather than relying on self-reports, Zhang et al. [64] employed trained observers to record instances of student 
confusion in real-time as students interacted with a computerized learning environment for natural science topics. They 
found no overall relationship between confusion and learning, but did find that students used more metacognitive 
strategies (as measured via coherence analysis [54]) during periods of confusion, suggesting that students were aware 
of their confusion and knew how to take steps to address it. 

In this paper, we measure learning (as opposed to only post-test scores), and incorporate assessment of verbalized 
metacognition in response to researcher prompts (rather than self-reports) with measures of metacognitive strategies 
based on coherence analysis. We thus extend previous research by determining whether students are aware of and 
addressing their confusion through interviews. 

2.3 Metacognition Strategies in Software Usage 

Coherence analysis, a measure of metacognitive strategy usage, refers to whether actions done in sequence in an 
interface are informed by one another [54]. For example, if a user performs some action X (e.g., reading a message) that 
provides them with knowledge they need to perform action Y, then the XY sequence is said to be coherent (as opposed 
to doing Y before X, for example). Coherent action sequences in computerized learning environments are evidence of 
students employing metacognitive strategies, a type of self-regulated learning behavior, to address issues identified via 
their metacognitive experiences (e.g., confusion) or metacognitive knowledge. Given the potential benefits of 
metacognition, several studies have measured or encouraged coherent actions and related metacognitive strategies to 
understand or improve computerized learning. 
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In two closely-related studies, Wang et al. examined the effects of software features intended to support 
metacognition in an environment called MindDot [62,63]. MindDot is a computerized learning environment for concept 
mapping, where students learn to graphically link together ideas via relationships [42]; for example, species [concept] 
→ provide [link] → ecological services [concept]. In one study, researchers added a tool intended to facilitate coherent 
actions in MindDot by making related information more readily accessible [63], while in another study they added a 
feature designed to incorporate expert knowledge via a template used as a starting point for their concept map [62]. 
These features were designed to support metacognitive strategies for comparison by making information and links 
between concepts more salient. They found that use of metacognitive strategies was more predictive of learning than 
the quality of students’ concept maps themselves. 

Metacognitive strategies are also valuable for learning computer programming [8,45,46]. Prather et al. [45] added a 
scaffolding phase to an interface for automatic program evaluation, wherein students were required to trace through an 
example case for a problem before writing C++ code to solve the problem. The scaffolding phase was intended to improve 
students’ metacognitive awareness of potential difficulties they might encounter during the problem. In a controlled 
experiment, students using scaffolding outperformed students in the control condition on the subsequent programming 
task. Furthermore, researchers qualitatively coded students’ speech during the experiment (via a think-aloud protocol) 
and found that students in the scaffolding expressed more verbalized metacognition, including metacognitive strategies, 
experiences, and knowledge. 

In sum, related work has shown that metacognition is a key consideration for modeling users’ experiences in HCI 
tasks, especially those involving learning. Moreover, there are many methods for measuring metacognition, including 
those that focus on only one facet (e.g., metacognitive experiences of confusion) and those intended to capture more 
aspects of metacognition (via students’ speech). These findings motivated the study in this paper, which explored an 
NLP method for measurement of verbalized metacognition and triangulated verbalized metacognition with learning, 
confusion, and software interactions. 

3 DATA COLLECTION 

We conducted a study with students in a U.S. middle school classroom context using a computerized learning 
environment called Betty’s Brain [7]. 

3.1 Betty’s Brain 

Betty’s Brain is a “learning by teaching” [6] concept mapping environment in which a student’s goal is to construct a 
concept map that functions as the “brain” for a simulated student named Betty (Figure 1). Specifically, students create a 
causal map, where the links in the map denote cause-and-effect relationships. Students can then administer quizzes to 
Betty, who will answer these questions according to the concept map the student has constructed (Figure 2). Students 
also have access to a pedagogical agent named Mr. Davis, who can provide hints about what to do next (referred to as 
feedback below). In addition to constructing concept maps, students can read about the topic for which they are building 
a concept map via the “Resources” tab, take notes, and see the results of quizzes that Betty has taken. Students choose 
what action to perform next throughout the learning process; they thus engage in self-regulated learning, where 
metacognition is expected to be especially valuable [24,52]. 

Students’ interactions with the Betty’s Brain software are logged in timestamped files, which enables analysis of their 
interactions to infer certain aspects of their learning experience. In this study, we used a version of Betty’s Brain that 
provides events triggered automatically by students’ affective and behavioral states. Affective states included emotions 
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like confusion and delight, and behaviors like reading for a long period of time [32,41]. Specifically, Betty’s Brain detects 
affective states from students’ interaction log files, and triggers events based on sequences of affective states that are 
hypothesized to be especially relevant for learning [3,17]. 

In our study, we used these affect and behavior events to signal interviewers to begin an interview with a student. 
Interviewers were signaled via a publicly-available smartphone application called Quick Red Fox1, which integrates with 
Betty’s Brain events and allows users to record metadata related to each event (in this case, timestamps and which 
student was being interviewed). For our second research question, we examined cases where interviews were initiated 
by affect sequences involving confusion, where the confusion experience was either resolved (recently or not recently), 
ongoing, or unresolved (Table 1). Betty’s Brain detects these events and stores them to a server. Quick Red Fox then 
reads from the same server in real-time to trigger interviews by signaling to the interviewer. 

Table 1: Confusion-related affect sequences that were used to initiate some of the interviews in our study. Other interviews were 
initiated by affect sequences not involving confusion, behavior events, or explicit requests from students. 

Affect sequence Expected interpretation 

Engagement → confusion → delight → engagement The student has fully resolved the source of confusion and returned to 
working on the task 

Confusion → delight The student recently resolved the source of confusion, but has not yet 
returned to engagement with the task 

Confusion → frustration The student became frustrated after not resolving the source of 
confusion, but has not disengaged 

Engagement → confusion → frustration → boredom The student did not resolve the source of confusion, and disengaged 
instead 

 

 
1 http://www.knossys.com/deploy/QRF/  
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Figure 1: Screenshot of Betty’s Brain showing a concept map under construction. On the left and bottom of the interface are options 
for students to interact with virtual agents (Betty and Mr. Davis) to either test their concept map (by administering a quiz to Betty) 

or to receive feedback about what to do next (from Mr. Davis). 
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Figure 2: Screenshot of Betty’s Brain showing the quiz results interface, where students can see each question in the quiz and a 
history of how the Betty agent responded to each question. Students can also see why Betty responded in a particular way for each 

question, according to sections of the concept map that are highlighted. 

3.2 Study Participants and Procedure 

We conducted our study during the 2018–2019 school year with 99 middle school students in the U.S., who participated 
as part of their regular classroom learning. The classroom teacher was not involved in the study apart from typical daily 
announcements and one classroom-wide intervention, which was needed after several students were disappointed with 
Betty’s quiz scores. All study procedures were approved by an institutional review board before data collection began. 
Students participated during two data collection periods, and received training on how to use Betty’s Brain before data 
collection began. The first data collection period lasted four days, during which students spent approximately 45–50 
minutes each day using Betty’s Brain to learn about climate change (visible in Figure 2). The second data collection 
period lasted three days, and was conducted two months after the first. The second period was similar to the first, except 
that students learned about thermoregulation. Students completed a pre-test measuring their prior knowledge before 
beginning each of these topics, and an identical post-test after completing each topic. No students achieved perfect scores 
on either test, and there were no apparent floor effects. We calculated the difference between pre- and post-test scores 
(averaged across topics) as a measure of how much students learned. Most students improved; only 7.1% experienced 
negative learning gains. We also calculated a normalized measure of learning, where we divided the difference between 
post- and pre-test scores by the amount of improvement possible (i.e., 1 – pre-test score). The normalized measure 
correlated almost perfectly with the difference alone (r = .995), however, and subsequent results were virtually identical. 
Hence, we proceeded with the simpler difference measure. 
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Two interviewers working separately conducted verbal in-person interviews with individual students throughout 
both periods of data collection and recorded the interviews with microphones carried by the interviewers. Interviewers 
primarily selected students to talk to based on the affective and behavioral events presented to them via the Quick Red 
Fox smartphone application described above, but also employed other criteria, including explicit requests from students 
who wanted to talk about their current experiences. Unstructured interview strategies were employed, and interviews 
lasted 36 seconds on average. Interviewers often encouraged students to talk about their specific strategies or to provide 
feedback about their experiences with the software, but conversational strategies to interrogate student motivations, 
including intrinsic interest were also used. These included questions about students’ interest in science, their favorite 
school subjects, and their preferred reading materials. Thus, these conversations were not explicitly designed to promote 
students’ metacognition, but metacognitive topics were prevalent in students’ speech nonetheless (as shown below). 

Interviews were transcribed by two researchers to enable NLP analysis. Interviews with multiple students or multiple 
interviewers were excluded, since the Quick Red Fox application did not support recording metadata for such interviews. 
In total, 493 interviews of 99 students remained after these exclusions. Each student was interviewed at least once, and 
4.98 times on average (SD = 2.68), allowing us to measure verbalized metacognition for each student. 

4 MEASURING METACOGNITION 

We measured verbalized metacognition from interview transcripts, which was necessary for all three research questions, 
and measured metacognitive strategies via coherence analysis as part of studying RQ3. 

4.1 NLP Analysis of Interviews 

We adapted an existing open-source NLP tool for measuring metacognition from text [31]. This tool counts phrases 
beginning with a first-person pronoun and ending with a metacognitive indicator word, such as “considered” or 
“expected”. The tool is intended to capture metacognitive statements across three types of metacognition (metacognitive 
knowledge, experiences, or strategies); as observed in previous research, verbalized metacognition appears to span all 
three categories [45]. The tool also subdivides metacognitive phrases into positive (confident) and negative (unconfident) 
categories, similar to related work that examined confidence and confusion separately [11]. However, we combined 
these two subcategories into an overall metacognition category, given that negative metacognitive statements were 
relatively uncommon and previous research shows that results are similar for both subcategories [11,31]. 

The NLP tool was originally designed to extract metacognitive statements from text written in online discussion 
forums by college students, unlike the context of our study. The vocabulary and grammar of middle school student 
interview transcripts differs somewhat from the expectations of the tool. For example, one student in our study said “So, 
actually, my last quiz she got it, he just, she just didn’t know, and I’ve just been using questions like why, to figure out 
what kind of material to input.” In this example, the student refers to a problem-solving strategy intended to address 
metacognitive knowledge gaps; however, the sentence structure is complicated. In another case, a student said “Um, like, 
when I play, I use the strategy of my dad...” Here the student indicates metacognitive awareness of a strategy they are 
using, but expressed it in a way that was not captured by the NLP method. We addressed these and other commonly-
observed errors made by the tool by adjusting the dictionaries of metacognitive indicator words to suit the vocabulary 
of students in our study and adding regular expressions to capture common metacognitive expressions that did not 
conform to the expected phrasing structure. Our modified version of the NLP tool is publicly available2. 

 
2 https://github.com/pnb/metacognitive_phrase_detector  
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We adapted the NLP tool via an iterative process consisting of five rounds of human annotation (with the same 
annotator for each round) and comparison to NLP predictions, all of which were performed on transcripts from the first 
period (four days) of data collection only (we expected that the tool would generalize well to the second period of data 
collection with the same students and context). We developed a written guide for annotation in which we defined 
metacognition and instructed the annotator to count the number of first-person metacognitive phrases observed, 
including contextual information (e.g., transcriptions of the interviewer’s speech) to make decisions. Annotation began 
with exploratory rounds to determine major issues with applying the NLP tool in this context, then continued to larger 
rounds informed by power analysis. 

Round 1: We annotated 15 interviews, which included 85 conversational turns from students. We measured 
agreement between the annotator and the NLP tool via linear-weighted Cohen’s kappa [13], achieving kappa = .655 
(where 0 indicates random guessing and 1 indicates perfect agreement). This kappa indicates “substantial” agreement 
[36], but we nevertheless addressed one NLP shortcoming (a regular expression needed to capture a common phrase) 
before the second round. 

Round 2: We annotated an additional 15 interviews (63 student conversational turns), yielding kappa = .849, or 
“almost perfect” agreement [36]. We observed no consistent NLP errors in this round, and thus proceeded to round 3 
with a larger data sample. 

Round 3: Given round 2 agreement, we conducted an 80% power analysis assuming a null kappa of .7 (midpoint of 
the “substantial” range [36]) using the irr package [27] in R [47], based on which we annotated 593 additional student 
turns. Kappa was .530, indicating “moderate” agreement. We observed several consistent errors in this round, and added 
15 additional metacognitive indicator words (e.g., “strategy”, “progress”), 4 regular expression patterns, and 1 first-
person pronoun (“me”) that had not been included previously. Kappa on this round was .667 after these changes. 

Round 4: We conducted another power analysis assuming a null kappa of .5 (midpoint of the “moderate” range), 
given the lower round 3 results (kappa = .667 post-adjustments), and thus annotated 285 additional student turns. Kappa 
was .656, indicating “substantial” agreement between the annotator and the updated NLP tool. We proceeded to round 
5 without additional updates, given that agreement was substantial and the tool appeared to generalize well from round 
3. 

Round 5: Finally, we annotated the remainder of the first data collection period’s transcripts (1,121 additional student 
conversational turns). Kappa on these data was .688, indicating that the changes made through the first 3 rounds 
generalized well to the remaining data. 

After applying the finalized NLP tool to all transcripts for both data collection periods, kappa for annotated 
transcription turns (i.e., data from the first period of data collection) was .684. We then proceeded to measure 
metacognition from interaction log files. 

4.2 Coherence Analysis of Interaction Logs 

Betty’s Brain includes metadata linking concepts to learning materials and quizzes, which enables features like 
explanations of Betty’s quiz answers (Figure 2) and, in our case, identification of coherent actions. Coherence analysis 
relies on sequences of events (e.g., quiz → reading relevant material), but there may be intermediate events (e.g., quiz 
→ concept map editing → reading relevant material). Thus, we counted a pair of actions as coherent if the second action 
was informed by the first and the second action occurred within five minutes of the first, with any number of other 
actions separating the two. This cutoff was in line with prior work applying coherence analysis in Betty’s Brain [54,64]. 
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We extracted the first four metacognitive strategies based on previous coherence analysis in Betty’s Brain [64], and one 
new strategy (coherent feedback). 

Coherent quiz view: Students view the results of a quiz, then perform any action to resolve an issue identified in 
the quiz (typically, like editing the concept map to add a missing link or reading about a concept related to an incorrect 
link in the map). 

Coherent mark: Students mark a link in their concept map (i.e., annotate it), based on either quiz results or prompts 
from Mr. Davis, the virtual tutor agent. Possible marking actions include marking the link as correct or potentially 
incorrect, or deleting the annotation. 

Coherent edit: Students edit links in the concept map based on information either gathered from a quiz or from 
reading about a specific concept (e.g., reading about deforestation, then adding a “reduces” link between “deforestation” 
and “vegetation” in the concept map). 

Coherent read: Students read about a topic based on a quiz result or feedback from Mr. Davis. Such feedback is 
generated, for example, when students adds several incorrect concept map links in a row or when they explicitly ask 
Mr. Davis for help. 

Coherent feedback: Students followed the feedback automatically generated by Mr. Davis who suggested that they 
read about a topic. This is a more specific subset of coherent read to distinguish between potential impetuses for reading. 

We normalized the counts of these metacognitive strategies by dividing by the amount of time each student spent 
using Betty’s Brain because some students spent slightly more or less time with the software than others. These coherent 
action frequencies (count/minute) then served as the measures of metacognitive strategies in software use for RQ3. 

5 RESULTS 

We report results organized by each research question. Throughout results, we rely on Spearman’s rho correlations, 
given that verbalized metacognition counts were ordinal but not normally distributed. 

5.1 RQ1: Verbalized Metacognition and Learning 

Research question 1 asks does verbalized metacognition relate to students’ learning? To investigate this question, we 
measured the correlation between verbalized metacognition (normalized by the number of interviews) and learning 
(student-level post-test – pre-test scores, averaged across data collection periods). We normalized verbalized 
metacognition by dividing the student-level metacognitive phrase counts by the number of interviews that student 
participated in to get the per-interview average, for this and the other research questions. 

Verbalized metacognition correlated rho = .051 (p = .627) with learning, indicating no significant relationship. Our 
hypothesis for RQ1 was therefore not supported. We examined the normalization strategy to determine whether this 
might have had some effect on the results, and found that interview count itself positively correlated with learning (rho 
= .254, p = .014). We further explored the effect of interviews for students who expressed high (above median) versus 
low metacognition per interview. Interview count was positively correlated with learning for high-metacognition 
students (rho = .327, p = .027), but was not significantly related for low-metacognition students (rho = .228, p = .119). 
Thus, RQ1 findings suggest that, although verbalized metacognition per interview was not related to learning, interviews 
themselves may have benefitted learning, especially for students who were likely to engage in verbalized metacognition. 
However, it also possible that interviewers were more likely to interview successful students, though this was not their 
goal. 
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Table 2 provides illustrative examples of two interview transcripts where differences in verbalized metacognition are 
apparent. In one interview, a student discussed their metacognitive experiences (e.g., “it was a little bit like a dawning 
realization”) and demonstrates metacognitive knowledge (e.g., “I already knew it was bad”), though does not describe 
strategies for addressing problems with the concept map. In the other, a student describes encountering a problem (“this 
idiot [Betty] kept getting everything wrong”), but does not appear to be aware of knowledge gaps that might be the 
source of this problem, and describes a strategy (“Take away everything and start from scratch”) that is not informed by 
strong metacognitive knowledge of exactly what the specific flaws in the concept map are or strong metacognitive 
strategies to address those specific flaws. 

Table 2: Example interview excerpts from a student exhibiting a high amount of verbalized metacognition versus a low amount. 

High metacognition interview Low metacognition interview 

Interviewer You’re not taking the test? Yeah OK. Has anything 
in the content really surprised you? 

Interviewer How’s it going here? 

Student I was aware of it but I wasn’t, like, so informed 
about all this. 

Student I’ve had to reset everything.   

Interviewer OK. Interviewer Why? Is the system broken, or…? 

Student So, like, all the details of how exactly it works, 
and… 

Student No, no, it’s not a system problem, it’s just that 
this idiot [Betty] kept getting everything 
wrong. 

Interviewer OK. Interviewer Uh oh. 

Student I wouldn’t say it surprised me. I already knew it 
was bad, but, like, it was a little bit like a dawning 
realization of how, uh, bad it is. 

Student So, I just had to get it out. Take away 
everything and start from scratch. 

Interviewer Worse than you thought? So— So what you’re 
describing is more just a surprise, and not like 
confusion there, nothing not making sense?   

  

Student Yeah. Yes. Making it makes sense when I 
understood how well— reasonably, I understand 
better now. 

  

Interviewer Yeah.   

Student I’m a little more aware now   

 

5.2 RQ2: Verbalized Metacognition and Confusion 

Research question 2 asks does verbalized metacognition relate to confusion, as measured via interaction logs of student 
behaviors? We investigated this research question by measuring the student-level correlations between verbalized 
metacognition and the proportion of interview conversational turns that were from interviews initiated for confusion-
related reasons. As noted above, interviews could be initiated for affective, behavioral, and other reasons, including 
sequences of multiple affective states. We considered an interview confusion-related if it was initiated from any sequence 
of affective states involving confusion. Note that the proportion of interviews initiated by each sequence varied 
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substantially because we prioritized certain sequences over others, which was necessary given that some sequences were 
subsequences of others. 

Results partially supported the hypothesis that students would verbalize more metacognition during periods of 
ongoing and recent confusion, versus less recent confusion experiences and unresolved confusion. In particular, the 
affect sequence where students had already returned to engaging with the task (engagement → confusion → delight → 
engagement) showed no relationship with metacognition (rho = .011, p = .937, 69.7% of interviews). When confusion had 
been resolved recently (confusion → delight) and when it had not yet been resolved (confusion → frustration), verbalized 
metacognition trended positive (but was not significant; rho = .127, p = .371, 8.9% of interviews, and rho = .185, p = .189, 
2.0% of interviews, respectively). Conversely, when confusion went unresolved (engagement → confusion → frustration 
→ boredom), verbalized metacognition was significantly lower (rho = -.282, p = .043, 8.1% of interviews). Affect sequences 
of interest triggered 88.7% of interviews combined. Other triggers contributed little to the number of interviews: less 
than 0.1% of interviews were triggered by affect sequences not considered in this paper (frustration → engagement and 
sustained delight), approximately 1% were triggered by student requests for interviews, and the rest were triggered based 
on one of 12 different behavior-based triggers (e.g., reading for a long period of time). 

5.3 RQ3: Verbalized Metacognition and Metacognitive Strategies 

Research question 3 asked does verbalized metacognition relate to metacognitive strategies students use in the software? 
And if so, which strategies? We studied this question by computing correlations between verbalized metacognition and 
the strategies identified via the coherence analysis described in Section 4.2. 

Results in Table 3 show that verbalized metacognition was positively related to use of metacognitive strategies, as 
we had hypothesized, for some strategies. In particular, coherent quiz view (rho = .201, p = .046) and coherent mark (rho 
= .217, p = .031) were significantly positively related to verbalized metacognition, while other strategies were not. 
However, even insignificant correlations showed a positive trend, suggesting further support for the RQ3 hypothesis 
given a larger sample size; the probability of five relationships each having the same sign (either positive or negative) is 
6.25% (i.e., p = 0.0625; marginally significant).   

Table 3: Correlations between verbalized metacognition and metacognitive strategy use. *indicates p < .05. 

Metacognitive Strategy Correlation (rho) 

Coherent quiz view .201* 

Coherent mark .217* 

Coherent edit .047 

Coherent read .124 

Coherent feedback .116 

 

6 DISCUSSION 

Overall, results partially supported two of our three hypotheses (RQ2 and RQ3), did not support one (RQ1), and 
elucidated the role of verbalized metacognition in computerized learning environments. In this section, we discuss these 
results and their practical implications for HCI, then point toward future work to address limitations inherent to our 
study and offer concluding remarks. 
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6.1 Main Findings 

Based on previous theoretical and empirical work [20,26,38,52], we expected verbalized metacognition would be 
positively related to learning (RQ1). We found that this was not the case. However, interviews themselves were 
correlated with learning, and especially so for students who expressed more verbalized metacognition. It may thus be 
the case that students used the interviews as an avenue for resolving metacognitive experiences like confusion. 
Furthermore, given that students themselves could initiate interviews by getting the attention of the interviewers, it is 
possible that student-initiated interviews were more likely to be for students who were metacognitively aware of 
knowledge gaps or sources of confusion that they wished to discuss. However, it is also possible that the interviews 
served as an opportunity for students to engage in self-explanation, which can benefit learning [12]. Explanation 
activities also benefit tutor learning in peer tutoring contexts [49], which aligns with the learning-by-teaching approach 
of Betty’s Brain. 

Our second hypothesis (RQ2) focused more specifically on the role of verbalized metacognition for confusion 
resolution, given previous research suggesting a coupling between metacognition and confusion [11,64]. Results did not 
support the hypothesis that confused students would verbalize more metacognition, but further suggested that students 
used interviews as an opportunity to discuss (and, hopefully, resolve) their recent and ongoing confusion experiences. 

For our third research question (RQ3), we expected that our novel measure of verbalized metacognition would show 
convergent validity with measures of metacognition derived from logs of students’ software interactions [54,64]. This 
hypothesis was partially supported; some – but not all – measures of metacognitive strategies correlated with verbalized 
metacognition. However, even non-significant correlations trended positive, as expected from our hypothesis. These 
findings indicate that that students’ software interaction behaviors mirror their verbalizations of metacognitive 
strategies – i.e., that students are often consciously aware of the strategies they are implementing in the software. Note, 
however, that coherence analysis is intended to capture specific two facets of metacognition (namely, metacognitive 
strategies and action), while our verbalized metacognition measurement method is intended to capture three facets of 
metacognition (including metacognitive knowledge and experiences) – though not metacognitive action. Thus, we 
would expect some differences between verbalized metacognition and metacognition measured from interaction logs, 
even in a best-case scenario where both measures were free from measurement error. 

In sum, we found limited support for the hypothesized link between verbalized metacognition and learning, and 
stronger support for the hypothesized links between verbalized metacognition and measures of confusion and 
metacognitive strategies measured from interaction log files. Overall, these findings indicated that interviews conducted 
during students’ interactions with computerized learning environments do offer some insight into their metacognitive 
states. 

6.2 Implications for HCI 

Both our methodology and results offer implications for HCI research and practice. Assessing metacognition via 
interviews is a generalizable method with applications to research and design in situations like think-aloud protocols, 
where the transcripts of users’ thoughts could be analyzed to assess the role of metacognition in their interactions. 
Similarly, in speech-oriented computer interfaces (voice user interfaces; e.g., Amazon Alexa, Google Nest), analysis of 
automatically-transcribed speech may provide insight into users’ problem-solving processes and experiences using these 
interfaces. 

Computerized education environments may also be improved by implementing metacognition-focused interview-
like functionality. As observed in results for RQ1, completing more interviews correlated with higher learning. While 



 

16 

the existing Betty’s Brain interface includes some support for conversations with the virtual agents (Betty and Mr. Davis), 
results show potential for further improving learning via additional interview-like functionality. Such functionality may 
be informed by the results of this paper, to specifically focus on promoting metacognitive evaluations and self-
explanations from students. Note, however, that metacognitive evaluation alone is insufficient without motivation, 
confidence, and intention to act on those evaluations [2,28], which should also be considered during interface design. 

Results from RQ2 offer possible implications for how adaptive learning software might select points in time to 
automatically suggest a metacognitive intervention like an interview. In particular, the automatic measures of affective 
state sequences incorporated in Betty’s Brain showed that unresolved confusion correlated with less verbalized 
metacognition, and suggested (though not significantly) that ongoing and recently-resolved confusion might result in 
more. Since RQ1 results also indicated that interviews might be especially beneficial for highly-metacognitive students, 
the points in time where ongoing confusion is automatically detected offer opportunities to provide a metacognition 
intervention. Selecting the right time is essential, given that related research on think-aloud methods implies that an 
interview that interrupts students would have negative effects [50]. Conversely, an appropriately timed intervention 
could help resolve confusion before students transition to boredom and disengage from metacognitive activity. 

RQ3 results further support the idea that interviews or similar procedures could be effective metacognitive 
interventions. If the link between verbalized metacognition and metacognitive strategy use is causal (i.e., if interviews 
are effective metacognitive prompts), interventions could focus on encouraging such strategies, perhaps describing them 
to users as a means of confusion resolution. 

Considered together, the findings in this paper suggest that NLP analysis of interview transcripts is a promising 
method for gaining further understanding into users’ metacognition, and that interviews that resolve metacognitive 
experiences of confusion may be a way to promote learning in computerized environments. 

6.3 Limitations and Future Work 

The implications of this study suggest several avenues for future research, including incorporating more interview-like 
functionality directly into Betty’s Brain and experimenting with automatically timing interviews to coincide with 
periods of confusion. There are, however, limitations that should also be addressed in future work. The study reported 
in this paper was observational, and was primarily intended to yield insights for future work from analysis of interview 
transcripts. This limited our ability to make key causal inferences; for example, do interviews indeed improve learning 
via confusion resolution, or are students experiencing confusion simply more likely to learn because the confusion itself 
leads to learning? However, the observational design of this study allowed us to maximize statistical power (versus 
dividing students into conditions and comparing conditions), which was essential for this study given the difficulty of 
recruiting schools, teachers, and students to participate in a classroom study. Future work will test potential automated 
interview-based interventions informed by the results in this paper. 

There are also two notable sources of unexplained variance in the measures we used. First, we only measured 
verbalized metacognition during interviews, though it is possible that students engaged in similar metacognitive 
activities during peer-talk or even self-talk. Future work could compare these other sources of verbalized metacognition 
by recording students constantly, rather than only during interviews. Second, the pre- and post-tests we administered 
to measure learning were identical, so it is possible that students learned from the test and were more prepared for the 
post-test because of that. This source of variance might have contributed to the lack of evidence for a relationship 
between verbalized metacognition and learning that we observed in RQ1, and should be explored more in future work. 
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The study in this paper was also limited to a single physical site and set of students, which may restrict generalization 
of findings to other populations. However, this allowed us to collect a large number of in-person interviews with limited 
researchers, which enabled detection of some fine-grained relationships like the correlations between verbalized 
metacognition and metacognitive strategies. Future work will also be needed to address this limitation, and may be 
enabled by more scalable automated interview-based interventions. 

7 CONCLUSION 

The research in this paper was motivated by a lack of understanding regarding how metacognition measured in the 
moment (and verbalized metacognition in particular) relates to learning outcomes, experiences, and usage patterns in 
educational software. Addressing this topic via NLP analysis of interview transcripts allowed us to triangulate 
metacognition with expected patterns of confusion and metacognitive strategies, which showed that verbalized 
metacognition is indeed linked to interaction behaviors, and that getting students to talk about their metacognitive 
processes may be an effective way to improve learning in computerized learning environments. Ultimately, these 
findings will enable the design of educational software and instructional practices that improve student outcomes by 
supporting their metacognitive needs. 
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